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Large-distance quantum static correlations are investigated in a fluid of point charges interacting via Cou-
lomb forces in the presence of a uniform magnetic field B0 . Moreover, each particle carries a spinorial
magnetic momentum which is coupled to B0 . In the framework of quantum statistics, the present formalism
uses the Feynman-Kac-Itô formula to represent the matrix elements of the quantum Gibbs factor. Particles
which are exchanged with one another under a cyclic permutation are equivalent to loops with random shapes;
the latter ones obey Maxwell-Boltzmann statistics and interact via some two-body potential which decays as
1/r at large distances r . B0 appears only in a phase factor which can be absorbed in some generalized fugacity
!which may take negative values in the case of fermions". Collective Debye screening effects show up through
exact systematic resummations of long-ranged Coulomb divergencies which are the same in the presence as in
the absence of B0 . The averages of monopole-monopole and monopole-multipole interactions between sets
made by charges and their polarization clouds decay exponentially. B0 breaks the rotational symmetry and
effective quantum quadrupolar interactions emerge, as can also be seen in an exactly solvable model. As is also
the case for a charge of the medium, an external infinitesimal charge is completely screened by the total charge
of the induced polarization cloud. The latter decays as 1/r5 as the particle-charge correlation. Subleading tails
are also investigated. The interplay with classical Debye screening is discussed. #S1063-651X!98"02610-5$

PACS number!s": 05.30.!d, 05.70.Ce, 71.45.Gm

I. INTRODUCTION

Matter at our scale can be essentially considered as a non-
relativistic quantum system of electrons and nuclei interact-
ing via the Coulomb potential: the interaction between two
point charges e% and e& !where % and & are species indices"
separated by a distance r is e%e&vC(r) with vC(r)"1/r . The
standard many-body perturbation theory using Feynman dia-
grams at finite temperature does not seem to be adequate for
tackling the problem of the large-distance behaviors of posi-
tion correlations #1$; in the special case of the one-
component plasma !OCP"—a system made of one species of
charges moving in a uniform electric background—one can
only exhibit some diagrammatic corrections to the random
phase approximation which induce algebraic tails in the
charge-charge correlation of the quantum electron gas #2$.
Recently path integral formalisms properly adapted to deal
with the long range of the Coulomb potential have allowed
one to achieve two main results by using methods from sta-
tistical mechanics of classical fluids. First, the exact analyti-
cal expression for the free energy of these systems has been
derived in the low-density regime up to order '5/2 #3,4$
!where ' is a generic notation for the densities". In the latter
references exchange effects were treated perturbatively. Sec-
ond, a more general formalism #1$, which takes quantum
statistics systematically into account and where correlations
can be studied directly in position space, has been used to
exhibit the exponents of algebraic decays for position corre-
lations between quantum charges at large distances #5$. This

nonexponential screening, which is contrary to common be-
lief, has been extensively discussed in Refs. #1,5–7$.
In the present series of papers !referred to as papers I, II,

and III in the following" we give technical details of the
derivation of results announced elsewhere. The exact coeffi-
cients of the algebraic falloff’s of the particle-particle,
particle-charge, and charge-charge correlations are derived in
the low-density limit first in the case B0"0 #8$. This calcu-
lation settles the existence of algebraic screening. Moreover,
all previous results are revisited in the presence of a uniform
magnetic field B0 #9$. Paper I investigates how the general
formalism of Ref. #1$ is modified by the presence of B0 and
the new exponents of the algebraic tails of correlations are
given. Since the presence of the magnetic field only renor-
malizes a generalized fugacity in our formalism, low-density
expansions can be devised following the same scheme
whether B0"0 or B0(0. This is done in Paper II for the
exact low-density free energy. !The method is different from
that of Ref. #4$ and allows one to retrieve the same results in
the absence of B0 .) In Paper III the low-density coefficients
of the algebraic decays of correlations are derived in the
presence as well as in the absence of B0 . We also point out
that, when B0(0, the exact analytical coefficient of the lead-
ing algebraic tail for a one-component plasma can be in-
ferred from an exact sum rule specific to the OCP.
In Paper I we argue that even in the presence of B0 , at

finite density, monopole-monopole and monople-multipole
interactions between charges surrounded by their polariza-
tion cloud are exponentially screened at the classical as well
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as at the quantum level !see Ref. #1$". When B0"0, the
large-distance decays of correlations are controlled by
‘‘squared’’ quantum fluctuations of some dipolarlike interac-
tions #5$, and '%&

(2)T(r)!B0"0)A%& /r6 at large distances r . On
the contrary, when B0(0, the invariance under rotations is
broken in one space direction so that quadrupole-quadrupole
interactions partially survive after statistical averaging and
'%&
(2)T(r)!B0(0)D%&( r̂)/r5 when r goes to infinity ( r̂
*r/!r!). !In the absence of rotational invariance, the harmo-
nicity of the Coulomb potential cannot reduce the mean
value of quadrupole-quadrupole interactions to short-ranged
contributions."
In the absence of B0 , at any density, the particle-charge

and charge-charge correlations, +&e&'%&
(2)T(r)!B0"0 and

+% ,&e%e&'%&
(2)T(r)!B0"0 , fall off as B% /r8 and C/r10, respec-

tively, because of the rotational invariance of the problem
combined with the harmonicity of the Coulomb potential and
some interplay with the partially exponential screening cre-
ated by other quantum charges !see Ref. #5$". On the con-
trary, in the presence of B0 , at finite density, the Fourier
transforms of correlations involve nonanalytic terms which
arise from the breaking of rotational invariance in one space
direction and which are not canceled by the harmonicity of
the Coulomb potential or by its Debye screening; then the
interplay with partially exponential screening does not bring
any cascade of inverse power laws for the leading algebraic
tails at any density. Even when charges are summed over, all
correlations decay as 1/r5.
Algebraic screening at large distances is compatible with

integral constraints enforced by both internal and perfect ex-
ternal screening, which must also be satisfied in any !classi-
cal or quantum" regime. Internal screening refers to the fact
that the system, formed by a charge of the medium and its
polarization cloud, carries neither any net charge nor any net
dipole !see Sec. VB of Ref. #10$", namely,

" dr+
%
e%S%&!r""0 !1"

and

" dr r+
%
e%S%&!r""0. !2"

In Eq. !2" S%&(r) is the structure factor, S%&(r)
*'%,% ,&,(r)#'%&

(2)T(r), where ,(r) is the Dirac distribution
and ,% ,& is the Kronecker symbol. Perfect external screening
means that the total charge induced in the plasma by an
external distribution of charge ,q(r) exactly compensates
the total charge -dr ,q(r) in its vicinity. In Fourier space,
the property reads

+
&
e&'&

ind!k"0 ""!,q!k"0 ". !3"

The present paper is organized as follows. The system is
defined in Sec. II. In Sec. III we sketch the derivation of the
general formalism in the presence of B0 . We recall that, in
any representation of many-body states by tensorial products
of one-particle states, quantum statistics can be described in

terms of cyclic permutations; the general formula for the
pressure is checked in the solvable case of a gas of indepen-
dent charges submitted to B0 !Sec. III A". For the quantum
Gibbs factor in position space we introduce the Feynman-
Kac-Itô formula, where B0 appears only in a phase factor
!Sec. III B". The quantum gas of point particles proves to be
equivalent to a fluid of ‘‘loops’’ with random shapes that
obey classical dynamics and Maxwell-Boltzmann statistics
and interact via some two-body potential that behaves as 1/r
at large distances !Sec. III C". Thus, generalized Mayer dia-
grams may be used. The exact resummation scheme required
by Coulomb divergencies at large distances is summed up in
Sec. IV. The integrable resummed bonds are listed !Sec.
IVA". Those corresponding to monopole-monopole and
monopole-multipole loop interactions fall off exponentially
over a length scale which tends to the classical Debye value
in regimes where exchange effects become negligible. The
third one, which describes quantum bound or diffusive
states, also involves multipole-multipole loop interactions
which generate tails that decay at least as 1/r3. A useful
diagrammatic representation of the loop density is exhibited:
it is equal to the loop fugacity times a function which arises
from interactions and involves Mayer diagrams with weight
equal to the loop density !Sec. IVB". This integral equation
will be useful in the derivation of low-density expansions in
Paper II. In Sec. V we present a solvable model in order to
exhibit the mechanisms at stake in the presence of the mag-
netic field. The model consists of two quantum charges em-
bedded in a classical plasma !Sec. V A". It is handled with
use of the Feynamn-Kac-Itô formula. When thermal averages
are taken for the classical plasma, B0 disappears from the
quantities relative to the classical particles in agreement with
the Bohr–van Leeuwen theorem !Sec. VB". The symmetry
properties of the covariance of the motion of quantum par-
ticles in the classical plasma at finite temperature in the pres-
ence of B0 are studied !Sec. V C". These properties imply
that there exists an effective quadrupolar interaction between
the two quantum charges. In Sec. VI the leading algebraic
tails of static correlations at any density are investigated by
an analysis similar to that of Ref. #5$. In Sec. VI A auxiliary
bonds are introduced in order to produce an equation à la
Dyson which involves convolutions of algebraic tails with
functions which decay at least as 1/r6 by construction !be-
cause their large-distance behaviors necessarily involve some
kinds of products of at least two resummed bonds". The in-
termediate results in the discussion of Ref. #5$ that are in-
duced by the invariance under inversion are unchanged !Sec.
VI B", whereas the analyticity of some contributions that is
enforced by rotational invariance arguments disappears when
B0 is switched on !Sec. VI C". The latter nonanalytic terms
are canceled again when the rotational invariance is restored
by an integration of the correlation over the angle between
B0 and the relative position of the two particles considered.
The study of the leading and subleading behaviors of dia-
grams is performed in Sec. VII. The algebraic tails before
integration over loop shapes have fixed parities under !sepa-
rate or simultaneous" inversion of loop shapes and their ex-
ponents depend on these parities !Sec. VII A". Decays of
various kinds of diagrams that fall off at least as 1/r6 even
before loop-shape integration are discussed in Sec. VII B.
Intermediate results are investigated in Appendix A. In Sec.
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VII C this study allows one to determine tails of convolu-
tions introduced in Sec. VI A. This survey allows one to
derive the leading and subleading algebraic tails of various
correlations in Sec. VIII and to check that basic screening
rules are satisfied. In Sec. VIII A, we reorganize diagrams in
order to use the fact that the ‘‘Debye’’ effective monopole-
monopole interaction satisfies both the internal and perfect
external screening. This allows one to exhibit all algebraic
tails of '%&

(2)T(r), +&e&'%&
(2)T(r), and +% ,&e%e&'%&

(2)T(r). Si-
multaneously, in Sec. VIII B, we select the diagrams that
contribute to the leading asymptotic behaviors which will be
calculated at low density in Paper III. In Sec. VIII C, we
show that the charge induced by either an internal charge or
an infinitesimal external charge is exactly opposite to it and
that the density of the induced polarization cloud decays with
the same inverse power law as the particle-charge correlation
for particles in the plasma. The diagrammatic structure of the
leading tail of the induced charge density is also given. Ap-
pendixes B and C contain errata for Ref. #5$.

II. DEFINITION OF THE SYSTEM

In the present series of papers we consider a multicompo-
nent plasma made of ns species with index % . Each species
is characterized by its mass m% , its spin .S% , its charge e% ,
and its magnetic momentum !%"g%/B%S% . /B%
"e%./2m%c is the Bohr magneton and g% is the Landé fac-
tor. The squared spin .2S%

2 takes the values .2S%(S%#1),
while its component along the z axis, .#S%$z , is equal to
.M% , with M%"!S% ,!S%#1, . . . ,S% . The dynamical
variables of a particle with index i are its position ri , with
conjugate momentum pi"(./i)“ri, and its spin .Si . (“ri
denotes the gradient with respect to the position ri and i is
the purely imaginary complex number." In the presence of a
uniform magnetic field B0 , we write the Hamiltonian of the
system in the nonrelativistic limit as

H 0N%1!B0""+i
1

2m% i

# pi! e% i
2c B0$ri% 2

!+
i
g% i/B% iSi•B0#

1
2+i( j

e% ie% jvC!ri!rj",

!4"

where c is the light velocity, $ denotes the outer product,
and vc is defined in Sec. I. H 0N%1(B0) has the following
important property. It is the sum of two contributions: one
involves only position variables and the other one depends
only on spin variables.
The sum of the first two terms in Eq. !4" is the Pauli

Hamiltonian for an ideal gas. At thermal equilibrium charac-
terized by a set of densities 0'%1%"1, . . . ,ns and the inverse
temperature 2"1/kBT , where kB is the Boltzmann constant
and T is the temperature, the corresponding system is stable
with Boltzmann statistics. Its thermodynamics involves the
two dimensionless parameters uC%"2/B%B0 and uS%
"(g%/2)2/B%B0 . These parameters are equal to 2/2 times
the cyclotronic energy of orbital motion, .3C% , and the Lar-

mor energy of spin precession, .3L% , respectively !with
3C%"e%B0 /m%c and 3L%"g%3C%/2).
In the presence of Coulomb interaction, the quantum sys-

tem is stable only if quantum statistics is taken into account
and if all negative and/or positive charges are fermions #11$.
The results about the stability of matter in a uniform mag-
netic field are summarized in Ref. #12$. They deal with the
system made of moving electrons and nuclei lying at fixed
locations. If the electron spin-field interaction is not in-
cluded, all proofs of the stability of matter hold with con-
stants unchanged by the substitution of pi by pi
!(e% i /c)A(ri), where A is the potential vector. When the
spin is taken into account, the contribution from the Zeeman
energy !+ i!i•B0 , which is not bounded below for any ar-
bitrary value of !B0!, is compensated by the self-energy of
the magnetic field B0 only if Z%*2 and %* are sufficiently
small #13$. Ze is the nuclear charge and %* is the fine struc-
ture constant. !Indeed, Z%*2 must be small enough to avoid
the collapse of an atom, and %* must be small enough for
the repulsion between nuclei to prevent the collapse of a
macroscopic number of nuclei."
The stability also requires that the local neutrality relation

+
%
e%'%!r""0 !5"

might be realized in the bulk. Moreover, even in the presence
of B0 , an infinitesimal external charge must be perfectly
screened. In the OCP model, the response function does sat-
isfy the corresponding sum rule †See !5.64" in Ref. #10$‡.

III. GENERAL LOOP FORMALISM

In this section we recall the general formalism of Ref. #1$
and we stress the changes that arise in the presence of a
uniform magnetic field. This formalism is valid for any
quantum system with two-body interaction and quantum sta-
tistics.
Let us consider the quantum grand partition function of

the system at the inverse temperature 2 , when a chemical
potential /% is associated with each species % ,

4!2 ,0/%1,B0"" +
0N%1%"1, . . . ,ns

Tr# e!2[H0N%1!B0"!+
%

/%N%] % .
!6"

In Eq. !6" the number N% of particles of species % runs from
0 to 5 . The trace Tr is calculated over a basis of states that
are symmetric !antisymmetric" under permutations of par-
ticles of each species % according to the bosonic !fermionic"
nature of the species % . Moreover, we assume that the ther-
modynamic limit exists and we consider states in which each
particle position may occupy an infinite three-dimensional
space. The neutrality relation !5" implies a degeneracy of
chemical potentials /% #11$; in the thermodynamic limit
physical quantities depend only on ns!1 independent
chemical potentials.
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A. Quantum statistics and cyclic permutations

In any basis made of tensorial products of one-particle
states, the trace Tr, which is a sum over adequately
symmetrized/antisymmetrized many-particle states, appears
as a sum over permutations 6 and this sum can be reduced to
a sum over cyclic permutations. Indeed, every 6 can be writ-
ten as a composition of permutations 6% , each of which
involves only one species % of particles, and every 6% itself
can be decomposed uniquely as a composition of cycles.
Thus a permutation 6 determines a sequence 0n% ,p1p"1, . . . ,5

%"1, . . . ,ns

where n% ,p is the number of cycles involving p particles of
species % in the cyclic decomposition of 6% . The total num-
ber of particles of species % can be written as N%
"+ppn% ,p . The decomposition into cycles and the invari-
ance of the Hamiltonian under permutations of particles lead
to the expression !A7" of Ref. #1$ for 4 . The point is that in
Eq. !A7" the summation may be performed over cycles from
the start and the N%’s disappear.
The Hamiltonian !4" does not mix position and spin vari-

ables. Therefore, by using the representation of the trace in
the particular basis !0ri ,Mi17*! i# !ri$ ! !Mi7] !where !

denotes a tensorial product", the contributions from the posi-
tion and spin parts of the Hamiltonian factorize, as in Eq.
!A8" of Ref. #1$. #We notice that in Eq. !A8" a 8 l"1

p is
missing in front of the spinorial density-matrix element.$
Moreover, since the Zeeman term of the Hamiltonian is di-
agonal in the basis ! i!Mi7, this factorization implies that the
only configurations of spin states that give nonvanishing
contributions are those in which all particles of species %
involved in the same cycle are in the same spin state M% .
Eventually, a notion of loop can be associated with each

cyclic permutation of positions as follows. When the spin
configurations are summed over independently from the po-
sition configurations, 4 is given by Eq. !3.1" of Ref. #1$ with
the following change: for each cycle with p particles of spe-
cies % , the spin degeneracy factor 2S%#1 is replaced by

+
M%"!S%

S%

!exp#2g%/B%M%B0$ "p

"sinh!#2S%#1$puS%"/sinh!puS%".

The result is

4" +
0n% ,p1p"1, . . . ,5

%"1, . . . ,ns
8

n% ,p(0

1
n% ,p!

%# 9%p!1

p
sinh!#2S%#1$puS%"

sinh!puS%"
ep2/%% n% ,p

%" 8
i
dri:0r6! i "1!e!2H0n% ,p1!B0"!0ri17, !7"

where !0ri17*! i!ri7 and 6 is a particular composition of
permutations 6% corresponding to the sequence 0n% ,p1 and i
ranges from 1 to +%+ppn% ,p . 9%*(!1)2S% is equal to 1 for
bosons and to !1 for fermions. It arises from the signature
of the permutation 6% !which is equal to 9% to the power
N%!+p"1

N% n% ,p). The symmetry factor 1/p comes from the
arbitrariness in the choice of the particle that is labeled with

number 1 among the p particles involved in the cycle.
#exp(2/%)$p is the dimensionless fugacity associated with p
particles. The loop denoted by L* is the set of degrees of
freedom (% ,p ,0x1 , . . . ,xp1), where the positions are labeled
according to the order of their transformation in the corre-
sponding cyclic permutation, i.e., 6%(xi)"xi#1 , with the
convention xp#1*x1 . With the notation -dL*•••
*+%"1

ns +p"1
5 -8 l"1

p dxl••• , the summation over cycles can
be written as a sum over loops, with

+
0n% ,p1p"1, . . . ,5

%"1, . . . ,ns
8

n% ,p(0

1
n% ,p!

" 8
i
dri•••

"+
N"0

5 1
N!" 8n"1

N

dLn*••• . !8"

If the spin state M% is kept as an extra internal degree of
freedom of the loop, then L* is replaced by L̃*
"(% ,M% ,p ,0x1 , . . . ,xp1). The identity !8" is still valid with
n% ,p ,M%

in place of n% ,p , while in Eq. !7" the sum over the
values M% of #S$z , sinh(#2S%#1$puS%)/sinh(puS%), is re-
placed by a single term (exp#2g%/B%M%B0$)p. The latter rep-
resentation is the most adequate one for the following case.
We can check that the present formalism allows us to

retrieve the pressure of an ideal gas with quantum statistics
in a uniform magnetic field B0 . The grand partition function
of the latter system may be written as

40"+
N"0

5 1
N!" &8

n"1

N

dL̃n*'8
n"1

N

z0!L̃n*"

"exp& " dL̃*z0!L̃*"' , !9"

with -dL̃*•••*+%"1
ns +M%"!S%

S% +p"1
5 -8 l"1

p dxl••• and the
‘‘fugacity’’

z0!L̃*"*
9 %

p!1

p !e2[/%#g%/B%B0M%]"p

%8
l"1

p

:x1!e!2hB0 ,%
!0 "

!xp7

%:xp!e!2hB0 ,%
!0 "

!xp!17•••:x2!e!2hB0 ,%
!0 "

!x17. !10"

In Eq. !10" the chemical potential /% is shifted by the Zee-
man energy g%/B%B0M% , which removes the degeneracy
between the spin states. hB0 ,%

(0) is the one-body Hamiltonian
of a particle without spin in the magnetic field,

hB0 ,%
!0 " "1/!2m%"#p!!e%/2c "B0$x$2.

After integration over the positions xl , the product of matrix
elements in Eq. !10" gives a factor Tr(exp#!p2hB0 ,%

(0) $). Let
us choose the magnetic field along the z axis, B0"B0ez ,
where ez is a unit vector. The Landau energy levels of hB0 ,%

(0)

are
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;%
!0 "! #k$z ,n ""

.2#k$z
2

2m%
#.3C%# n#

1
2 % , !11"

where #k$z is the component of k along the z axis and n is a
positive integer, n"0,1,2, . . . . For #k$z and n fixed, the
degeneracy factor in a box with volume < is <1/2/(26)
times <2/3e%B0/26.c #14$ and

lim
<→5

1
<
Tr!e!p2hB0 ,%

!0 "
""

e%B0
26.c" d#k$z

26 +n"0

5

#e!2;%
!0 "![k]z ,n "$p.

!12"

The summation over p can be performed according to the
identity ln(1!x)"!+p"1

5 xp/p !In principle, the latter identity
is valid only when !1=x&1, but it can be used for any x by
analytical continuation." Finally, we retrieve the pressure
P (0) of a gas of independent quantum charges in a uniform
magnetic field #14$,

2P !0 "" lim
<→5

1
<
ln40!2 ,0/%1,B0 ;<"

"+
%"1

ns

+
M%"!S%

S% e%B0
26.c" d#k$z

26 +n"0

5

!!9%"

%ln#1!9%e20/%#g%/B%B0M%!;%
!0 "![k]z ,n "1$ .

!13"

B. Feynman-Kac-Itô path integral

The representation of the quantum Gibbs factor in terms
of noncommuting operators is replaced in Eq. !7" by a rep-
resentation in terms of scalar functional integrals, by using
the Feynman-Kac formula. In the Feynman-Kac path integral
the presence of B0 only introduces an extra phase factor
exp#(ie% /.c)-FKacA•d"$ where d" is a line element of the
path " #15$. -FKacA•d" is defined as the limit of either the
discrete sum of terms ("n!"n!1)•A(#"n#"n!1$/2) or the
sum of ("n!"n!1)•#A("n)#A("n!1)$/2 when the dis-
crete dimensionless ‘‘time’’ spacing >t between "n and
"n!1 goes to zero with the scaling law of a Brownian walk,

#"n!"n!1$/#"n!"n!1$? )
>t→0

,/ ,?@%
2>t . !14"

The Schrödinger equation may be derived by writing the
difference between the wave functions at times t and t#>t
infinitesimally close together and by using the fact that the
quantum Gibbs factor for one particle is the kernel of the
integral representation of the evolution of the wave function
in imaginary time. The use of the discrete sums defined
above ensures that the latter Schrödinger equation coincides
with that obtained from the usual quantization of the classi-
cal Hamiltonian.
In fact, from the mathematical point of view, the Itô inte-

gral - ItôA•d" must be used in order to properly define the
integral -A•d" in functionals involving averages over
Brownian paths #16,17$. The Itô integral corresponds to the
discrete sum of terms ("n!"n!1)•A("n!1) where ("n

!"n!1) points towards the future and A("n!1) only de-
pends on the past. Its relation with the Feynman-Kac integral
reads

"
FKac
A•d"""

Itô
A•d"#

1
2 @%

2 "
0

1
ds “•A„"!s "…,

!15"

where s is a dimensionless abscissa (ds*!i>t).
If " is a closed path, -FKacA•d" is gauge invariant. In-

deed, in a gauge transformation A→A#“ f , and U→U
!A f /At , where U is the electromagnetic scalar potential,
-0
1dsU(s)#-FKacA•d" is just translated by f „"(s"1)…

! f „"(s"0)…, as it should be. This transformation property
is ensured by the Itô lemma for a function f „"(s),s…,

"
Itô

“ f „"!s ",s…•d"#
1
2 @%

2 "
0

1
ds> f „"!s ",s…

#"
0

1
ds
A f „"!s ",s…

As

" f „"!s"1 ",s"1…! f „"!s"0 ",s"0…. !16"

If B0 is uniform, one can choose the Coulomb gauge where“•A"0. Then, according to Eq. !15", -FKacA•d""
- ItôA•d", and the subscript Itô will be omitted.
In the following, we choose the Coulomb gauge which is

isotropic in the plane perpendicular to B0 , namely, A(r)
"(1/2)B0$r. In this gauge, the Feynman-Kac-Itô formula
reads

:0r6! i "1!e!2H0n% ,p1!0ri17

"8
i & 1

!26@% i
2 "3/2

e!!r6! i "!ri"
2/2@% i

2 '
%" &8

i
D!#i"'exp&+

i
! ie% i/2.c "

%B0•"
0

1
"i ,6! i "!s "$d"i ,6! i "'

%exp&!2!1/2"+ i( je% ie% j

%"
0

1
ds vC„"i ,6! i "!s " !"j ,6! j "!s "…' . !17"

"i ,6(i)(s) is a Brownian path starting from ri at s"0 and
ending at r6(i) at s"1. It can be decomposed into a uniform
motion along a straight line linking ri to r6(i) plus a random
fluctuation,

"i ,6! i "!s ""!1!s " ri#s r6! i "#@% i#i!s ", !18"

where @% i is the thermal de Broglie wavelength defined as
@% i"(2.

2/m% i
)1/2, and #i(s) is a dimensionless Brownian

bridge which vanishes when s"0 and s"1. The measure
D(#), which contains the exponential of the kinetic part of
the Euclidean action, is normalized, -D(#)"1, and has a
Gaussian covariance, which is independent from the species,
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cov/?!s ,s!;B0"0"*" D!#"##!s "$/##!s!"$?

",/ ,?inf!s ,s!"#1!sup!s ,s!"$ ,

!19"

where inf(s ,s!)#sup(s ,s!)$ denotes the infimum !supremum"
of s and s!.

C. Equivalence with a Maxwell-Boltzman gas of classical loops

As a consequence of the two previous sections, and as in
the absence of the magnetic field, a particle that is not ex-
changed under any cyclic permutation is associated with a
closed path "1,1 , whereas p particles that are involved in a
given cyclic permutation are described by p open Brownian
paths "l ,l#1 , with l"1, . . . ,p . ("l ,l#1 links xl to xl#1
with the convention xp#1"x1 .) These open paths form a
closed curve $ which is parametrized by an abscissa B rang-
ing from 0 to p ,

$!B""+
l"1

p

,P!B",l!1"l ,l#1#B!! l!1 "$ . !20"

In Eq. !20" P(B) denotes the integral part of B . For instance,
$(B"0)*"1,2(s"0)"x1 , and we set $(B"p)*"p ,1(s
"1)"x1 . In the following, we call R*x1 the ‘‘position’’ of
the loop and X(B)*$(B)!R its ‘‘shape.’’ A loop L is de-
scribed by its position and its internal degrees of freedom
(% ,p ,X) !when the spin configurations are summed over". In
the following, p will be called the exchange degeneracy of
the loop. We define the integration measure -dL
"-dR-D(X) with

D!X"*8
l"2

p

dxl8
l"1

p

D!#l". !21"

#We notice that @% , which is involved in the definition of X,
does not appear in the measure D(X).] With these notations,
according to Eqs. !7" and !17", the grand partition function
!6" of a system of quantum particles with quantum statistics
and interacting via a two-body potential and with a uniform
external magnetic field B0 according to Eq. !4" can be writ-
ten as the grand partition function of a system of classical
loops with Maxwell-Boltzmann !MB" statistics and interact-
ing via some two-body potential, as in Eq. !3.11" of Ref. #1$,

4"4 loop

" +
N"O

5 1
N!" 8n"1

N

#z!Ln"dLn$e!2!1/2 "+
i( j

e% ie% jv!Li ,Lj ".

!22"

In Eq. !22" we use the convention that, if N"0, there is no
Ln in the corresponding term of 4 loop and the latter term is
merely equal to 1. The potential between loops can be ex-
pressed as

v!Li ,Lj"""
0

pi
dB"

0

p j
dB! ,„#B!P!B"$!#B!!P!B!"$…

%vC„$i!B"!$j!B!"…. !23"

The only difference with the case B0"0 is an extra phase
factor which has been incorporated in the fugacity z(L). The
phase factor involves -0

p$(B)$d$*-0
pdB $(B)

$#d$(B)/dB$ , but the latter reduces to -0
pX(B)$dX. In-

deed, when $ is changed into $#a, -0
p$(B)$d$ is trans-

lated by a$-0
pd$(B)"a$+ l"1

p #(xl#1!xl)#@%-0
1d#l(s)$

which vanishes because xp#1"x1 and -0
1d#l(s)"0, as a

consequence of Itô lemma !16" applied to the function
f „"(s),s…""(s)•e where e is a unit vector with any given
orientation. With the same notations as in Ref. #1$,

z!L""z% ,p* e ! ie%/2.c "B0• "0
pX!B"$dX!B"e!2E2 ,%

int !X", !24"

where E2 ,%
int is an internal energy which does not depend on

B0 ,

E2 ,%
int !X""

1

22@%
2 +l"1

p

!xl#1!xl"2#
1
2 e%

2 "
0

p
dB"

0

p
dB!

%!1!,P!B",P!B!"",„#B!P!B"$!#B!!P!B!"$…
%vC„$!B"!$!B!"… !25"

and

z% ,p* "
9%
p!1

p
sinh!#2S%#1$puS%"

sinh!puS%" # e2/%

!26@%
2 "3/2

% p. !26"

In Eq. !26" 9%
p!1 is a memory of quantum statistics and the

symmetry factor p comes from the arbitrary choice for the
loop position R among the p particle positions involved in
the loop. The paramagnetic contribution sinh(#2S%
#1$puS%)/sinh(puS%) reduces to the spin degeneracy 2S%
#1 when the magnetic field vanishes, while e2/%/(26@%

2 )3/2
is the usual dimensioned fugacity. We notice that the Gauss-
ian part arising from E2 ,%

int (X) in Eq. !24" together with the
phase factor generated by the coupling with B0 could be
absorbed in the measure D(X) so that E2 ,%

int (X) would reduce
to the Coulomb self-energy. However, we do not choose this
decomposition, because we want to keep an explicit track of
the positions of the various particles involved in a loop in
order to study the correlations between the positions of quan-
tum particles in the following.
The important properties of z(L) are the following. z(L)

depends only on the shape X of the loop, and not on its
position R, z(L)*z% ,p(X). It is unchanged under a gauge
transformation because the phase factor due to the presence
of B0 involves -A•d" calculated on a closed curve. #See the
comment just before Eq. !16".$ Moreover, z% ,p(X) is invari-
ant under the inversion X→!X and under the rotation of X
around B0 .
The gas of loops obeys Maxwell-Boltzmann statistics so

that usual techniques from classical statistical mechanics of
fluids can be applied. This was done by Ginibre in order to
prove the convergence of low-density expansions of thermo-
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dynamic functions for some integrable potentials #18$. The
methods were different from those used in the following. In
the present paper, as in Ref. #1$, we take advantage of the
fact that the grand partition function !22" is a functional of
the loop fugacity in order to introduce Mayer diagrams. In-
deed, since the loop density and the correlations between the
loops can be expressed as functional derivatives of the grand
partition function, the rules for the Mayer diagrams are the
same as for point objects. In these diagrams there is at most
one Mayer bond f*exp#!2v$!1 between two points and a
point, which represents the variables of one loop, is associ-
ated with an integration measure dL*-dr-D(X). By defi-
nition, the ‘‘internal’’ points are integrated over, while the
‘‘root’’ points are not.
We will use a diagrammatic representation of the loop

density that was not introduced in Ref. #1$, and that has not
be used in the literature for fluids of point particles, at least
to our knowledge. This representation, which may be inter-
preted as an integral equation for the loop density, reads

'!La""z!La"exp(+
G*

1

SG*
" 8

n"1

N

#dLn'!Ln"$&8 f '
G*
) .
!27"

Equation !27" may be derived from the usual fugacity expan-
sion of the density where the density appears as the sum of
all unlabeled topologically different connected diagrams
with one root point La and N internal points (N
"1, . . . ,5). In Eq. !27" the sum runs over all diagrams G*,
which satisfy the previous definition with two additional
constraints: they contain no articulation point and they re-
main as a single piece when all bonds involving the root
point are cut. The last property must be satisfied because the
expansion of the exponential of the sum of such diagrams
generates all diagrams and, in particular, all of those that do
not remain as a single piece when the root point is removed.
Moreover, an articulation point is such that, if the bonds with
which it is involved are cut, then the diagram is split into two
pieces and at least one of these pieces will no longer be
linked to the root point. The absence of the articulation point
comes from the fact that each internal point Ln of the dia-
gram is weighted by the density '(Ln) and not by the fugac-
ity z(Ln). SG* is the symmetry factor of a given graph G*,
namely, the number of permutations of the internal points Ln
that do not change the integrand #8 f $G*, which is the prod-
uct of all Mayer bonds in G*. Moreover, it is convenient to
write the truncated two-loop distribution function
' (2)T(La ,Lb) as ' (2)T(La ,Lb)"'(La)'(Lb)h(La ,Lb),
where the loop Ursell function h(La ,Lb) can be simply ex-
pressed as

h!La ,Lb""+
C

1
SC
" 8

n"1

N

#dLn'!Ln"$&8 f '
C
. !28"

In Eq. !28" the sum runs over all unlabeled topologically
different connected diagrams C with two root points La and
Lb and N internal points (N"0, . . . ,5) without any articu-
lation point. The contribution for N"0 reduces to f (La ,Lb).
The quantum particle densities and n-body distribution

functions are derived from the loop distribution functions by

integration over some internal degrees of freedom of the
loops. The formulas are the same as in Eqs. !4.3", !4.6", and
!4.7" of #1$ and they will be recalled when they are used in
the following.
As shown below, the Mayer graphs for the loop system

are very useful to investigate the large-distance behavior of
correlations between quantum particles directly in position
space or to devise systematic low-density expansions for
thermodynamic quantities or position correlations in terms of
the densities of quantum particles.

IV. SPECIAL CASE OF COULOMB INTERACTION

In the case of the long-ranged Coulomb interaction, the
Mayer graphs diverge and graphs must be collected in order
to get new graphs with integrable resummed bonds. In this
section we only summarize the steps of the exact resumma-
tion process, because it is a straightforward generalization of
the procedure detailed in Ref. #1$ in the case B0"0. We first
address the resummation scheme for the loop-density expan-
sion of the loop Ursell function, because the topological
principles are simpler than for the loop-fugacity expansion of
the loop density which will be discussed in Sec. IV B.

A. Exact resummation of Coulomb divergencies
for the loop Ursell function

The interaction between two loops may be decomposed
into the sum of three kinds of contributions: monopole-
monopole and multipole-monopole interactions, which are
identical to their electrostatic analogs, and a multipole-
multipole interaction, which cannot be interpreted as an elec-
trostatic energy, because the Feynman-Kac formula involves
only interactions between loop line elements with the same
abscissa !up to an integer". Auxiliary Mayer bonds are intro-
duced according to this decomposition, and the auxiliary dia-
grams are collected inside equivalence classes in order to
sum convolution chains of auxiliary bonds where the inter-
mediate points are so-called Coulomb points. The definition
of a Coulomb point is the following: it appears in the auxil-
iary interaction bonds only through the monopole of the cor-
responding loop, namely, through its total charge.
The presence of the magnetic field does not modify the

resummation process, because the latter involves only the
large-distance behavior of the loop interaction, !2vC(!Ri
!Rj!), which does not depend on the shape of the loops.
The whole Sec. V of Ref. #1$ is unchanged, except that the
value of -D(X)'(X) now depends on B0 . As a result, the
Ursell function can be expressed as a sum over Mayer dia-
grams D ,

h!La ,Lb""+
D

1
SD
" 8

m"1

M

#dPm'!Pm"$&8 F '
D
.

!29"

Equation !29" is analogous to Eq. !28" with the only differ-
ence that, in order to avoid double counting, there exist three
kinds of resummed bonds with a related excluded-
convolution rule when the intermediate point is involved
only through its total charge. !See next paragraph."
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The resummed bonds Fcc and Fcm corresponding to the
monopole-monopole, i.e., charge-charge, and monopole-
multipole, i.e., charge-multipole, interactions decay expo-
nentially. More precisely

Fcc!Li ,Lj""!2pie% ip je% jE! !Ri!Rj!" !30"

while

Fmc!Li ,Lj""!2pie% ip je% j& "0pidBpi E„!$i!B"!Rj!…

!E! !Ri!Rj!"' !31"

and, in a similar way,

Fcm!Li ,Lj""!2pie% ip je% j& "0p jdBp j E„!Ri!$j!B"!…

!E! !Ri!Rj!"' . !32"

In these equations the potential is of Debye form,

E!R ""
exp!!FR "

R . !33"

The expression of F is the same as in Eq. !5.14" of Ref. #1$,

F"&462+
%"1

ns

e%
2+
p"1

5

p2" D!X"'% ,p!X"' 1/2. !34"

In the quantum weak coupling regime for fermions at high
density, it tends to its value in the random phase approxima-
tion, whereas, in the classical limit where exchange effects
become negligible at low density, it coincides with the De-
bye inverse length FD

!1 with FD
2 "462+%e%

2'% . The ex-
cluded convolution rule is the following: there can be no
convolution Fcc*Fcc, Fcc*Fcm, or Fmc*Fcm, where * de-
notes a convolution for the loop position variable R and an
integration over the internal degrees of freedom of the inter-
mediate loop.
On the contrary, the dressed bond, which contains the

multipole-multipole interactions and the short-ranged part of
the Mayer bond f , decays algebraically at large distances. It
reads

FR"e!2e% ie% jEelect#W!1!Fcc!Fcm!Fmc, !35"

with

W!Li ,Lj""!2e% ie% j"0
pi
dB"

0

p j
dB!0,„#B!P!B"$

!#B!!P!B!"$…!11vC„$i!B"!$j!B!"…
!36"

and

Eelect!Li ,Lj"""
0

pi
dB"

0

p j
dB! E„$i!B"!$j!B!"….

!37"

When the distance !Ri!Rj! between loops becomes infinite,
the leading asymptotic term in W decays as 1/!Ri!Rj!3. The
algebraic tails of the bond FR are generated by the expansion
of exp(W)!1. We notice that FR depends on the density only
through the inverse length F .

B. Resummed diagrammatic representation of the loop density

Before using Eq. !27", we must study the representation
of the loop density '(L) in terms of diagrams with weight
z(L). Resummations are the same as in Appendix B of Ref.
#1$. Moreover, a generalization of Appendix C shows that
each resummed diagram is conditionally integrable, if the
integrations over the loop shapes and over the orientations of
the relative positions of loops are performed before the inte-
grations over the distances between loops. More precisely,
since articulation points exist in diagrams with weights z(L),
a point Pj may be linked to only one point P0 in a resummed
diagram and the bond linking P0 to Pj may decay algebra-
ically. As in Eqs. !C3" and !C4" of Ref. #1$, once the invari-
ance of both the integration measure and the integrand under
the inversion Xj→!Xj has been taken into account, the only
terms at the border of integrability come from the case P0
"La !where La is the root point". These terms are propor-
tional to

" D!Xj"G2!Xj"#Xj!B!"$/
2 A//# 1r % , !38"

where the function G2(Xj) is invariant under rotations
around the direction of B0 . In Eq. !38" the summation over
the repeated space index /"1,2,3 is implicit and r
"$a(B)!Rj . Because of the invariance of D(Xj)G2(Xj)
under rotations in the plane perpendicular to B0 , Eq. !38"
can be written as

0A!B!">##B!B!"!A!B!"$Azz1# 1r % , !39"

with A(B!)"-D(Xj)G2(Xj)#Xj(B!)$x
2 and B(B!)

"-D(Xj)G2(Xj)#Xj(B!)$z
2 . However, after integration over

the unit vector r̂"r/r ,

" d r̂ Azz# 1r %"
1
3 ># 1r %"!

46
3 ,!r", !40"

where ,(r) is the Dirac distribution. Finally, Eq. !38" is short
ranged after integration over r̂.
Since the resummed diagrams in the loop-fugacity expan-

sion of '(L) are finite, we can use the diagrammatic relation
!27" in which the weight of each loop is equal to the loop
density. This relation has not been studied in Ref. #1$. Again,
the Coulomb divergencies of the diagrams G* can be re-
summed by a procedure analogous to that performed for the
Ursell function. The reason is that the diagrams G* do not
contain any articulation point, except for the diagram with
only one internal point !in which the root point La is itself an
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articulation point". The special role of the single root point
introduces two differences with the case of the Ursell func-
tion, as follows. Let us define f cc ( f mc) as Fcc (Fmc) with
vC in place of E in Eqs. !30" and !32". First, there appears an
extra constant

1
2" dL'!L"0# f cc# f mc$#Fcc#Fmc$!# f cc$21!La ,L"

!41"

due to the resummation of ring diagrams with Coulomb in-
termediate points, because these diagrams disappear in the
resummation process, as ring diagrams in the loop-fugacity
expansion of '(La) †see Eq. !B8" in Ref. #1$‡. The term
# f cc$2(La ,L) must be subtracted because there is no ring
with only one internal point. !Indeed, two points are linked
by at most one bond f .) Second, in the diagram with only
one internal point L and a bond FR(La ,L), one must sub-
tract the contributions that are Coulomb rings in order to
avoid double counting, as in Eq. !B3" of Ref. #1$. The redun-
dant contribution that must be subtracted is equal to

1
2" dL'!L"0#Fcc#Fmc$2!# f cc$21!La ,L". !42"

The spurious infinite contribution of # f cc$2 disappears in the
difference between Eqs. !41" and !42". If we denote % the
species of the root point La with exchange degeneracy pa
and & the species of the internal point L, the difference
between Eqs. !41" and !42", which will be denoted I rgT !since
it comes from some truncated contribution of Coulomb
rings", may be written as

I rgT"
F2

86 2!e%pa"
2" dr"

0

pa dB
pa +q"0

5 1
q! #Xa!B"•“r$

q

%# 1!e!Fr

r % "
0

pa dB!
pa +q!"0

5 1

q!!
#Xa!B!"•“r$

q!# e!Fr

r % ,
!43"

where the factor F2 given by Eq. !34" originates from the
integration over the internal degrees of freedom of L. The
resummed diagrams with at least two internal points are ob-
tained by the same resummation process as in the case of the
Ursell function. †We notice that the resummation for the
loop-fugacity expansion of '(La) performed in Appendix B
of Ref. #1$ is more complex because the existence of articu-
lation points in the loop-fugacity diagrams leads to the intro-
duction of two types of weights after resummations as well
as related excluded-convolution rules in order to avoid
double counting.‡ The final formula for '(La) after resum-
mation reads

'!La""z!La"exp#I rgT!La"$

%exp&+
P*

1

SP*
" 8

m"1

M

dPm'!Pm"&8 F '
P*

' ,
!44"

where the diagrams P* contain the root point La and at least
one internal point. They are built with the bonds
Fcc, Fcm, Fmc, and FR and obey the same topological
properties as the diagrams G* in Eq. !27" with the extra
excluded-convolution rule also valid for the Ursell function.

V. A SOLVABLE MODEL

We consider two quantum charges e1 and e2 at points r1
and r2 embedded in a classical plasma. This model was first
introduced by Alastuey and Martin #19$ in order to exhibit
how quantum fluctuations generate algebraic tails in position
correlations at large distances. In this section we study the
generalization of this model in the presence of a uniform
magnetic field B0 .

A. Definition of the model

In order to define the correlation between the two quan-
tum particles from the free energies associated with their
immersion in the classical gas either separately or together,
we decompose the Hamiltonian of the whole system as
H"H0(C)#H(1,C)#H(2,C)#e1e2vC(r1!r2) with the
following definitions. H0(C) is the Hamiltonian of the
classical plasma in a phase-space configuration C
"(0yj1 j"1, . . . ,N ,0pj1 j"1, . . . ,N) of its N particles in the ab-
sence of the quantum charges,

H0!C ""+
j"1

N
#pj!!e j/2c "B0$yj$2

2mj
#
1
2" dr" dr!

%vC!r!r!"Q!r,C "Q!r!,C ", !45"

where Q(r,C) is the microscopic charge density at r of the
classical gas in the configuration C . H(i ,C) is the Hamil-
tonian of one quantum charge with index i"1,2 in the po-
tential created by the classical plasma in configuration C ,

H! i ,C ""
#pi!!ei/2c "B0$ri$2

2mi
#ei" dr vC!ri!r"Q!r,C ".

!46"

In a rigorous approach, one must first consider a system in a
finite volume < and then take the thermodynamic limit. In
the following we consider a system in an infinite volume
from the beginning, because this does not change the results.
As in Ref. #19$, the correlation is defined from the immer-

sion free energies as

g!r1 ,r2"*exp0!2#F12
!2 "!r1 ,r2"!F1

!1 "!r1"!F2
!1 "!r2"$1!1,

!47"

where Fi
(1)(ri) is the free energy associated with the immer-

sion of one quantum charge with species i at point ri in the
classical gas

e!2Fi
!1 "!ri"*

" dC:ri!e!2[H0!C "#H! i ,C "]!ri7

" dCe!2H0!C "
!48"
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and F12
(2)(r1 ,r2) is the free energy associated with the immer-

sion of the pair of quantum particles at positions r1 and r2 ,

e!2F12
!2 "!r1 ,r2"*

" dC:r1 ,r2!e!2H!C "!r1 ,r27

" dCe!2H0!C "
. !49"

In Eqs. !48" and !49" the configurations of classical particles
are integrated over with dC*8 j"1

N dyjdpj /(26.)3N. We
notice that in fact H0(C) is a scalar which factorized out of
the matrix elements. In fact, since the position integrals are
performed over an infinite volume, Fi

(1)(ri) is independent
from ri , Fi

(1)(ri)"Fi
(1) , while F12

(2)(r1 ,r2) only depends on
the difference r2!r1 .

B. Averaging over the classical gas

In the averaging process, the mechanism underlying the
Bohr–van Leeuwen theorem still operates and there is no
macroscopic magnetic property associated with the classi-
calparticles. Indeed, the conjugate momentum pj of a classi-
cal particle is a scalar and, by a translation pj→pj
#(e j/2c)B0$rj , the coupling with B0 disappears for the
degrees of freedom of classical particles, as follows:

" dCe!2H0!C ""&8
j"1

N 1

!26@ j
2"3/2

' " &8
j
drj'

%exp&!!2/2"+
j(l

e jelvC!rj!rl"' . !50"

On the contrary, the position and momentum operators do
not commute for quantum particles. This property is reflected
in the path integral representation in the phase space (r,p)
#20$ by the fact that, when the paths of the variable p are

integrated over first, there appears a phase factor which
couples the paths of the variable r with B0 . For a closed path
"i ,i"ri#@ i#(s), the phase factor involves - Itô"i ,i$d"i ,i
"@ i

2- Itô#i$d#i , because - Itôd#"0 according to Itô lemma
!16". Then the generalization of Eq. !17" in the presence of
an external potential allows one to write

:ri!e!2H! i ,C "!ri7"
1

!26@ i
2"3/2

" D!#i"

%exp& i!ei@ i2/2.c "B0•"
Itô

#i$d#i'
%e!2ei+

j"1

N "
0

1
dsvC„ri#@ i#i!s "!yj…. !51"

As in the general formalism, the closed path "i ,i may be
interpreted as a closed curve with a uniform charge density
eini(r)"ei-0

1ds,„ri#@ i#i(s)!r….
In the case of the one-body quantum Gibbs factor that

appears in Eq. !48", the use of the Feynman-Kac-Itô formula
!51" introduces the electrostatic interaction of the closed
curve "i ,i with a given configuration of the classical par-
ticles. Henceforth, after averaging over the classical gas con-
figurations, there appears the electrostatic free energy
Fi ,elect
(1) (#i) of the immersion of a single closed curve in the
classical gas,

e!2Fi
!1 "

"
1

!26@ i
2"3/2

" D!#i"

%exp& ! iei@ i2/2.c "B0•"
0

1
#i!s "$d#i'e!2Fi ,elect

!1 " !#i",

!52"

with

e!2Fi ,elect
!1 " !#i""

" &8
j
dyj'exp&!2ei+

j
e j" drni!r"vC!r!yj"!!2/2"+

j(l
e jelvC!yj!yl"'

" &8
j
dyj'exp&!!2/2"+

j(l
e jelvC!yj!yl"' . !53"

Fi ,elect
(1) (#i) is independent from the position ri of the closed curve because the classical gas occupies an infinite volume.
On the contrary, in the case of the two-body quantum Gibbs factor involved in Eq. !49", the pair interaction that appears in

the Feynman-Kac-Itô formula !17", namely, e1e2-0
1ds1-0

1ds2vC„r2!r1#@2#2(s2)!@1#1(s1)…, is not an electrostatic energy.
However, it can be written as the sum of the purely electrostatic contribution Eelect(r1!r2 ,#1 ,#2), which couples every curve
element of one closed curve with all curve elements of the other closed curve, and a purely quantum term,

w!r1!r2 ,#1 ,#2"*e1e2"
0

1
ds1"

0

1
ds2#,!s1!s2"!1$vC„r2!r1#@2#2!s2"!@1#1!s1"… !54"

(w corresponds to the quantity denoted by W in Ref. #19$". With this decomposition, the pair free energy reads

e!2F12
!2 "!r1!r2""

1

!26@1
2"3/2!26@2

2"3/2
" D!#1"exp& ! ie1@12/2.c "B0•"

0

1
#1!s "$d#1'

%" D!#2"exp& ! ie2@22/2.c "B0•"
0

1
#2!s "$d#2'e!2w!r1!r2 ,#1 ,#2"e!2F12,elect

!2 " !r1!r2 ,#1 ,#2", !55"
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where F12,elect
(2) (r1!r2 ,#1 ,#2) is the free energy associated with the immersion of two closed curves interacting through the

electrostatic force. As in Ref. #19$, we introduce the effective potential corresponding to the electrostatic energy needed to
separate the charged filaments at r1 and r2 by an infinite distance in the classical gas,

Eeff!r1!r2 ,#1 ,#2""F12,elect
!2 " !r1!r2 ,#1 ,#2"!F1,elect

!1 " !#1"!F2,elect
!1 " !#2". !56"

Subsequently, with r"r1!r2 , the correlation !47" can be written as

g!r""" DB0
¯ !#1"" DB0
¯ !#2"0e!2[Eeff#w]!11, !57"

with

DB0
¯ !#i"*

exp& ! iei@ i2/2.c "B0•"
0

1
#i!s "$d#i'e!2Fi ,elect

!1 " !#i"

" D!#i"exp& ! iei@ i2/2.c "B0•"
0

1
#i!s "$d#i'e!2Fi ,elect

!1 " !#i"

D!#i". !58"

The large-distance behavior of g(r) can be easily investi-
gated from Eq. !57". Every Brownian bridge @ i#i has a
Gaussian weight that restricts its average extent to distances
of order @ i . Besides, by virtue of the exponential screening
in classical Coulomb systems #21$, Eeff decays faster than
any inverse power law of the distance r , whereas w falls off
algebraically. More precisely, according to the Taylor for-
mula

vC#r2!r1#@2#2!s2"!@1#1!s1"$

"+
n"0

5

!1/n! "0#@2#2!s2"!@1#1!s1"$•“1n!1/r ",

and according to the property

"
0

1
ds1"

0

1
ds2#,!s1!s2"!1$ f !s1""0, !59"

the leading algebraic tail of w decays as 1/r3, and w2 falls
off as 1/r6.
Subsequently, algebraic tails appear in the large-distance

behavior of g(r) and are given by

" DB0
¯ !#1"" DB0
¯ !#2"( !2w!r,#1 ,#2"

#
22

2 #w!r,#1 ,#2"$
2#•••) . !60"

After averaging 0•••1 in Eq. !60" with the measure DB0
¯ (#),

which is invariant under the inversion #i→!#i , the slowest
nonvanishing term in Eq. !60" is the term in the Taylor de-
composition of w that contains two #1’s and two #2’s. This
term decays as 1/r5, whereas, in the absence of B0 , the
invariance under rotations makes this term proportional to
>(1/r), which is short-ranged !see Ref. #5$". We define the
covariance in the presence of the classical gas as

cov̄/?
% i !s ,s!"*" DB0
¯ !#i"##i!s "$/##i!s!"$? . !61"

This covariance depends on the species % i of the particle i
through the phase factor and the electrostatic free energy in
Eq. !58". With this notation, the leading algebraic tail in Eq.
!60" is

g!r" )
r→5

!
1
4 2e1e2@1

2@2
2"

0

1
ds1"

0

1
ds2 #,!s1!s2"!1$

%cov/?
%1 !s1 ,s1"cov 'G

%2!s2 ,s2"A/?'G# 1r % . !62"

C. Covariance properties

In order to give a more explicit expression for the
asymptotic behavior of g(r), we briefly present the proper-
ties of the covariance that are deduced from those of the
measure DB0
¯ (#i) defined in Eq. !58". The term B0•-#$d# in

the phase factor involves only the components of # that lie in
the plane perpendicular to B0 .
First, the phase factor is invariant under rotations of # in

this plane. Therefore

cov xx
% i!s ,s!""cov yy

% i !s ,s!", !63"

cov xy
% i!s ,s!""!cov yx

% i!s ,s!". !64"

Since by definition cov xy
% i (s ,s)"covyx

% i (s ,s), Eq. !64" implies
that

cov xy
% i!s ,s ""0. !65"

Second, the phase factor is unchanged when ##$z→!##$z ,
and

cov zx
% i!s ,s!""cov xz

% i!s ,s!""0, !66"

cov zy
% i!s ,s!""cov yz

% i!s ,s!""0. !67"

As a result of Eq. !65" and of the latter equations

cov /?
% i !s ,s "",/ ,?cov //

% i !s ,s ". !68"
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In order to rewrite Eq. !62" with two operators analogous
to 0•••1 in Eq. !39", we use Eq. !68" and !63". Since

An

!Az "n
# 1r %"!!1 "nn!

Pn!cosH"
rn#1 , !69"

where Pn is the Legendre polynomial of order n and H is the
angle between r and B0 , we find that g(r) decays as

g!r " )
r→5

!6
P4!cosH"

r5 2e1e2@1
2@2

2"
0

1
ds1"

0

1
ds2

%#,!s1!s2"!1$#cov xx
%1!s1 ,s1"!cov zz

%1!s1 ,s1"$

%#cov xx
%2!s2 ,s2"!cov zz

%2!s2 ,s2"$ . !70"

In conclusion, this model is solvable, and the exact algebraic
tail of the correlation is given by Eq. !70". Since
-d(cosH)Pn(cosH)"0, after integration over H , g(r) decays
as 1/r6, according to Eq. !60", as in the absence of B0 . In the
limit of weak Coulomb coupling and weak dynamical effects
!at uCi"2.eiB0/2mic fixed", the coefficient of the 1/r5 tail
can be calculated exactly. The result will be given in Paper
III.

VI. LEADING ALGEBRAIC TAILS OF THE STATIC
CORRELATIONS AT ANY DENSITY

The scheme of the discussion is the same as in Ref. #5$,
but now the arguments about invariance under rotations must
be decomposed in arguments about either invariance under
inversion or invariance under rotations in the plane perpen-
dicular to B0 . The results derived in Ref. #5$ and that depend
only on the invariance under inversion are still valid. How-
ever, the invariance under rotations is broken by B0 and the
discussion about analytical properties in Fourier space is
modified.

A. Scheme of the discussion

We consider two charges with species %a and %b . The
two-body distribution function !called correlation in the fol-
lowing" can be decomposed into two contributions according
to the general formalism of Ref. #5$. If %a"%b , the so-called
exchange part '%a%a

(2)T !exch comes from configurations where
the positions of the particles are involved in the same cyclic
permutation. It is determined by integration of the loop den-
sity over all its internal degrees of freedom except for the
relative distance between two particles in the loop †see Eq.
!4.6" of Ref. #1$‡. The exchange contribution decays faster
than any inverse power law of the distance, because the
phase factor originating from the magnetic field does not
modify the argument in Sec. V D of Ref. #1$. The other part
'%a%b
(2)T !nonexch of the correlation is calculated by integration of
the loop correlation over the internal degrees of freedom of
the loops „see Eq. !4.7" of Ref. #1$…. In the thermodynamic
limit the loop density does not depend on the position of the
loop and '%a%b

(2)T !nonexch can be written in terms of the Ursell
function as

'%a%b
!2 "T !nonexch!r""+

pa
+
pb

papb" D!Xa"'!Ia"

%" D!Xb"'!Ib"h!r,Ia ,Ib", !71"

where I is a global notation for the internal degrees of free-
dom of a loop, I"(% ,p ,X), and '(I)*'% ,p(X). The large-
distance behavior of '%a%b

(2)T !nonexch is analyzed by a reorgani-
zation of diagrams in order to exhibit the properties arising
from the structure of W .
As in Sec. I B of Ref. #5$, we introduce other diagrams

called D̃, by splitting the resummed bond FR into two bonds
W and FR6 ,

FR"W#FR6 . !72"

The point of the decomposition !72" is that the leading
asymptotic behavior of FR6 falls off as 1/r6 at large dis-
tances. The representation of h(r,Ia ,Ib) in terms of dia-
grams D̃ is the same as that given in Eq. !29" and diagrams
D̃ have the same properties as diagrams D . Let H denote the
sum of the so-called D̃Wc

diagrams that remain connected
when a bond W is cut. According to some kind of Dyson
equation !which also appears in the definition of the ‘‘di-
rect’’ correlation function" h(r,Ia ,Ib) is equal to a series of
convolutions involving H and W . If we denote g(k)
"-drexp#ik•r$g(r), the series reads in Fourier space
'!Ia"h!k,Ia ,Ib"'!Ib"

"H!k,Ia ,Ib"#+
I"1

5 " dI1•••dI I dI1!•••dI I!

%K!k,Ia ,I1"%W!k,I1 ,I1!"K!k,I1! ,I2"•••
%W!k,I I ,I I!"K!k,I I! ,Ib", !73"

where

K!Ri!Rj ,I i ,I j"*,!Ri!Rj",I i ,I j'!I i"

#H!Ri!Rj ,I i ,I j",

with ,I i ,I j*,% i ,% j,pi ,p j,(Xi!Xj). The representation of h
in terms of the graph H and a sum of chains made with
graphs K linked by I bonds W can be written with short
notations as

'h'"H#K*W*K#K*W*K*W*K#••• . !74"

This decompositon is useful because H , and subsequently K ,
decays as 1/r6 for topological reasons !see Sec. III A of Ref.
#5$", even before integration over the shapes of the root
points La and Lb . Moreover, the dimensional analysis and
the invariance under inversion show that the convolutions in
Eq. !73" fall off at least as 1/r5. In fact, when B0"0, be-
cause of the invariance under rotation, there appear powers
of the Laplacian and contributions that would decay as 1/r5
according to the sole dimensional analysis are in fact short
ranged because of the harmonicity of the Coulomb potential.
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The general mechanism was discussed in Sec. I B of Ref. #5$
and it is exemplified in the solvable model of Sec. V where
the leading asymptotic behavior is in fact given by 22w2
"W2 according to Eq. !60". When B0(0, there is no invari-
ance under rotation and convolutions indeed decay as 1/r5,
as in the solvable model where the correlation is given by
!2w"W .
The following discussion is organized in two steps. First,

we give the slowest possible decay of the convolutions in Eq.
!73" that is derived from dimensional analysis and invariance
under inversion. Since the term ‘‘rotational invariance’’ used
in Sec. III B of Ref. #5$ is too restrictive and can be replaced
by ‘‘invariance under inversion,’’ the result about the mini-
mal inverse power law is the same in the presence or in the
absence of the magnetic field. However, the exponent of the
slowest decay is altered by the existence of B0 , because it
depends crucially on rotational invariance arguments. This
point will be discussed in the second step.

B. Dimensional analysis and invariance under inversion

The large-distance behavior of the convolutions in Eq.
!73" is derived from a Fourier transform analysis according
to the principles presented in Sec. II C of Ref. #5$. In short,
the algebraic tails of a function g at large distances are ex-
actly given by the inverse Fourier transforms of the terms in
the small-k expansion of g(k) that are nonanalytic in the
components of k. Subsequently, the leading large-distance
decay of a convolution g1*g2 is easily determined: it is
merely given by the nonanalytic terms in the small-k expan-
sion of the product of the small-k expansions of g1 and g2
that are of the lowest order in !k!. For instance, the
asymptotic behavior of the inverse Fourier transform of the
product g1(k)g2(k) is given by that of the two singular
terms g1(k"0)Sg2(k) and g2(k"0)Sg1(k), which is of the
lowest order and does not vanish. If Sg1(k) is of order zero
in !k!, an extra singular term Sg1(k)Sg2(k) appears. If Sg1
and Sg2 are of the same order in !k!, then the asymptotic
behavior is given by the sum of the terms involving Sg1(k)
or/and Sg2(k).
In order to distinguish the various !leading and sublead-

ing" algebraic tails, we introduce the following decomposi-
tion of W derived from Eq. !36":

W!k,I i ,I i!""!2e% ie% i!"0
pi
dB i"

0

pi!dB i!0,„#B i!P!B i"$

!#B i!!P!B i!"$…!11 +
mi"1

5

+
ni"1

5 1
mi!ni!

%w [mi ,ni]#k,Xi!B i",Xi!!B i!"$ , !75"

where w [mi ,ni] is a singular term of order !k!mi#ni!2,

w [mi ,ni]#k,Xi!B i",Xi!!B i!"$*# iXi!B i"•k$mi

%#!iXi!!B i!"•k$ni 46k2 .
!76"

The relation !73" may be written as a series of chains, each
of which involves I terms w [mi ,ni]. After integration over the
shapes of the root points La and Lb , these chains are de-
noted by CI(k;0mi1,0ni1) as in Sec. III B of Ref. #5$.
In order to simply discuss symmetry arguments, we also

introduce Ki ,i#1
[ni ,mi#1] :

Ki ,i#1
[ni ,mi#1]!k"*" D!Xi!"" D!Xi#1"#k•Xi!!B i!"$ni

%#k•Xi#1!B i#1"$mi#1K!k,I i! ,I i#1"
!77"

and

Ka ,1
[m1]!k"*" D!Xa"" D!X1"#k•X1!B1"$m1K!k,Ia ,I1".

!78"

with a similar expression for KI ,b
[nI](k). According to these

definitions, up to multiplicative factors,

CI!k;0mi1,0ni1"J
1

!k2!I
Ka ,1
[m1]!k"K1,2

[n1 ,m2]!k"

%K2,3
[n2 ,m3]!k"•••KI!1,I

[nI!1mI]!k"KI ,b
[nI]!k".

!79"

Since H decays as 1/r6, even before integration over the loop
shapes, the first nonanalytic term in the small-k expansion of
H(k,I i! ,I i#1) is of order !k!3 and will be called SH

(3)(k). As
a result,

H!k,I i! ,I i#1" )
!k!→0

" drH!r,I i! ,I i#1"

#i" dr!k•r"H!r,I i! ,I i#1"

!
1
2" dr!k•r"2H!r,I i! ,I i#1"

#SH
!3 "!k,I i! ,I i#1"#Oanal

!3 " !k"#O! !k!4",

!80"

where Oanal
(n) (k) denotes an analytic term of order !k!n,

whereas O(!k!n) is just a term of order !k!n. We notice, that,
as explained in Ref. #5$, no ln!k! term appears because of the
structures of W and of the algebraic tails that it induces. The
first three terms in the small-k expansion of Ki ,i#1

[ni ,mi#1](k) are
analytic and they may vanish according to arguments of in-
variance under inversion, even when B0(0. Indeed, the
property

K!!k,!Xi! ,!Xi#1""K!k,Xi! ,Xi#1" !81"

implies that

Ka ,1
[m1]!k""Oanal

„m1#H!m1"…!k"#O! !k!m1#H!m1"#2", !82"
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where H(m)"0 if m is even and H(m)"1 if m is odd.
Oanal

„m1#H(m1)…(k) comes either from the first or the second term
in the small-k expansion of K . The structure of the small-k
expansion of KI ,b

[nI](k) is similar, while

Ki ,i#1
[ni ,mi#1]!k""Oanal

„ni#mi#1#H!ni#mi#1"…!k"

#O! !k!ni#mi#1#H!ni#mi#1"#2". !83"

By inspection, it can be checked that ni#mi#1#H(ni
#mi#1)#2=ni#mi#1#3. Henceforth, the second term in
the right-hand side of Eq. !83" may arise from the nonana-
lytic term SH

(3) . Its study requires a more detailed analysis of
the structure of the algebraic tails, which will be done in Sec.
VII.
Finally, according to Eqs. !82" and !83", the first term in

the Fourier transform of a convolution !79" with I bonds W is
of order !k!DCI with

DCI"!2I#m1#H!m1"#nI#H!nI"

#+
i"1

I!1

#ni#mi#1#H!ni#mi#1"$ . !84"

Moreover, the next term in the small-k expansion of Eq. !79"
is of order !k!DCI#2. When the mi’s and ni’s vary, DCI takes
only even values, and its lowest value is equal to 2. Subse-
quently, the dimensional analysis and the invariance under
inversion ensure that a convolution CI decays at least as 1/r5,
and the first subleading tail falls off at least as 1/r7.

C. Full or partial rotational invariance

The preceding section dealt with the part of Sec. III B that
is not changed, and now we turn to the part relative to ana-
lytical properties which is modified by the presence of the
magnetic field. According to the dimensional analysis, a con-
volution may decay as 1/r5 if DCI takes its minimal value
DCI ,min"2, namely, if m1"1,2, nI"1,2, and ni"mi#1"1
for all i"1, . . . ,I . Such a convolution does fall off as 1/r5 if
the first term in its Fourier transform CI(k;0mi1,0ni1) is
nonanalytic.
In the absence of B0 , the system is invariant under rota-

tions around any axis, and the first analytic term in Eq. !82"
or in Eq. !83" is exactly proportional to k2 for the
0mi ,ni1 i"1, . . . ,I that give DCI ,min . As a consequence, in the
latter cases, the first term in the convolution !79" is exactly
proportional to !k!2 and is analytical. Subsequently, accord-
ing to Sec. VI B, any convolution CI(r;0mi1,0ni1) decays at
least as 1/r7.
In the presence of B0 , the system is invariant under rota-

tions around the z axis and the first-order term in Ki ,i#1
[ni ,mi](k)

is a sum of contributions of the form !k!2(Ni!qi)#k$z
2qi with

Ni"ni#mi#1#H(ni#mi#1) and qi"0, . . . ,Ni . In the con-
volutions CI for which DCI"DCI ,min, every K starts at the
order !k!2 by a sum of two terms which are proportional to
k2 and #k$z

2 respectively. Thus, after expanding the product
of the small-k expansions of the K’s, the first term in Eq.
!79" contains nonanalytic contributions

1

!k2"I
!k2"I#1!Q!#k$z

2"Q"!k!2!cosHk"2Q !85"

as soon as QK2. (Hk is the angle between B0 and k.) Thus
a 1/r5 falloff, with an angular dependence, may appear.
The integration over the orientation of k restores the ana-

lyticity of the first term in the expansion of CI(k;0mi1,0ni1).
Moreover,

" d r̂ f !r""" dke!ik•r" dk̂ f ! !k!,k̂•B̂0", !86"

where r̂*r/!r! and k̂*k/!k!. Thus, after integration over the
orientation of r, the convolutions decay in fact as 1/r7.
As a conclusion, in the absence of B0 , the particle-

particle correlation decays as 1/r6 and this tail comes from
H , whereas, in the presence of B0 , the particle-particle cor-
relation falls off as 1/r5 and this tail originates from the
convolutions !while the 1/r6 subleading tail arises from H).
After integration over angles, the 1/r5 tail disappears and the
leading order is given by the 1/r6 tail coming from H .

VII. STRUCTURE OF LEADING AND SUBLEADING
ALGEBRAIC TAILS OF DIAGRAMS

The leading and subleading tails of the D̃Wc
diagrams are

analyzed first in order to derive the asymptotic behaviors of
the convolutions C. The result will be used extensively in
Sec. VIII. As in Ref. #5$, we will denote L*(% ,p ,Z) and
L!*(%!,p!,Z!) the internal degrees of freedom of loops.
This notation will avoid confusion of these points with the
intermediate points of convolutions C.

A. Definitions

As discussed in Sec. III D of Ref. #5$, any leading or
subleading algebraic tail of a diagram D̃(ra!rb ,Ia ,Ib)
comes from the leading or subleading behavior of L elemen-
tary algebraic tails S (& l)[ql ,ql!](r,L l ,L l!) with l"1, . . . ,L . By
definition an elementary algebraic tail is either the
asymptotic behavior of a single bond W or FR6 or of a con-
volution of diagrams D̃ and algebraic bonds. For a convolu-
tion C, L"1 and the convolution contains at least one bond
W . For a D̃Wc

diagram, L"1 corresponds to a convolution

without any bond W , whereas, when LK2, the S (& l)[ql ,ql!]’s
may be convolutions involving W bonds. These elementary
algebraic tails are denoted by S (&)[q ,q!](r,L ,L!) because they
decay as 1/r& and satisfy two properties. Property !A" reads

&"P!q ,q!"#q#q!, with inf!q ,q!"KP!q ,q!".
!87"

(B) corresponds to two symmetries: !1" S (&)[q ,q!](r,L ,L!) is
invariant under global inversion of its arguments,

S !&"[q ,q!]!!r,!Z,!Z!""S !&"[q ,q!]!r,Z,Z!" !88"

!2" S (&)[q ,q!](r,L ,L!) is of parity (!1)q #(!1)q!$ under the
inversion Z→!Z #Z!→!Z!$ , namely,
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S !&"[q ,q!]!r,!Z,Z!""!!1 "qS !&"[q ,q!]!r,Z,Z!". !89"

S (&)[q ,q!](r,L ,L!) is denoted by S (&)[q ,q!](r,Z,Z!) when only
the shapes of the loops are important for the discussion. We
notice that the present definition of S (&)[q ,q!](r,L ,L!) is more
general than that used in Sec. III D of Ref. #5$. The latter
definition was restricted to convolutions with algebraic
bonds at both ends in order to preserve a tensorial structure,
because, instead of property (B), we used the following
property (B*):

S !&"[q ,q!]!r,L ,L!"

"A/1 , . . . ,/q
[q] !Z"A?1 , . . . ,?q!

[q!] !Z!"S/1 , . . . ,/q?1 , . . . ,?q!
!&" !r"

where A/1 , . . . ,/q
[q] (Z) and A?1 , . . . ,?q!

[q!] (Z!) are tensors of rank
q and q!, respectively, and S/1 , . . . ,/q?1 , . . . ,?q!

(&) (r) decays as
1/r&. In the present paper, we consider more general struc-
tures S (&)[q ,q!](r,L ,L!) so that property !B" is weaker than
property (B*). The advantage is that property !B" is valid in
the presence as in the absence of magnetic field and it is
sufficient for deriving the properties which are in common
for both cases.
An argument similar to that given in Sec. III D of Ref. #5$

shows that, before integration over loop shapes, the leading
and subleading tails T of a diagram D̃ have a structure which
satisfies property (A), with &T"+ l"1

L #Pl(ql ,ql!)#ql#ql!$
#Qa#Qb , and property (B),

T!ra!rb ,Ia ,Ib"

"S !&T"[Qa#+ lql ,Qb#+ l!ql!]!ra!rb ,Ia ,Ib",

!90"

where l runs from 1 to L , and Qa (Qb) is the number of
derivatives with respect to ra (rb) which are performed to
obtain the subleading term T .
Since some tails arising from convolutions involving W

bonds are a priori algebraic and prove to be short ranged
after integration over loop shapes, we deal with convolutions
C separately. According to the definition of the Ki ,i#1

[nimi]’s, the
convolutions C involve the algebraic tails of the inverse Fou-
rier transforms of functions

" D!Xa"" D!Xb"!k•Xa"na!k•Xb"mbD̃Wc
!k,Xa ,Xb".

!91"

As shown in the following two sections, the conclusions are
the same for the D̃Wc

diagrams in the absence as in the pres-
ence of B0 . On the contrary, the discussion about the con-
volutions C is different whether B0 is switched on or not.

B. Tails arising from %̃Wc diagrams

The contribution of a tail T coming from a

!k•Xa"na!k•Xb"mbD̃Wc
!k,Xa ,Xb"

decays as 1/r&T#na#mb before integration over the loop
shapes Xa and Xb . Since T is of parity (!1)Qa#+ lql under
Xa→!Xa and (!1)Qb#+ lql! under Xb→!Xb , the invari-
ance of

" D!Xa"" D!Xb"!k•Xa"na!k•Xb"mbD̃Wc
!k,Xa ,Xb"

under inversion implies that the only values CWc
(na ,mb) of

&T#na#mb that survive after integration over the loop
shapes Xa and Xb correspond to the even values of na#Qa
#+ lql and mb#Qb#+ lql! , namely,

C!na ,mb ;D̃Wc
""+

l"1

L

Pl!ql ,ql!"#min( na#Qa#+
l"1

L

ql)
#H#min( na#Qa#+

l"1

L

ql) %
#min(mb#Qb#+

l"1

L

ql!)
#H#min(mb#Qb#+

l"1

L

ql!) % #2N ,

!92"

where min0•••1 denotes the minimal value of 0•••1 when
the ql’s and ql!’s vary while Qa takes any positive integer
value !zero included". H(n), which has been defined in
Sec. VI B, ensures that we write the even values taken by
0•••1. The point is to know both the minimal value taken by
+ l"1
L ql and + l"1

L ql! in order to determine the even values of
C(na ,mb ;D̃Wc

)!+ l"1
L Pl(ql ,ql!), and the minimal odd and

even values taken by + l"1
L Pl(ql ,ql!) when the ql’s and ql!’s

vary.
First the minimal odd and even values taken by every

P(q ,q!) are derived in Appendix A. The important results
are the following. For tails T of diagrams D̃Wc

with L"1, the
algebraic asymptotic behavior of the single elementary alge-
braic tail S (&)[q ,q!] does not involve any W bond or any con-
volution of W bonds, so that qK2 and q!K2. In this case,
the first allowed value for P(q ,q!) is

Peven,min!q ,q!;D̃Wc
,L"1 ""2 with qK2 and q!K2,

!93"

which is realized by an FR6 bond. The minimal odd allowed
value is given by convolutions involving only FR6 bonds,
with the result
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Podd,min!q ,q!;D̃Wc
,L"1 ""( 5 if inf!q ,q!""2

3 if inf!q ,q!"K3.
!94"

For tails T of diagrams D̃Wc
with LK2, the various

S (&)[q ,q!]’s may involve W bonds. Then, the minimal odd
allowed value for P(q ,q!) is

Podd,min!q ,q!;D̃Wc
,L"2 ""1 for any !q ,q!", !95"

which is realized by convolutions where the nonanalytic
terms arise only from W bonds. Moreover,

Peven, min!q ,q!;D̃Wc
,L"2 "

"( 6 if q"q!"1
4 if !q"1, q!K2 " or !qK2, q!"1 "
2 if inf!q ,q!"K2.

!96"

When inf(q ,q!)K2, P(q ,q!)"2 is realized by an FR6
bond. P(q ,q!)"6#2N and P(q ,q!)"4#2N are realized
by convolutions involving at least one FR6 bond. As a con-
sequence, the minimal allowed value of + l"1

L Pl(ql ,ql!) for a
D̃Wc

diagram is

min(+
l"1

L

Pl!ql ,ql!") "( 2 if L"1 in which case qlK2 and ql!K2
L if LK2 in which case q and q! take any value.

!97"

These minimal values are always realized.
Now, the point is to know the minimal odd value, min0,T

odd1, of ,T*+ l"1
L Pl(ql ,ql!)!min0+ l"1

L Pl(ql ,ql!)1. For a D̃Wc

diagram with L"1 †called case !IV" in the following as in Appendix C of Ref. #5$‡, ,T"+ l"1
L Pl(ql ,ql!)!2 and, according to

Eq. !94", the discussion of min0,T
odd1 can be organized by inspection of the various cases q"q!"2 (q"2, q!K3) or (q

K3, q!"2), and inf(q ,q!)K3. We get

C!na ,mb ;D̃Wc
,L"1 "!na!H!na"!mb!H!mb"!6"( 0,1, . . . if na and mb are odd

0,2,3, . . . in other cases.
!98"

In the case LK2, according to Eq. !96", min0+ l"1
L Pl(ql ,ql!)1"L and three cases are to be distinguished in order to determine

the minimal odd value of ,T"+ l"1
L Pl(ql ,ql!)!L .

Case !I": ql"ql!"1 for all l . Then min0,T
odd1"5 and +ql"1

L ql"+ql"1
Lql!"L .

Case !II": there exists some l0 such that (ql0"1, ql0!K2), while for all l(l0 , (ql"1, ql!"1) or (ql"1, ql!K2) or (ql
K2, ql!"1). Then min0,T

odd1"3 and +ql"1
L qlKL while +ql"1

L ql!KL#1. The same is true when the roles of ql0 and ql0! are
exchanged. †We notice that in Ref. #5$ there is a misprint in the definition of case !II", where ql"2 must be replaced by ql
K2.‡
Case !III": there exists some l0 such that inf(ql0,ql0! )K2. Then min0,T

odd1"1 and +ql"1
L qlKL#1 and +ql"1

L ql!KL#1.
Then the discussion of Appendix C of Ref. #5$ can be resumed. !Contrarily to what was done in Ref. #5$, the discussion is

carried out for any na and mb from the start, and the cases na"0 or nb"0 are derived at the end." The first odd value of ,T
is

min0,T
odd1"*

5 in case !I"
3 in case !II"
1 in case !III"
3 if inf!q ,q!""2 and 1 if inf!q ,q!"K3 in case !IV".

!99"

By considering from the start the case where na(0
andmb(0, we get the same final results as in Eq. !C40"
of Ref. #5$. †The misprints in Appendix C of Ref. #5$
and the mistake in Eq. !C37", which are given in
Appendix B of the present paper, do not affect the final
results.‡
The results are

F!1& " D!Xa"D!Xb"#k•Xa!B"$naD̃Wc
!r,Xa ,Xb"

%#k•Xb!B!"$mb' )
r→5

1

rna#mb#H!na#mb"#,!na ,mb"
. . . ,

!100"
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where, if na and mb are odd, ,(na ,mb)"0,1, . . . and
,(na ,mb)"0,2,3, . . . in other cases. The result is the same
as in the conclusion of Appendix B of Ref. #5$ because the
important property at stake is Eq. !99". As a consequence, up
to misprints, the results derived in Appendix C of Ref. #5$
and stated in Sec. III E of Ref. #5$ are still valid,

" D!Xa"D!Xb"D̃Wc
!r,Xa ,Xb" )

r→5

1
r6 ,

1
r8 ,

1
r9 , . . . ,

!101"

where the brief notation in Eq. !101" means that there appear
tails decaying as 1/r6, 1/r8, 1/r&, with &K9. Moreover, the
following property is valid for a D̃Wc

diagram in the absence
as well as in the presence of B0 ,

F!1& " D!Xa"D!Xb"#eik•Xa!B"!1$D̃Wc
!r,Xa ,Xb"'

)
r→5

1

r8
,
1

r10
,
1

r11
, . . . !102"

while

F!1& " D!Xa"D!Xb"#eik•Xa!B"!1$D̃Wc
!r,Xa ,Xb"

%#e!ik•Xb!B!"!1$' )
r→5

1

r10
,
1

r11
, . . . . !103"

As a comment, the discussion in Appendix A is analogous
to that of Appendix B of Ref. #5$. Because of a mistake, the
conclusions !B10" and !B11" of the latter Appendix turn out
to be valid only in the presence of the magnetic field B0 ,
whereas they must be modified when B0"0, as displayed in
Appendix C of the present paper. However, the conclusions
!94" and !96", which are weaker than Eqs. !B10" and !B11",
are valid whether B0"0 or B0(0 and they ensure that the
C(na ,mb ;D̃Wc

)’s are the same in the presence or in the ab-
sence of the magnetic field.

C. Tails arising from convolutions C

Thanks to the study of the leading and subleading tails of
D̃Wc

, Eqs. !82" and !83" can be written more precisely as

Ka ,1
[m1]!k""Oanal

„m1#H!m1"…!k"#Oanal
„m1#H!m1"#2…

!k"#•••
#S „m1#H!m1"#3…!k"#••• , !104"

where the next nonanalytic terms are of order
!k!m1#H(m1)#5, !k!m1#H(m1)#6, . . . , while

Ki ,i#1
[ni ,mi]!k""Oanal

„ni#mi#1#H!ni#mi#1"…!k"

#Oanal
„ni#mi#1#H!ni#mi#1"#2…

!k"#•••
#S „ni#mi#1#H!ni"#H!mi#1"#3…!k"#••• ,

!105"

with H(ni)#H(mi#1)KH(ni#mi#1). Nonanalytic terms ap-
pear at every order !k!&!3 with &!3Kni#mi#1#H(ni)
#H(mi#1)#4 if ni and mi#1 are odd, and &!3Kni
#mi#1#H(ni)#H(mi#1)#5 in other cases. The discussion
in Sec. III F of Ref. #5$ can be resumed by replacing Eqs.
!3.34" and !3.35", which are valid only when B0"0, by Eqs.
!104" and !105" respectively. The analysis of the nonanalytic
terms is similar to that performed in Sec. VI C of the present
paper. CI(k,0mi1,0ni1) contains two kinds of nonanalytic
terms. On one hand, the terms #k$z

2n/(k2)p, which arise from
the breaking of rotational invariance by B0 , are of order
DCI,DCI#2,DCI#4, . . . in !k!, where DCI is given by the
dimensional analysis of Sec. VI B. On the other hand, the
nonanalytic terms involving at least one K are of order DCI
#3, DCI#5, DCI#6, . . . as in the discussion of Sec. III F
of Ref. #5$. According to Eq. !84", DCImin"2 and

" D!Xa"D!Xb"CB0!r,Xa ,Xb" )
r→5

1

r5
,
1

r7
,
1

r8
, . . .

!106"

whereas

" D!Xa"D!Xb"CB0"0!r,Xa ,Xb" )
r→5

1

r8
,
1

r10
,
1

r11
, . . . .

!107"

According to the dimensional analysis already performed in
Appendix D of Ref. #5$, the structure of the nonanalytic
terms in -D(Xa)D(Xb)#exp0ik•Xa(B)1!1$C(k,Xa ,Xb) is
the same as for CI(k,0mi1,0ni1), with DCI replaced by

D̃CI"!2I##1#m1#H!1#m1"$#nI#H!nI"

#+
i"1

I!1

#ni#mi#1#H!ni#mi#1"$ . !108"

The minimal value of D̃CI is also 2 and

F!1& " D!Xa"D!Xb"#eik•Xa!B"!1$CB0!k,Xa ,Xb"'
)
r→5

1

r5
,
1

r7
,
1

r8
, . . . !109"

whereas

F!1& " D!Xa"D!Xb"#eik•Xa!B"!1$CB0"0!k,Xa ,Xb"'
)
r→5

1

r8
,
1

r10
,
1

r11
, . . . . !110"

In the case of -D(Xa)D(Xb)#exp0ik•Xa(B)1
!1$C(k,Xa ,Xb)#exp0!ik•Xb(B!)1!1$ , DCI is replaced by
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D̃̃CI"!2I##1#m1#H!1#m1"$##1#nI#H!1#nI"$

#+
i"1

I!1

#ni#mi#1#H!ni#mi#1"$ !111"

but the nonanalytic terms involving at least one K appear
only at the order D̃̃CI#5. The minimal value for D̃̃CI is equal
to 2 also. Thus

F!1& " D!Xa"D!Xb"#eik•Xa!B"!1$CB0!k,Xa ,Xb"

%#e!ik•Xa!B!"!1$' )
r→5

1

r5
,
1

r7
,
1

r9
,
1

r10
, . . . !112"

whereas

F!1# " D!Xa"D!Xb"#eik•Xa!B"!1$CB0"0!k,Xa ,Xb"

%#e!ik•Xa!B!"!1$ % )
r→5

1

r10
,
1

r11
, . . . . !113"

The present results when B0"0 are more precise than those
given in Ref. #5$. !We notice that some misprints in Appen-
dix D of Ref. #5$ do not affect the results given in the latter
reference." According to Eqs. !107", !110", and !113", the
tails 1/r5, 1/r7, and 1/r9 disappear when B0"0, because
they come only from the nonanalyticities due to the breaking
of rotational invariance in the presence of B0 , whereas tails
1/r10#N, with NK0, come from both breaking of rotational
invariance and singularities in the K’s.

VIII. LEADING AND SUBLEADING ALGEBRAIC TAILS
OF VARIOUS CORRELATIONS

A. Interplay with the ‘‘Debye dressing’’

First, we exhibit a property of the bond Fcc when charges
are summed over. In the following the ‘‘Debye’’ polarization
cloud of loops around a loop La is defined as

MD!Ra!R1 ,I1 ;Ia"",Ia ,I1,!Ra!R1"

#'!I1"Fcc!La ,L1". !114"

In MD the variable after ‘‘;’’ always denotes a root point.
!This notation is slightly different from that of Ref. #5$ and is
more precise." The property

" dIae%apa'!Ia"MD!k,I1 ;Ia"

"e%1p1'!I1"
k2

F2#k2

"
e%1p1'!I1"

F2
k2#O! !k!4" !115"

implies that, if a diagram D behaves as 1/rn and may be
convoluted with Fcc bonds, then the contribution of MD*D to
+%e%'%&

(2) T(r) falls off at least as 1/rn#2 and the contribution
from MD*D*MD to +% ,&e%e&'%&

(2) T(r) decays at least as
1/rn#4. More precisely, the tails 1/rn#2 and 1/rn#4 do exist
only if the k2 term arising from Eq. !115" does not cancel the
1/k2 singularity of the Coulomb potential; otherwise, the
leading algebraic tails are replaced by short-ranged behav-
iors.
The previous mechanism for a cascade of power laws can

be worked out as follows. First we reorganize the diagrams
in order to produce integral relations in which MD appears
explicitly. For that purpose, we introduce the following defi-
nitions. We call a ‘‘Coulomb-root’’ point a root point La that
is involved either in one and only one bond Fcc(La ,Pi) or
Fcm(La ,Pi). On the contrary, a non-Coulomb-root point La
is involved either in one bond FR(La ,Pi) or Fmc(La ,Pi) or
in at least two bonds, whatever they are. Let hn!(La ,Lb) be
the sum of the D diagrams where La is a non-Coulomb-root
point, whereas Lb is of any kind !Coulomb-root or non-
Coulomb-root point". hnn(La ,Lb) is defined in a similar
way. With these definitions, the excluded-convolution rules
lead to the left-dressing relation

h"Fcc#Fcm#MD*hn!#Fcm'*h !116"

as well as to the right-dressing relation

h"Fcc#Fmc#h!n*MD#h*'Fmc, !117"

where the definition of h!n(La ,Lb) is obtained from that of
hn!(La ,Lb) by exchanging the roles of La and Lb . These
relations are convolutions for the loop-position variable
while the internal degrees of freedom of the intermediate
loop are integrated over. In these short notations, we use the
convention that ' is the density of the intermediate point of
the convolution and that MD is the Debye polarization cloud
around the root point of the convolution !as detailed in Sec.
IV C of #5$". There are two extra integral relations,

h!n"Fcm#MD*hnn#Fcm'*h!n !118"

and

hn!"Fmc#hnn*MD#hn!*'Fmc. !119"

By using the above relations repeatedly, we decompose h
as a sum of five terms which are convenient to discuss the
leading and subleading tails of various correlations because
they exhibit dressings by MD and 'Fmc. The decomposition
is introduced in Sec. IVD of Ref. #1$. The first one, h (A) ,
decays faster than any inverse power law of the distance and
the other ones read

h !B "*MD*hnn*MD , !120a"

h !C "*MD*hn!*'Fmc, !120b"

h !D "*Fcm'*h!n*MD , !120c"

h !E "*Fcm'*h*'Fmc. !120d"
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The leading and subleading algebraic tails of the particle-
particle correlations at large distances are derived from the
detailed study of the asymptotic behaviors !101" and !106" of
diagrams D̃Wc

and convolutions C, respectively. We find that

'%&
!2 "T!B0 )

r→5

1

r5
,
1

r6
, . . . . !121"

Inspection of the more refined results !101"–!103", !106",
!109", and !112" shows the following important results which
are valid in the presence as well as in the absence of B0
!apart from the first one which is only relevant to the the case
B0(0).
!I" The 1/r5 tail comes from h (B)#h (C)#h (D)#h (E) .
!II" The 1/r6 tail originates only from h (B) .
!III" The 1/r8 tail arises from h (B)#h (C)#h (D) .
!IV" The 1/r10 tail comes from h (B)#h (C)#h (D)#h (E) .
The cascade of power laws may now be discussed thanks

to the above remark about the origin of the subleading tails
in terms of the contributions h (B) , h (C) , h (D) , and h (E) .
Indeed, according to Eq. !115", for B0"0 or B0(0, the
terms contributing to the 1/r6 tail of '%&

(2)T become
1/r8 (1/r10) tails in +&e&'%&

(2)T (+% ,&e%e&'%&
(2)T) or decay

faster; the terms contributing to the 1/r8 tail of '%&
(2)T become

at least 1/r10 tails when charges of both species are summed
over.
Consequently, the tails of the particle-charge and charge-

charge correlations in the presence of B0 are

+
&
e&'%&

!2 "T!B0 )
r→5

1

r5
,
1

r7
,
1

r8
, . . . , !122"

+
% ,&

e%e&'%&
!2 "T!B0 )

r→5

1

r5
,
1

r7
,
1

r9
,
1

r10
, . . . . !123"

When B0"0, the 1/r5 and 1/r7 tails, which arise from the
convolutions C, disappear in '%&

(2)T according to Eq. !107".
Moreover, inspection of Eqs. !101"–!103", !107", !110", and
!113" shows that the 1/r9 tail of '%&

(2)T comes only from h (B)
when B0"0 and, according to Eq. !115", it disappears as
soon as charges are summed over !because the order of the
possible singularity in Fourier space is increased by a term
proportional to !k!2). As a consequence,

'%&
!2 "T!B0"0 )

r→5

1

r6
,
1

r8
,
1

r9
, . . . , !124"

+
&
e&'%&

!2 "T!B0"0 )
r→5

1

r8
,
1

r10
,
1

r11
, . . . , !125"

+
% ,&

e%e&'%&
!2 "T!B0"0 )

r→5

1

r10
,
1

r11
, . . . . !126"

B. Diagrammatic structure of leading tails

In this section we only consider the leading tails of the
particle-particle, particle-charge, and charge-charge correla-

tions. We show that they can be expressed only in terms of
hnn with various dressings that involve MD or/and 'Fmc.

1. Basic properties

The derivation relies on two kinds of ingredients. First,
we use repeatedly dressing relations that are valid in the
presence as well as in the absence of B0 . Some have already
been given in Eqs. !116"–!119"; the other ones are

Fcc*'Fmc!k,I2 ,Ib""O! !k!2" !127"

and

Fmc*'Fmc!k,I2 ,Ib""O! !k!2". !128"

Second, the detailed survey of the decay of diagrams has
shown that, in the presence of B0 , any diagram decays at
least as 1/r5 after integration over the shapes X of the root
points,

" D!Xa"'!Ia"" D!Xb"'!Ib"DB0!r,Ia ,Ib" )
r→5

1
r5

!129"

whereas, in the absence of B0 , Eqs. !103" and !113" imply
that

F!1& " D!Xa"'!Ia"" D!Xb"'!Ib"

%#eik•Xa!B"!1$DB0"0!k,Ia ,Ib"' )
r→5

1
r8 !130"

and

F!1& " D!Xa"'!Ia"" D!Xb"'!Ib"#e!ik•Xa!B"!1$

%#eik•Xb!B!"!1$DB0"0!k,Ia ,Ib"' )
r→5

1

r10
. !131"

Third, the Debye screening described by Eq. !115" will play
a role when charges are summed over.

2. In the presence of B0
The analysis based on the previous properties shows that

the leading 1/r5 tail of the particle-particle correlation '%&
(2)T

comes only from

MD**hnn*MD* . !132"

In Eq. !132" we have set

MD*!r,I2 ;Ib"*MD!k,I2 ;Ib"#'!I2"Fmc!k,I2 ,Ib",
!133"

where the variable after ‘‘;’’ is a Coulomb-root point for MD
as well as for Fmc and the superscripts m and c are associated
with the internal point I2 and the root point Ib , respectively.
The 1/r5 asymptotic behavior of the particle-charge cor-

relation +&e&'%&
(2)T may originate only from the 1/r5 tail of

the particle-particle correlation. According to Eq. !115", if
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-D(Xa)'(Ia)-D(Xb)'(Ib)#D*MD$(r,Ia ,Ib) decreases as
1/rn, then, after summation over e& the 1/rn falloff turns into
a slower decay, at least 1/rn#2. Therefore, in MD**hnn*MD*
only the part

MD**hnn*'Fmc !134"

does contribute to the 1/r5 tail of the particle-charge corre-
lation. For the same reason, the 1/r5 asymptotic behavior of
the charge-charge correlation arises only from

Fcm'*hnn*'Fmc. !135"

We notice that, as charges are summed over, the 1/r5 tails,
all of which originate from the same diagrammatic structure
!132", involve in fact fewer and fewer contributions.

3. In the absence of B0
As already mentioned in Sec. VIII A, the leading 1/r6

decay of the particle-particle correlation '%&
(2)T is due only to

h (B) , namely, to

MD*hnn*MD . !136"

On the contrary, the 1/r8 subleading tail of '%&
(2)T comes

from h (B)#h (C)#h (D) . After summation over the charge
e& , the 1/r8 tail coming from h (D) turns into a 1/r10 decay.
By using the basic properties !127", !128", and !130" together
with the fact that any diagram decays at least as 1/r6 after
integration over the loop shapes, the 1/r8 tail in h (C) is
shown to originate only from the part MD*hnn*#'Fmc

#'Fcc*'Fmc$ . Eventually, the 1/r8 behavior of the particle-
charge correlation reduces to the asymptotic decay of

MD*hnn*MD** . !137"

In Eq. !137" MD**(k,I2 ;Ib) is defined as

MD***MD#'Fmc#'Fcc*'Fmc"MD*#,#'Fmc$ ,
!138"

where the variable after ‘‘;’’ in MD**(k,I2 ;Ib) is a
Coulomb-root point as in the definition of MD . The 1/r10
subleading tail of '%&

(2)T originates from h (B)#h (C)#h (D)
#h (E) . By using the same arguments as above, one shows
that the 1/r10 tail of h (C) comes in fact only from
MD*hnn*MD*'Fmc, that of h (D) from Fcm'*MD*hnn*MD ,
and that of h (E) from Fcm'*MD*hnn*MD*'Fmc. Eventually,
the 1/r10 tail of the charge-charge correlation originates only
from

MD***hnn*MD** . !139"

As a final remark, we compare the formulas in both cases,
B0"0 and B0(0. On one hand, in the presence of B0 , the
Debye screening relation !115" makes MD disappear in the
1/r5 tail as more charges are summed over. On the other
hand, in the absence of B0 , MD is responsible for the cas-
cade of power laws in the leading tails and it remains in the
diagrams that do contribute to the coefficients of the

asymptotic behaviors. As a consequence, the diagrammatic
structure of the latter ones is more and more complex as
charges are summed over.

C. Induced charge

1. Basic formulas

First, we exhibit the expression of the internal screening
rule !1" in terms of the loop Ursell function h and its ‘‘De-
bye’’ approximation Fcc. According to Eqs. !33", !34", !71",
and Eq. !4.9" of Ref. #1$, Eq. !1" reads

0"" dr+
&
e&S%&!r"" +

pa"1

5 " D!Xa"pa'!Ia"

%G 0h!Fcc1!k"0,Ia", !140"

where

Gf!k,I"*" dIb '!Ib"e%b"0
pb
dB e!ik•Xb!B" f !k,I;Ib".

!141"

The induced charge +&e&'&
ind(r;,q) in the presence of an

infinitesimal external point charge ,q located at r"0 can be
derived in two different ways. First, it may be obtained by
linearizing the result for the particle-charge correlation
+&e&'%&

(2)T(r) with respect to the charge e% . Indeed, a quite
general statement is that

+
&
e&'&

ind!r;e% ,'%"0 "" lim
'%→0

+
&
e&'%&

!2 "T!r "

'%
. !142"

This relation states that the charge density induced by one
charge e% different from those in the plasma can be retrieved
from the particle-charge correlation in the limit where one
species % becomes more and more dilute, so that it disap-
pears from the plasma. In order to obtain the response to an
infinitesimal charge, one must linearize the right-hand side of
Eq. !142" with respect to e% .
The induced charge may also be calculated directly from

the linear response theory, valid for any distribution ,q(r).
According to Sec. IV E of Ref. #5$, the structure of the latter
formula is different from the expression of the particle-
charge correlation. It reads

+
%
e%'%

ind!k;,q "

,q!k"

"!
F2!k"
F2#k2

!
462

k2
" dIapae%a'!Ia"G 0h!Fcc1!k,Ia",

!143"

where we have set

F2!k"*462" dIp2e%
2'!I""

0

pdB
p eik•X!B". !144"
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According to the definition !34" of F ,

F2!k""F2#1#Aanal
!2 " !k"$#O! !k!4", !145"

where Aanal
(2) (k) is a term of order !k!2 which is analytic in the

components of k. #The next term is of order !k!4 because
'(I) is invariant under inversion of X.] When B0
"0, Aanal

(2) (k) is exactly proportional to k2, whereas, when
B0(0, Aanal

(2) (k) may be written as the sum of a k2 term and
a #k$z

2 term. Moreover, Aanal
(2) (k) starts at order zero in loop

density.

2. Perfect external screening

First, we recall the mechanism in the classical case. The
classical Ursell function h%&

cl,reg(ra ,rb) can be decomposed as

h%&
cl,reg"FD ,%&

cc # +
%1 ,%2

MD
cl!%1 ;%"*h%1%2

nn cl,reg*MD
cl!%2 ;&",

!146"

where FD ,%&
cc *!2e%e&ED and ED is the Debye potential

ED"exp(!FDr)/r with FD*!462+%'%e%2 . MD
cl(ra!rb ,

&;%)*,% ,&,(ra!rb)#'&FD ,%&
cc and h%&

nn cl,reg is the sum of
the diagrams with non-Coulomb-root points that are built
with the bonds FD ,%&

cc and FR ,%&
cl,reg*exp#FD,%&

cc !2vSR$!1
!FD ,%&

cc , where vSR is a repulsive short-ranged potential that
prevents the collapse of opposite charges (vSR was omitted
in Sec. IVA of Ref. #5$". Thus hnn cl,reg decays faster than
any inverse power law and its Fourier transform is analytic.
As shown in Ref. #5$, since

+
&
e&MD

cl!k,&;%""
e%
FD
2 k

2#O! !k!4" !147"

and, according to Eq. !146", the internal screening rules !1"
and !2" are satisfied by +&e&S%&

cl,reg as well as by its Debye
approximation +&e&MD

cl . Moreover, the first term in the
small-k expansion of the classical charge-charge correlation
Ccl,reg(k)*+% ,&e%e&'%&

(2) Tcl,reg(k)#+%e%'%
2 is equal to its

value in the Debye approximation. Therefore both charge-
charge correlations !the exact and Debye expressions" satisfy
the Stillinger-Lovett sum rule

Ccl,reg!k" )
!k!→0

k2

462 . !148"

On the other hand, according to the linear response relation
in the classical regime,

+
%
e%'%

ind,cl!k;,q "

,q!k" "!2Ccl,reg!k"vC!k". !149"

Thus the rule !148" ensures that an infinitesimal external
charge distribution is completely screened by the medium:
+&e&'&

ind,cl(k"0)"!,q(k"0).
In the quantum case, according to Eqs. !140", !143", and

!144", when the Ursell function h is approximated by the sole
bond Fcc, it happens to satisfy both the internal and perfect

external screening conditions !1", !2", and !3". In other
words, Fcc saturates the basic screening sum rules, as FD

cc

does in the classical case. Thus, according to Eqs. !140" and
!143", the proof of the internal and perfect external screening
amounts to showing that h!Fcc gives a contribution of or-
der greater than !k! to +pa-D(Xa)pa'(Ia)G 0h!Fcc1(k,Ia)
and greater than !k!2 to -dIapae%a'(Ia)G 0h!Fcc1(k,Ia).
First, we notice that, though the small-k expansions of

GMD
and G'Fmc start at the order !k! separately, their sum

GMD* starts at the order !k!2,

GMD*!k,I2""'!I2"p2e%2&1!
F2!k"
F2#k2' "0p2dBp2 e!ik•X2!B"

"p2e%2& k2F2 !Aanal
!2 " !k"#O! !k!3"' . !150"

Therefore we use the dressing relations of Sec. VIII A re-
peatedly in order to make MD* appear on the right side of the
expression of h!Fcc. Then, as already done in the case
where B0"0 in Sec. IV E of Ref. #5$, h!Fcc is written as
the sum of three contributions: h (A*) which decays faster
than any inverse power law of the distance,

h !A*"*MD*Fmc#Fcm*MD**#0MD#Fcm'1*Fmc*'Fmc,
!151"

h !B*"*MD*0hnn*MD**#hn!*'Fmc*'Fmc1, !152"

and

h !C*"*F
cm'*0h!n*MD**#h*'Fmc*'Fmc1. !153"

In fact, there appears a right dressing not only by MD* but also
by 'Fcc*'Fmc, so that MD** shows up again together with
another right dressing by 'Fmc*'Fmc. Since

G 0'Fcc*'Fmc1!k,I2""'!I2"p2e%2
F2!k"#F2!k"!F2$

!F2#k2"2

"'!I2"p2e%2Aanal
!2 " !k"#O! !k!4"

!154"

the small-k expansion of GMD** starts by a k
2 term,

GMD**!k,I2""'!I2"p2e%2
k2

F2
#O! !k!3" !155"

while the small-k expansion of G'Fmc*'Fmc has a structure
analogous to that of G 0'Fcc*'Fmc1 given in Eq. !154",

G 0'Fmc*'Fmc1!k,I2""'!I2"p2e%2Aanal
!2 " !k"

%"
0

p2dB
p2
#eik•X2!B"!1$#O! !k!4".

!156"

As a consequence, the Fourier transforms of GD*MD** and
GD*'Fmc*'Fmc start at least at order !k!2 !in fact, at order
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!k!3 in the case of GD*'Fmc*'Fmc) while GMD*Fmc starts at
order !k!2. Therefore the first internal screening rule !1" re-
written in Eq. !140" is satisfied, while the second one !2" is
also obeyed since S%&(r) is invariant under rotations.
On the other hand, -dIapae%a'(Ia) f (k,I;Ia), with f

"MD or f"'Fcm*G , starts at least at order !k! #in fact at
order !k!2 when f"MD , according to Eq. !115"$. Eventually,
the above decomposition of h exhibits the fact that the small-
k expansion of -dIapae%aG 0h!Fcc1(k,Ia) starts at order !k!3

and according to Eq. !143" the external screening rule is
satisfied.

3. Large-distance decay

In this section we show that the induced charge density
decays with the same power law as the particle-charge cor-
relation. #After only a quick glance at the linear response
expression !143", one might have rather thought that the in-
duced charge density should decay as 1/rp!2 if the particle-
charge correlation falls off as 1/rp]. The property to be
proved means that if the first nonanalytic term in the
Fourier transform of the particle-charge correlation is of
order !k!p!3, then the first nonanalytic term in
-dIapae%a'(Ia)G 0h!Fcc1(k,Ia) is equal to a nonanalytic
term of greater order, namely, of order !k!p!1. The latter
property is nontrivial.
In fact, the dressing devised to prove the external screen-

ing sum rule is to be pushed further in order to get the an-
nounced result. At the same time we get the diagrammatic
structures of the leading tails of the induced charge density.
These structures turn out to involve only hnn—with a proper
dressing—as the leading tails of the internal correlations.
In the presence of B0 , according to the screening proper-

ties !115", !155", and !156", and again since any diagram
decays at least as 1/r5 after integration over the shapes X’s
of the root points #see Eq. !129"$, h (B*) proves to be respon-
sible for an algebraic decay in the induced charge density
that falls off at least as 1/r7 at large distances. By using the
same properties #except for Eq. !115"$ together with Eqs.
!127" and !128" and the right- !left-" dressing relation for
h (h!n), we obtain that h (C*) gives a 1/r

5 tail to the in-
duced charge density. The latter tail comes in fact only from

Fcm'*hnn*#MD**#'Fmc*'Fmc$ . !157"

In the absence of B0 , in Sec. IV E of Ref. #5$, the right-
dressing relations together with the ‘‘screening’’ properties
!115", !155", and the behaviors !130" and !131" of the
decays of diagrams are unchanged when a factor
-0
pdBexp#ik•Xb(B)$ is introduced. By using them repeatedly,
we get that the induced charge density decays as 1/r8. More-
over, the latter tail arises only from

MD**hnn*MD** !158"

as already implicitly shown in Sec. IV E of Ref. #5$.
As a conclusion, in the presence of the magnetic field,

there is no cascade of power laws for the leading behaviors
of the correlations when charges are summed over. In the
absence of magnetic field, this cascade is generated by the
combination of the remarkable screening property of the De-

bye polarization cloud and the invariance under rotations.
Indeed, the latter allows the harmonicity of the Coulomb
potential to play a role: it changes leading tails that would a
priori decay algebraically as 1/r5, 1/r7, and 1/r9 into short-
ranged fall off’s, and it induces the special structure of the
leading and subleading algebraic tails !130" and !131".
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APPENDIX A

In this appendix we study the first values taken by
P(q ,q!) for any elementary algebraic tail S (&)[q ,q!] which
are used in Sec. VII B. The discussion is analogous to that of
Appendix B in Ref. #5$. The differences will be pointed out
as comments. The discussion is carried out in two steps. In
the first step, we consider the case where S (&)[q ,q!] comes
from a single algebraic bond which is possibly convoluted
with fast decaying functions. Then the property !B" defined
in Eqs. !88" and !89" is obviously satisfied. In the second
step, convolutions involving more than one algebraic bond
are considered. We also present results when S (&)[q ,q!] con-
tains no W bond, because this case corresponds to the alge-
braic tails of a D̃Wc

diagram with L"1, which is considered
in Sec. VII B. The details are the following.
If S (&)[q ,q!] comes from a single bond W then &"1#q

#q!, i.e., P(q ,q!)"1. If S (&)[q ,q!] comes from a single
bond FR6 , then, S (&)[q ,q!]"8 p"1

Pw w [mp ,np], with mpK1 and
npK1 and PwK2. So &"P#q#q!, with P"Pw , q
"+p"1

P mp , and q!"+p"1
P np and all P(q ,q!)’s such that

2=P!q ,q!"=inf!q ,q!" !A1"

are realized.
Now, we consider the case in which S (&)[q ,q!] comes from

a single algebraic bond in convolution with two fast-
decaying functions F [q ,Q1] and F [Q1! ,q!] where the various
superscripts #Q ,Q!$ have the same meaning as in the defi-
nition of property (B). In the following, internal degrees of
freedom that are different from the shapes X are omitted.
The expression of S (&)[q ,q!] in Fourier space reads

S !1 "
!&!3 "[q ,q!]!k,Z,Z!"

"" D!X1"" D!X1!"F1
!n "[q ,Q1]!k,Z,X1"

%S !&1!3 "[q1 ,q1!]!k,X1 ,X1!"F2
!n!"[Q1! ,q!]!k,X1! ,Z!".

!A2"

F [q ,Q1] and F [Q1! ,q!] are analytic terms in Fourier space, and
in Eq. !A2" n (n!) denotes the order of the first term in the
small-k expansion of F [q ,Q1] (F [Q1! ,q!]) that gives a nonva-
nishing contribution after integration over the shapes
X1 (X1!) of the intermediate loop. When n
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"0, F (0)[q ,Q1](k,Z,X1)"F [q ,Q1](k"0,Z,X1) and when n
"1, F (1)[q ,Q1](k,Z,X1)"-dx i(k•x)F [q ,Q1](x,Z,X1). Thus
the order in !k! of the nonanalytic term !A2" is &!3 with

&"&1#n#n!, !A3"

where n and n! take the value 0 or 1 that is determined by
invariance under inversion as follows. We use the invariance
of D(X1) under X1→!X1 and the invariance of
F [q ,Q1](k,Z,X1) under global inversion of its arguments, as
well as the definitions of the superscripts q1 and Q1 . If n
"0, S (&!3)[q ,q!](k,!Z,Z!)" (!1)q1S (&!3)[q ,q!](k,Z,Z!) ,
while, if n"1,

S !&!3 "[q ,q!]!k,!Z,Z!""!!1 "q1#1S !&!3 "[q ,q!]!k,Z,Z!".

On the other hand, the definition of the superscript
q is S (&!3)[q ,q!](k,!Z,Z!)"(!1)qS (&!3)[q ,q!](k,Z,Z!).
Hence, q and q1#n have the same parity. Since &1
"P1(q1 ,q1!)#q1#q1! with inf(q1 ,q1!)KP1 , we can write
&"P#q#q! with P"P1(q1 ,q1!) and q"q1#nKP and
q!"q1!#n!KP , so that properties !A" and !B" are both sat-
isfied. We notice that if q"1, then (n"0, q1"1) so that
P"1. This property will be preserved in the second step of
the discussion.
In a second step, we consider the case where JK2 alge-

braic bonds are involved in the convolution. After integration
over the intermediate points of every product made of a
nonanalytic term times an analytic one, such a convolution
reads in Fourier space, as in Eq. !B6" of Ref. #5$,

S !J "
!&"[q ,q!]!k,Z,Z!"

"" &8
j"1

J!1

dI j'!I j"'S !1 "!&1!3 "[q ,q1!]!k,L ,I1"

%S
!1 "
!&2!3 "[q2 ,q2!]!k,I1 ,I2"•••

%S !1 "
!&J!3 "[qJ ,q!]!k,IJ!1 ,L!". !A4"

After integration over the shapes of the internal points I j ,
inversion invariance implies that only even values of q j!
#q j#1 do contribute. Henceforth &"P(q ,q!)#q#q! with

P!q ,q!""3!3J#+
j"1

J

P j#+
j"1

J!1

#P j#P j#1#H!P j#P j#1"$

#2N . !A5"

One must consider two cases, because the results are not the
same in the presence or in the absence of magnetic field.
Case !1". If P j"1 for all j"1, . . . ,J !namely, all nonana-

lytic terms arise from W bonds", the corresponding
S (&)[q ,q!](k,Z,Z!) comes from a convolution
F1*w [q1 ,q1!]*F2*w [q2 ,q2!]*F3*•••*FJ*w [qJ ,qJ!]*FJ#1 , and
the corresponding nonanalytic term reads

S !J "
!&"[q ,q!]!k,Z,Z!"

J" 8
j"1

J

D!Xj"" 8
j"1

J

D!Xj!"F1!k,Z,X1"

%
!k•X1"q1!k•X1!"q1!

k2
F2!k,X1! ,X2"

%
!k•X2"q2!k•X2!"q2!

k2
•••FJ!k,XJ!1! ,XJ"

%
!k•XJ"qJ!k•XJ!"qJ!

k2
FJ#1!k,XJ! ,Z!". !A6"

In the absence of magnetic field, the rotational invariance
ensures that, since F j is an analytic function of k, for j
"1, . . . ,J!1,

" D!Xj!"" D!Xj#1"!k•Xj!"
q j!F j#1!k,Xj! ,Xj#1"

%!k•Xj#1"
q j#1

"!k!q j!#q j#1#H!q j!#q j#1"&A j#1
!0 " #+

n"1

5

A j#1
!2n "!k!2n' . !A7"

Thus Eq. !A6" may still contain a nonanalytic term, namely,
a 1/!k!2 term, after integration over the loop shapes but only
in the case q j!"q j#1"1 for j"1, . . . ,J!1. In this case P j
"1 for all j’s and in formula !A5" only the term with N
"0, i.e., P(q ,q!)"1, corresponds to an algebraic tail while
the other values of N correspond to short-ranged decays. Fi-
nally, only the value P(q ,q!)"1 is realized when B0"0.
In the presence of the magnetic field, the invariance under

rotations is broken in one space direction, and in Eq. !A7", in
place of !k!q j!#q j#1#H(q j!#q j#1), there appears a sum of terms
!k!2(Nj!n j)#k$z

2n j with Nj"q j!#q j#1#H(q j!#q j#1) and n j
"0, . . . ,Nj . Thus nonanalytic terms of type !85" remain
after integration over the loop shapes and in Eq. !A5" all
values of N do correspond to some algebraic tails, namely,
all values P(q ,q!)"1#2N with NK0 are indeed realized.
Case !2". There exists at least one P j0(1. Then, the

nonanalyticity is never canceled by the integration over loop
shapes, because S (& j0!3)[q j0,q j0! ](k,Xj0,Xj0

! ) arises from an
FR6 bond. The values taken by P(q ,q!) are determined by
inspection, according to the discussion of Appendix B of
Ref. #5$ just after Eq. !B9". If q"q!"1, then P1"PJ"1
and the values given by Eq. !A5" are P(q ,q!)
"6,7, . . . . „P(q ,q!)"6 #P(q ,q!)"7$ is realized when
P j"1 for all j’s except one j0 that is different from 1 and J
and P j0"2 #P j0"3$ .… Contrarily, if q$1 !or q!$1) then
P1 !or PJ) may take the value 2 and the values given by Eq.
!A5" are P(q ,q!)"4#2N , so that P(q ,q!)"4 is also real-
ized. #P(q ,q!)"4 is realized when P j"1 for all j’s except
j"1 if either q$1 or j"J if q!$1.]
As a conclusion, when B0"0
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P!q ,q!""*
1,6,7, . . . if q"q!"1

1,4,6,7, . . . if !q"1, q!K2 " or !qK2, q!"1 "

1,2,4,5, . . . if inf!q ,q!""2

1,2, . . . if inf!q ,q!"K3.

!A8"

When B0(0, Eq. !B10" of Ref. #5$ is still valid !up to a misprint" and reads

P!q ,q!""( 1,3,5,6, . . . if q"q!"1

1,3,4, . . . if !q"1, q!K2 " or !qK2, q!"1 "

1,2, . . . if inf!q ,q!"K2.

!A9"

Finally, in view of the discussion in Sec. VII B, we consider a S (&)[q ,q!] without any W bond. This is the case of a tail T with
L"1 arising from a D̃Wc

diagram. When only one algebraic bond is involved then it is an FR6 , and 2=P(q ,q!)
=inf(q ,q!). In the case of a convolution of JK2 algebraic bonds without any W bond in the convolution, P jK2 for all j
"1, . . . ,J and inf(q ,q!)K2. If P j"2 for all j’s, then, according to Eq. !A5", P(q ,q!)"3J!1#2N takes the values
P(q ,q!)"5#2N for J"2, P(q ,q!)"8#2N for J"3, . . . . If P j"2 for all j’s except P1"3, then P(q ,q!)"3J#2#2N
takes the values 5#2N for J"2, . . . . Finally, when J varies, P(q ,q!)"5,7,8, . . . . Moreover, the convolutions of case !1"
do not exist and the results are the same in the presence or in the absence of magnetic field. As a conclusion,

P!q ,q!;D̃Wc
,L"1 ""*

2,5,7,8, . . . if inf!q ,q!""2

2,3,5,7,8, . . . if inf!q ,q!""3

2,3,4,5,7,8, . . . if inf!q ,q!""4,5

2,3, . . . if inf!q ,q!"K6.

!A10"

In fact, the important results for the discussion of the dia-
grams !91" are the minimal odd and even values given in
Eqs. !94" and !96".

APPENDIX B

In this appendix we give the errata for Appendix B of Ref.
#5$ which deals with the structure of elementary algebraic
tails defined in Sec. III D of the latter reference before inte-
gration over the loop shapes of their end points. We recall
that the definition of these tails is not the same as that given
in Sec. VII A of the present paper. The results apply only to
the case B0"0.
!1" The expression A/1 , . . . ,/q

[q] (Z)"#Z$/1•••#Z$/q f (!Z!)
which was written just after Eq. !3.26" and in the second line
of Eq. !B2" is not general enough, because the tensor

A
0 1

[q1!#n](Z!) may contain both components of #Z$? and ten-
sors ,? i ,? i#1.

!2" After Eq. !B2", the sentence ‘‘The tensor A
0 1

[q1!#n](Z!)
of rank q1#n! is nonzero only if q1#n! is even’’ must be re-

placed by ‘‘The tensor A
0 1

[q1!#n](Z!) of rank q1!#n is of par-

ity (!1)q1!#n . As a consequence, -D(Z!)A 0 1
[q1!#n](Z!), is

nonzero only if q1!#n is even.’’
!3" If B0"0, the following modification has to be made.

After Eq. !B9", when the P j’s vary the first even value for
P(1,1) is 6, and P(1,1) does not take the values with P

"3 or P"5, because the corresponding terms are in fact
analytic when B0"0; indeed, the 1/k2 singularity is canceled
by the property -dI j'(I j)A/

[1](Xj)A?
[1](Xj)J,/ ,? . !On the

contrary, if B0(0, then P"3,5 are realized." Subsequently,
in the same paragraph, P(q ,q!) may take the values
P(q ,q!)"1,4,6,7, as soon q!K2 or qK2, and not the values
3 and 5. Eventually, Eq. !B10" must be replaced by Eq. !A8".
However, the important result remains the same: the first
even values taken by P(q ,q!) are those given in Eq. !96". If
there is no W bond in the convolution, then qK2 and q!
K2 and the first allowed value for P(q ,q!) is 2, and Eq.
!B11" is to be replaced by Eq. !A10". However, the impor-
tant result is about the first odd value taken by P(q ,q!)
which is given in Eq. !94". PWc

(q ,q!)"2,3, . . . ,inf(q ,q!)
comes from an FR6 . The values 5,7,8, . . . are realized by a
convolution.
!4" In the case of D̃Wc

diagrams, the value P(q ,q!)"3
was omitted in Eq. !B11" of Ref. #5$, though it appears as
soon as inf(q ,q!)K3, whether B0"0 or B0(0.

APPENDIX C

In the present appendix we give errata for Appendix C of
Ref. #5$ which deals with the structure of algebraic tails for
various functions involving diagrams D̃Wc

. Appendix C of
Ref. #5$ proves to be valid when B0(0.
If B0"0, then the correct version of Eq. !B10" of Ref. #5$

that is given in Eq. !A8" of the present paper causes a modi-
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fication of Eqs. !C1", !C3", and !C4", which become, respec-
tively,

,T!I""0,5, . . . , !C1"

,T!II""0,3,5,6, . . . , !C2"

and

,T!III""0,1,3,4, . . . . !C3"

According to the modified version of Eq. !B11" of Ref. #5$,

namely, Eq. !A10" of the present paper, the correct version
of Eq. !C5" is

,T!IV""( 0,3,5,6, . . . if inf!q ,q!""2

0,1,3,5,6, . . . if inf!q ,q!"K3.
!C4"

However, the important result for the discussion of
Eq.!92" is that given in Eq. !99". Then, the discussion of
Appendix C is unchanged, apart from the following misprint:
Eq. !C37" must be replaced by Eq. !C40" of Ref. #5$, namely,
by Eq. !98" of the present paper.
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