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Exact Algebraic Tails of Static Correlations in Quantum Plasmas at Low Density
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We give the exact low-density coefficients of the large-distance algebraic tails of static correlations
in quantum plasmas. Quantum statistics is taken into account, and the interaction is the pure Coulomb
potential without any regularization. The low-density expansions, valid in regimes of weak coupling
and low degeneracy, are obtained by using a path-integral formalism at finite temperature. Applications
to the hydrogen plasma in the Sun and to the charge-carrier gas in germanium are given. The interplay
with classical Debye screening is discussed. [S0031-9007(97)02472-1]
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In astrophysics or in laboratory physics, matter can
often be considered as a fluid of nonrelativistic quan-
tum point charges (for instance, nuclei and electrons) with
Coulomb interaction eaeg!r between two charges ea and
eg separated by a distance r (a and g are species in-
dices). Contrary to the common belief according to which
Coulomb screening always leads to exponential cluster-
ing—as it is the case in the classical regime, in the semi-
classical Thomas-Fermi model or in the quantum random
phase approximation (RPA)—the existence of algebraic
tails in the static correlations of quantum plasmas has
been gradually displayed. After the first doubts raised
about exponential screening of external charges [1,2], a
h̄ expansion of the internal correlations about their clas-
sical values was produced for a multicomponent plasma
[3,4] in the Maxwell-Boltzmann (MB) approximation and
with a Coulomb potential regularized at short distances
in order to prevent the classical collapse of charges with
opposite signs. (The latter can be avoided only by tak-
ing into account the Fermi statistics for a system where
all negative and!or positive charges are fermions [5].)
The MB particle-particle correlations fall off as 1!r6 with
a coefficient starting at the order h̄4. More recently, in
the framework of a path-integral “loop” formalism, which
takes into account the quantum statistics (Bose or Fermi)
and deals with the pure 1!r Coulomb potential [6], with-
out any regularization at short distances, it was shown
that after exact resummation of the long-range tail of the
Coulomb interaction the truncated two-body distribution
function rT

ag"r# (called correlation in the following) de-
cays as Aag!r6 in real matter [7]. In fact, the argument
is perturbative in the sense that it relies on a term-by-term
analysis of an expansion with respect to some auxiliary
parameter “density of loop.” (In the standard many-body
perturbation theory using Feynman diagrams at finite tem-
perature, such a general analysis seems not to be possible,
as explained in Ref. [6]; hints that some corrections to the
RPA diagrams induce algebraic tails in correlations have
been exhibited only for the very special model of the one-
component plasma with a neutralizing background [8].)

However, as it will be accounted for in a future extended
paper, low-density expansions for real multicomponent
plasmas can be devised from the general loop formalism
valid at any density. Thus the conclusions of Ref. [7] are
strengthened by exact analytical results in the low-density
regime— such results are not available in other quantum
situations at the moment —and the existence of the alge-
braic tails of correlations is settled as follows.
In this Letter, we present the exact analytical low-

density limit for the coefficients of the algebraic tails
Aag!r6, Ba!r8, and C!r10 for the particle-particle,
particle-charge, and charge-charge correlations, rT

ag"r#,P
a earT

ag"r#, and
P

a,g eaegrT
ag"r#, respectively. The

coefficient of the 1!r8 falloff of the induced charge
density derived from the linear response theory is also
given. These results hold for real plasmas, with quantum
statistics and no modelization of the Coulomb interaction,
in regimes of low degeneracy and weak coupling at
finite temperature. By producing the above low-density
coefficients, we settle the existence of the algebraic tails
from the theoretical point of view. Numerical estimations
are made for the core of the Sun and the charge carriers
in an intrinsic semiconductor, because these systems meet
the required conditions for the validity of the low-density
limit. Though the effect is quantitatively small within a
large range of distances in these situations, its existence is
qualitatively important, in principle, because it determines
the effective interactions between charges. The effect
might turn out to be observable in some future, more
refined experiments involving correlations, perhaps in
plasmas in stronger quantum conditions, such as electrons
in metals, but the calculation of the coefficients of the
algebraic tails in these systems is far beyond the scope of
the present paper.
Another point of the Letter is to exemplify how low-

density expansions give a flavor of the subtle mechanisms
at stake and their interplay with the fast classical screen-
ing usually taken for granted. The origin of the alge-
braic tails, namely, the absence of exponential screening
for the quantum fluctuations of the dipolar interaction
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between charges surrounded by their polarization clouds, is
sketched in the path-integral formalism. We exhibit how,
at the first 2 orders in density, the above cascade of power
laws (when summing over charges) is determined by the
basic rules of classical screening in macroscopic electro-
statics, which are themselves entirely enforced by the De-
bye contribution. (The mechanisms are similar but more
complex at higher orders in density.)
The derivation of low-density expansions, which is

based on a scaling analysis of resummed Mayer bonds, is
similar to that used in Ref. [9]. We have checked that it
allows one to retrieve the virial expansion of the pressure
for a quantum multicomponent plasma up to order r5!2

given in [10] and derived in [9,11]. r generically
denotes the densities, and half-integer powers arise from
the Debye scale k21

D , where k2
D $ 4pb

P
a e2

ara . For
particles with charge ea (eg) and mass ma (mg), the
explicit values of the algebraic tails at the first order in
density are
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In the zero-density limit, the coefficient of the charge-
charge correlation does not vanish. This reflects the fact
that the results obtained in the limit of an infinitely dilute
plasma do not coincide with the calculations performed
for particles in the vacuum, where no screening effect
takes place. Moreover, according to the linear response
theory, the induced charge density

P
g egrind

g "r; dq# in
the presence of an infinitesimal external charge dq decays
as 1!r8 [7] as the particle-charge correlation. At the first
order in density, we get

P
g egrind

g "r; dq#
dq

%
r!`

1
r8

pb5h̄4

2
1

k4
D

"X

g

e3
grg

mg

#2

.

(4)
Comparison of (4) with the linear term with respect to
the given charge ea in (2) shows that the algebraic tails
satisfy the more general relation, valid at any distance and

for any finite charge ea ,

lim
ra!0

P
g egrT

ag"r#
ra

!
X

g

egrind
g "r ; ea#

Ç

ra!0
. (5)

This relation states that in the limit where one species a
becomes more and more dilute, so that it disappears from
the plasma, the charge density induced by one charge ea

can be retrieved from the particle-charge correlation.
We notice that in the case of a two-component plasma

of charges e1 and e2, with masses m1 and m2, the
coefficients A"n#

ag of the 1!r6 tail of the particle-particle
correlations at the order rn, with n ! 2, 5!2, are positive
and the corresponding effective interaction is attractive
whatever the signs of the charges. Moreover, these
coefficients satisfy the relation

A
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12
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. (6)

The peculiar identity (6) is due to a classical contribu-
tion in the screening of every quantum charge by the sur-
rounding plasma. It is no longer satisfied at higher orders
in density, n $ 3, because then quantum dynamical and
statistical effects are involved and destroy the symmetry
between the various species of particles. At the order r2,
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(7)
If e1 ! 2e2 $ e, the local neutrality implies that
r1 ! r2 $ r and the tail (7) is equal to r2"jD!r#6

times "9!320#G5"l2!a#4&1 1 "m2!m1#'2, where jD $
k21

D is the Debye length, l2 is the de Broglie ther-
mal wavelength of the negative charges, l2 $p

bh̄2!m2, a is the mean interparticle distance and
G $ be2!a ! "1!3# "a!jD#2 is the coupling constant.
The formula (7) can be applied to the core of the Sun. As

a first approximation, the latter can be seen as a hydrogen
plasma almost fully ionized by pressure and temperature,
with a mass density rm % 160 g!cm3 at temperature T %
1.5 107 K. Thus a % 0.1 Å , the system is rather weakly
degenerated, l2!a % 0.7, and weakly coupled, G % 0.1.
The contribution from the algebraic tail (7) becomes as
large as the classical Debye-Hückel contribution,

rT D
ag "r# ! 2rargbeaeg

e2r!jD

r
, (8)

at a crossover distance r! % 31 jD. Thus the algebraic tail
appears only at very large distances compared with the De-
bye screening length; at intermediate distances, the Debye
approximation is valid, while at short distances, quantum
contributions become predominant. (In particular, quan-
tum dynamics prevents the collapse of two charges with
opposite signs, while quantum statistics arises for particles
of the same species.) In fact, both Debye and exchange
effects in the correlations are important for the thermody-
namics, and the low-density equation of state [10], also
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retrieved from the present formalism, describes success-
fully the core of the Sun [12]. Another class of systems
to be investigated is that of solid state physics. The do-
main of applicability of the formulas given in the present
Letter is that of intrinsic semiconductors, where the charge-
carrier gas (electrons and holes) is indeed at finite tempera-
ture and weakly degenerated as well as weakly coupled.
For instance, in germanium, where the mass of holes is
equal to that of electrons, a % 1530 Å, T % 300 K, so that
l2!a % 0.01, G % 0.4, and r! % 43 jD . A clear experi-
mental evidence of the static tails is still to be found, maybe
in semiconductors with stronger degeneracy and stronger
coupling, where r! would be of the same order as jD and
the attractive effective interaction (6) might play a role.
At a more technical level, we briefly summarize how a

path-integral formalism allows one to show the following
two points. First, contrary to classical fluctuations which
are exponentially screened, equilibrium quantum fluctu-
ations induce algebraic tails in the static correlations. Sec-
ond, at the first 2 orders in density, these tails reduce
to the square of some kind of screened dipolar potential
between quantum fluctuations of the charges surrounded
by their polarization clouds. On one hand, thanks to the
Feynman-Kac formula, the quantum Gibbs factor in po-
sition representation is given by a path integral and the
quantum fluctuations of particles at the inverse tempera-
ture b can be described in terms of loops with random
shapes. Indeed, a particle at position r that is not ex-
changed with any other one in a given density-matrix
element is associated with one closed path r 1 laj "s#,
where la is the de Broglie thermal length of species a
and j "s# (with 0 # s # 1) is a dimensionless Brown-
ian bridge, j "s ! 0# ! j "s ! 1# ! 0, with a normalized
Gaussian measure. On the other hand, p particles that
are exchanged with one another under a cyclic permuta-
tion correspond to open paths which can be collected into
a closed loop. The internal degrees of freedom of the
latter are the species a of the involved particles, the “ex-
change degeneracy” p, and the shape of the curve formed
by the positions of the p particles and the Brownian
paths that link them together. The grand partition func-
tion of the system of quantum point charges with quan-
tum statistics, and which interact through the Coulomb
potential, is equal to that of a gas of classical loops
with Maxwell-Boltzmann statistics, and which interact via
some two-body potential of Coulomb type [6,13]. (See
also Ref. [14] for a brief account). The quantum Hamil-
tonian does not involve the spins, and the latter only con-
tribute to degeneracy factors in the loop fugacities. The
interaction between loops couples only curve elements
with abscissas that are equal up to an integer, so that
it does not coincide with the electrostatic potential be-
tween charged wires, except for its monopole-monopole
and monopole-multipole parts. Thus, after exact resum-
mations [6], the large-distance 1!r and 1!r2 tails of the
loop interaction are exponentially screened, whereas there

appears a partially (not exponentially) screened dipolar
potential y

dip
ag . As shown in Ref. [7], after integration

over quantum fluctuations, rotational invariance and the
harmonicity of the function 1!r eventually lead to an 1!r6

decay for the particle-particle correlations at any density.
At the first order in density, only loops with exchange de-
generacy p equal to 1 do contribute,

ydip
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(9)
while the exact value of the tails Aag!r6, Ba!r8, and
C!r10 turn out to coincide, after proper summation over
charges, with the algebraic tail of the convolution

X

a0 ,g0

Z
dx

Z
dy SD

aa0"x#ga0g0 "r 1 y 2 x#SD
g0g"y# . (10)

In (10) a0 and g0 run from 1 to the number of species,
and

ga0g0 "r# $
Z

D"j1#
Z

D"j2#
b2

2
&ydip

a0g0 "r, j1, j2#'2 (11)

is an effective squared dipolar potential. The structure
factor SD

ag"r 2 r0# $ ra da,gd"r 2 r0# 1 rTD
ag "jr 2

r0j# involves the short-ranged classical Debye correlation
(8). The latter correlation, calculated in a linearized
approximation, is well defined for particles with pure
Coulomb interaction, whereas the total classical corre-
lation for point particles is not, because of the collapse
between charges with opposite signs. We notice that,
according to Eq. (5.12) of Ref. [4], where the quantum
correlations are calculated with MB statistics and a
Coulomb potential regularized at the origin, the term of
order h̄4 in the large-distance behavior of the approxi-
mate MB correlation reduces to (10) when the classical
correlations between particles with short-ranged repulsion
in Eq. (5.12) are replaced by the Debye correlations (8).
The systematic analysis of our diagrammatics shows
that the exact algebraic tails at the next order in density
behave, after adequate summation over charges, as the
decay of the convolution (10) only renormalized by a
factor of order r1!2. The latter half-integer power arises
from integrals scaled by the Debye length.
We stress that the algebraic decays of the correlations

are compatible with the basic screening laws, according
to which the polarization cloud around either an internal
or an infinitesimal external charge exactly compensates
this charge. In the classical case, multicomponent plas-
mas with a Coulomb potential regularized at the origin
obey these laws, because the classical Debye correlation
saturates the corresponding sum rules,

Z
dr

X

g

egSD
ag"r# ! 0 , (12)
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Z
dr
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6
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1

4pb
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where (13) is the so-called Stillinger-Lovett sum rule
[15]. An argument, which involves a decomposition
of the classical correlation into the sum of the Debye
correlation and a convolution analogous to (10), with a
fast decaying function in place of gag , is given in Sec. IV
of Ref. [7] (where the repulsive core potential was omitted
in the notations). At the quantum level, a generalization
of this argument exists: there still exists some memory
of the classical exponential screening of macroscopic
electrostatics which ensures the basic screening laws [7].
Moreover, the above memory of classical screening is

also responsible for the cascade of inverse power laws,
1!r6, 1!r8, 1!r10, in the decays of the particle-particle,
particle-charge, and charge-charge correlations, at any
order in density [7]. In fact, we show that at the first
2 orders in density the cascade is enforced only by the
classical screening rules entirely satisfied by the Debye
contribution. At the first 2 orders in density, the leading
algebraic tails are given by the convolution (10), with a
renormalized factor at the second order in density. Since
SD

ag is short ranged, the falloff of the particle-particle
correlation rT

ag"r# arises from
X

a0,g0

∑Z
dx SD

aa0"x#
∏ ∑Z

dy SD
g0g"y#

∏
ga0g0"r# , (14)

while, according to (12) and (13) and the identityR
dr r

P
g egSD

ag"r# ! 0, the decay of the particle-charge
correlation
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and the 1!r10 tail of the charge-charge correlationP
a,g eaegrT
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By taking into account D"1!r6# ! 30!r8 and D"1!r8# !
56!r10, together with (8) and (13), we get the tails (1)–
(3), which indeed satisfy

P
g egAag ! 0 and

P
a eaBa !

0, in accordance with the general cascade of power laws.
In conclusion, we briefly discuss the coefficient Aag

of the algebraic decay of the particle-particle correlations
at higher orders in density. Half-integer powers of the
density appear, because the quantum contributions are
partially screened by classical collective effects at large
distances, and the latter are scaled by the Debye length.
Contrary to the terms of order r2 and r5!2, which

are purely proportional to h̄4, the term of order r3

involves two kinds of terms. The terms of the first
kind are proportional to h̄4 arising from one squared
dipolar potential &ydip

ag '2 times a function which has
essential singularities when h̄ goes to zero, because it
involves the contributions from exchange phenomena
and from quantum dynamical effects (bare—bound and
scattering—two-body states). The terms of the second
kind are proportional to h̄6 either because they involve
one &ydip

ag '2 multiplied by a screened “diffraction” h̄2

correction due to the long range of the Coulomb potential
or because they result from the product of one y

dip
ag with

a convolution of two y
dip
ag ’s. Eventually, at the order r2

and r5!2, the leading algebraic decays arise only from
the squared fluctuations of one dipolar interaction, and
the coefficients of these tails are entirely determined by
free quantum dynamics, Maxwell-Boltzmann statistics,
and classical screening; however, from the order r3 on,
the mechanisms are more intricate and contributions from
quantum dynamics and statistics of interacting charges
emerge in the coefficients of the algebraic decays.
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