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The exact analytical expression of the free energy f of a quantum Coulomb plasma in the presence of a
uniform magnetic field B0 is produced at low density # . This regime corresponds to low degeneracy, weak
Coulomb coupling but any strength of the magnetic field and fully quantum dynamics. Thus f is expanded
around its value for an ideal gas in the Maxwell-Boltzmann !MB" approximation which provides a description
of orbital diamagnetism and Pauli paramagnetism. The # expansion for f is derived from an adequate Mayer
diagrammatic representation of the ratio between the plasma density and the density of the ideal gas with the
same chemical potentials and MB statistics. A systematic scaling analysis of the dependence of Mayer bonds
upon density is devised. This provides a natural truncation of the trace of the two-body Gibbs factor as well as
diffraction contributions specific to the long range of the Coulomb potential. The #3/2 term in f is the purely
classical Debye contribution. From order #2 on, B0 is involved through quantum dynamical and statistical
effects which are the root of ferromagnetism. !Moreover, we retrieve the purely classical contributions at order
#5/2 in a very compact form." Our results are compared with semiclassical expressions in the case of the
one-component plasma. $S1063-651X!98"02710-X%

PACS number!s": 05.30.!d, 05.70.Ce, 71.45.Gm

I. INTRODUCTION

The present paper is devoted to the principles of the deri-
vation of exact analytical low-density expansions in the
framework of the loop formalism of paper I, which takes
exchange effects systematically into account. The method is
applied to the calculation of the free energy of multi- or
one-component plasmas in the presence—as well as in the
absence—of a uniform magnetic field B0 . $A one-
component plasma !OCP" is a system where only one species
of charges is moving in a rigid neutralizing background.%
The Hamiltonian of a multicomponent plasma reads

H &N'(!B0"")i
1

2m' i

! pi! e' i
2c B0"ri# 2!)i g' i*B' iSi•B0

#
1
2)i"” j e' ie' jvC!ri!rj", !1"

with the same notations as in Paper I. The low-density limit
corresponds to a regime of low degeneracy and weak Cou-
lomb coupling for any strength of the uniform magnetic
field. Thus the volume density of free energy f is expanded
around its value f id

MB for a quantum ideal gas in the Maxwell-
Boltzmann !MB" approximation and with the same densities
in the presence of B0 . We stress that the results contain all
quantum effects at any order in + . We get the analytical
expression of f up to order #5/2, where # is a generic notation
for the particle densities. We use the convention that a term
of order #n may include powers of ln#. !In other words, the
possible logarithmic terms are considered to be of order #0
,1.) These ln# terms as well as half-integer powers of the
density appear because of collective screening effects due to
the long range of the Coulomb potential. We retrieve the
results up to order #5/2 for the case B0"0 produced in Refs.

$1% and derived in Refs. $2–4%, though our method starts
from a different thermodynamic expression for the free en-
ergy and treats exchange effects systematically from the be-
ginning instead of perturbatively. !When B0"0 the low-
density equation of state properly describes the core of the
Sun, where dynamics proves to be controlled by Debye and
exchange effects $5%." In the path integral formalism, the
magnetic field shows up only in phase factors and the struc-
tures of both the derivation and results are similar whether
B0 is switched on or not. A brief discussion of the effects
arising from the presence of the magnetic field has already
been given in Ref. $6%.
We point out that this exact calculation starts from the

first principles of quantum mechanics. All contributions that
can be interpreted as being purely classical do not involve
the magnetic field, in agreement with the Bohr–van Leeuwen
theorem: magnetism is intrinsically quantum in its statistical
origin. The MB free energy f id

MB for the ideal gas already
incorporates the orbital diamagnetism arising from quantum
dynamics as well as the Pauli paramagnetism due to the cou-
pling between B0 and the spin quantum degree of freedom.
These one-body phenomena appear at the first order in den-
sity, namely at order # . A correction of order #3/2 comes
from the exponential screening of the monopole potential
created by a charge and its polarization cloud at large dis-
tances. The latter screening is valid at both classical and
quantum levels and this first correction to f id

MB is independent
from B0 . The combined effect of the one-body spinorial cou-
pling with the external magnetic field, Coulomb interactions,
and quantum statistics emerges only from order #2 on. It
both renormalizes and mixes diamagnetism and paramagnet-
ism. As a consequence, an effective coupling between spins
shows up, though there is no fundamental magnetic dipolar
interaction between spins in the Hamiltonian. In the sense
that the #2 term in the free energy can be related to an ef-
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fective two-body potential, the root of ferromagnetism is al-
ready present at the scale of the two-body exchange effect in
the presence of Coulomb interaction.
The rest of the paper is organized as follows. In Sec. II we

present the main results. The dimensionless coupling param-
eters of the problem at finite temperature 1/- are discussed
in Sec. II A. The reference free energy is recalled in Sec. II B
and our results for the free energy are given in Sec. II C. The
limiting case of the OCP free energy and its semiclassical
value are discussed in Sec. II D. The main features of the
method are discussed in Sec. II E and comparison is made
with another formalism that allows one to derive the exact
low-density free energy in the absence of B0 .
In Sec. III the scheme for low-density expansions is dis-

played. In Sec. III A we give the thermodynamic formula
that relates f to f id

MB through the primitive of ln(#' /#'
id! ,MB)

where #' is the density in the plasma and #'
id! ,MB is the

density in an ideal gas S id! in the MB approximation and
with the same chemical potentials. We select the relations
between the particle and loop densities together with a useful
diagrammatic representation of the latter one !Sec. III B".
The first terms in the #-expansion of various intermediate
objects are obtained readily in Sec. III C. The explicit expres-
sions for the ideal gas which plays the role of the reference
system are given; in particular, the covariance of paths asso-
ciated with a particle only submitted to a uniform magnetic
field is derived in Appendix A by using three different meth-
ods. In Sec. III D we investigate the strategy of calculations
more precisely. First, the expansion of the loop density
around its noninteracting value for the same chemical poten-
tial is performed in powers of . and of the loop densities. At
the same time, the inverse screening length . of the re-
summed interaction between total loop charges is expanded
around its Debye value at the first order in density. Then, by
a recurrence scheme, we expand the ratio #' /#'

id! ,MB , . ,
and the loop density in powers of the particle densities. The
general recurrence scheme is exemplified by the performance
of its first step. In Sec. III E, by anticipation of the result of
the diagrammatic survey, we give the formal structure of the
low-density expansions for the free energy and for the den-
sity in terms of the first terms in the # expansion of the loop
densities with degeneracy indices p"1 and p"2.
In Sec. IV we discuss the first part of the procedure,

namely, the scaling analysis in loop density of Mayer dia-
grams. For that purpose we introduce a formal decomposi-
tion of the bonds in powers of . !Sec. IVA". For bonds
entirely scaled by . , and which are integrable at finite den-
sity, a mere Taylor expansion at large distances is used. The
dressed bond, which involves not only . but also lengths that
do not depend on the density, is not absolutely integrable at
large distances, and a more delicate and systematic expan-
sion in Fourier space is devised. The useful explicit values
used in the following are derived in Sec. IV B and a proce-
dure to determine the minimal order of any diagram in loop
density is developed in Sec. IV C.
In Sec. V explicit contributions from diagrams involved

in the loop density #' ,p(X) for p"1 are calculated and col-
lected in order to exhibit partial derivatives with respect to
some density #' . The purely classical terms are derived in
Appendix B. Thus we get the final formula exhibited in Sec.
II C.

In Sec. VI we turn to the case of the one-component
plasma. In Sec. VI A the free energy of the OCP is derived
from the formula valid for a two-component plasma by send-
ing the mass of one species to infinity and its charge to zero
while keeping charge neutrality. An ingredient of the limit-
ing process is the derivation of the small-x behavior of the
generalized direct function Q(x ,uC) introduced in Ref. $7%
for uC"0. The OCP has a well-behaved classical limit in the
MB approximation, because all moving charges are of the
same sign and quantum statistics is not needed to avoid any
macroscopic collapse. In Sec. VI B we analyze the regimes
of parameters in which the system goes to a semiclassical
limit for any strength of Coulomb or orbital magnetic cou-
plings. In Sec. VI C, we check that the low-density expan-
sions are coherent with the semiclassical ones given in Ref.
$8% for any value of uC,-*BB0 . !A semiclassical investi-
gation in the limiting case uC$1 was made in Ref. $9%."

II. MAIN RESULTS

A. Dimensionless coupling parameters

As announced above, from now on, we only consider sys-
tems for which statistics is weakly quantum. Let a be the
mean interparticle distance. As long as all particle densities
are of the same order, we do not distinguish the average
distance between any kind of particles and the distance a'
between two particles of the same species ' . The de Broglie
thermal wavelength /',!-+2/m' is the amplitude of the
quantum position fluctuations of a free particle with energy
of order 1/- and so /' /a measures the average overlap of
wave functions at temperature T . A weak degeneracy of
quantum statistics is characterized by

/'$a . !2"

Then the average thermal energy per particle at equilibrium
is given by Maxwell-Boltzmann statistics and is of order
1/- .
Therefore dimensionless coupling parameters are defined

as the ratios of average interaction energies and the order of
magnitude 1/- . Inspection of the Hamiltonian shows that
there are three dynamical parameters. For the Coulomb in-
teraction the coupling parameter is

0'1,
-$e'e1$

a "
b'1
a , !3"

where b'1,-$e'e1$ is the two-body average classical dis-
tance of closest approach for species ' and 1 !also called
Landau length" for a relative trajectory governed by the Cou-
lomb interaction and with energy of order 1/- . In the fol-
lowing, we will use the notation 0 instead of 0'1 when all
charges e' are of the same order of magnitude as well as all
densities #' . !Such a situation is compatible with the local
neutrality equation." The dimensionless coupling parameters
uC' and uS' for the magnetic interactions are equal to -
times the quantum energies associated with the orbital mo-
tion and the spinorial precession in the quantum level with
lowest energy, respectively:
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uC'"-*B'B0"-
1
2 +2C' , !4"

where 2C'"e'B0 /m'c is the cyclotronic frequency (B0
,$B0$), while

uS'"
g'
2 uC' , !5"

because the spinorial frequency is half of the cyclotronic one
times the Landé factor g' .
The coupling parameters depend on the fundamental con-

stants and on the thermodynamic parameters T and # for the
Coulomb interaction, T and B0 for the magnetic case. When
the density is varied, the length scale that measures the col-
lective Coulomb effects, namely, the Debye length 3D
,$44-)'#'e'

2 %!1/2, must be introduced. Up to a numerical
factor,

0'15! a3D# 2. !6"

Thus, according to Eq. !3",

0$1⇔b'1$a$3D . !7"

On the other hand, uC' is linked to a length lC' that depends
only on B0 !and not on the density",

uC'"
1
2! /'lC'#

2

"
1
2
/'
RC'

. !8"

In Eq. !8" lC'"!+c/e'B0 is the characteristic quantum
length !radius of ‘‘orbits’’" associated with the first quantum
Landau level and RC',!mc2/-e2B02 is the radius of the
classical cyclotronic orbit of a particle with energy 1/- . As a
consequence

uC'$1⇔/'$lC'$RC' . !9"

B. Low-density regime

In the present and following papers, we are interested in
the low-density limit that corresponds to a regime of low
degeneracy /'$a and weak Coulomb coupling,

0$1, !10"

whereas the interaction with the magnetic field is of any
intensity.
In the absence of interactions, the Maxwell-Boltzmann

approximation is well defined. The Hamiltonian is reduced to
that of Pauli’s theory. The volume free energy for an ideal
gas with MB statistics reads

- f id
MB!- ,&#'(,B0"

")
'
#'&ln$!24/'

2 "3/2#'%!1(#- f para
MB !&#' ,uS'("

#- f dia
MB!&#' ,uC'(". !11"

The first term is the free-energy density of an ideal gas in the
absence of magnetic field and the second and third terms are
the paramagnetic and diamagnetic ideal-gas contributions in
the MB approximation, respectively.

- f para
MB !&#' ,uS'("")

'
#'ln! sinhuS'

sinh$!2S'#1 "uS'%
#
!12"

and

- f dia
MB!&#' ,uC'("")

'
#'ln! sinhuC'uC'

# . !13"

The volume magnetization is derived from the density of
free energy by the formula M"!6 f /6B0 at fixed densities
and fixed - . For the ideal gas in MB approximation

Mid
MB"!)

'
#'*B'$g'S'BS'!2S'uS'"#L!uC'"% ,

!14"

where BS' is the Brillouin function of order S' ,

BS'!x ",
1
2S'

% !2S'#1 "coth! !2S'#1 "
x
2S'

#!coth! x
2S'

# &
!15"

and L is the Langevin function L(x),cothx!(1/x).

C. Free energy of a multicomponent plasma

For sets of densities that satisfy the local neutrality rela-
tion )'e'#'"0, we get

- f !- ,&#'(,B0""- f id
MB#- f &3/2(#- f &2,5/2(#o!#5/2",

!16"

where o(#n) denotes a term of order greater than #n. In Eq.
!16", as in the following, the orders in density will be de-
noted by braces, whereas the orders in $k$ will be referred to
in parentheses. At order # !and #ln#), all effects are con-
tained in the contribution - f id

MB $see Eq. !11"% from the gas
of independent particles in the MB approximation. In the
weak-coupling and low-degeneracy regime, the next contri-
bution is of order #3/2 and it coincides with the classical
excess free energy in the linearized Debye-Hückel approxi-
mation,

- f &3/2("- f D"!
.D
3

124 . !17"

Indeed, according to Paper I, the bare two-body Coulomb
potential is partially screened by collective effects over a
length scale .!1. . depends on the density and tends to the
Debye value .D when exchange effects are negligible. We
stress again that the purely classical Debye free energy f D
does not involve B0 , in agreement with the Bohr–van Leeu-
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wen theorem. Effects from many-body interactions beyond
the linearized mean-field classical Debye approximation to-
gether with short-ranged exchange mechanisms appear only

from order #2 on. At orders #2 and #5/2, the exact contribu-
tions arising from quantum dynamics and quantum statistics
with interactions are

- f &2,5/2("!
1
2)' !!1 "2S'$1#-.De'

2 %
tanhuS'

tanh$!2S'#1 "uS'%
#'
2 sinhuC'

uC'
!44/'

2 "3/2' dr7!r$e!-hrel, '$r8 !18a"

!
1
2)' ,1 $1#-.De'e1%#'#1 lim

R→9
( '

r%R
dr% sinhuC'uC'

sinhuC1
uC1

!24/'/1"370,r$e!-H'1$0,r8

!1#
-e'e1
r !

!-e'e1"2

2r2 &#
24
3 !-e'e1"3ln!.DR ") !

4

3 $C#ln3%-3!)
'
#'e'

3 # 2
!
4

3 $!1#C#2ln2%-4.D!)
'
#'e'

4 # 2 !18b"

#
2
3 C1-

5 1
.D

!)
'
#'e'

3 # 2!)
1
#1e1

4 # #
2
3 C2-

6 1

.D
3 !)' #'e'

3 # 4 !18c"

#
1
24+

2-2.D
3)

'
#'

e'
2

m'
#
1
6
-+c
B0

.D
3)

'
#'e'L [3]!uC'", !18d"

where C"0.577 215 . . . is the Euler-Mascheroni constant.
In the contributions from order #2 on, the magnetic field
appears through normalization factors involving uC' and
uS' , through Hamiltonian operators, and through ‘‘diffrac-
tion’’ contributions which are functions of the uC'’s . H'1 is
the two-body Hamiltonian without the spin contribution,

H'1!1,2",
1
2m1

%p1! e'
2c B0"r1&2# 1

2m2
%p2! e1

2c B0"r2&2
#

e'e1
$r1!r2$

. !19"

For two particles of the same species, the position of the
center of mass, with mass 2m' and charge 2e' , and that of
the relative particle, with mass m'/2 and charge e'/2, are
separable variables even when B0"” 0. The Hamiltonian cor-
responding to the latter fictitious particle in the Coulomb
potential created by a charge 2e' is h rel,' ,

h rel,'!B0",
1
m'

! p!
e'
4c B0"r# 2#e'

2

r . !20"

For the center of mass the de Broglie wavelength is equal to
!2/' and uC' has the same value as for each particle of
species ' . Thus !see Sec. III C 2"

' dr!24/'
2 "3! sinhuC'uC'

# 27r,0$e!-H''$0,r8

"' dr!44/'
2 "3/2

sinhuC'
uC'

7!r$e!-hrel,'$r8. !21"

The bound and diffusion states are contained in the quantum
density-matrix elements.
The exchange effects, which are short ranged whether

there are interactions or not, are not perturbed by any collec-
tive effect at order #2, while, at order #5/2, the bare contri-
bution is only renormalized by a multiplicative factor arising
from classical Debye screening. On the contrary, the direct
term involves screening in an essential way from order #2.
Indeed, the truncation of the matrix element in the direct
term !18b" ensures that the integral only diverges as a lnR
term which is exactly compensated by the ln(.DR) inside the
braces; this truncation arises from the low-density limit of
the screened bonds in a natural way.
The constants in Eq. !18c" read

C1"64'
0

9

du
$arctan!u/2"%2

1#u2 !22"

and

C2"!1242'
0

9

du
$arctan!u/2"%2

!1#u2"2 !
1
16Ĩ bridge 6 , !23"

where Ĩ bridge 6 is an integral corresponding to a so-called
‘‘bridge’’ diagram with six Debye bonds, as defined in Sec.
VD. The expressions for C1 and C2 are more compact than
those given in Ref. $3%. We notice that the analytical expres-
sion for Ĩ bridge 6 may also be written as the sum of formulas
!4.2" and !4.3" in Ref. $3% with a global multiplicative factor
1/2 which was omitted in these equations. Moreover, the
most recent numerical values for these constants can be
found in Ref. $10%, 2C1/3,a1"10.134 779 10 . . . , and
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2C2/3"!a2'!a2,2 with a2,2 corresponding to the term
proportional to Ĩ bridge 6 and a2' to the other term in
C2 ; a2'"8.052 814&0.000 001 and a22"1.7699&0.0001.
If powers of .D could be forgotten, the terms in Eq. !18c"
might be interpreted in terms of effective interactions be-
tween three or four bodies according to their powers in # , as
in the case of short-ranged forces. However, the powers of
.D come from !linear or nonlinear" collective effects, and the
interpretation is not so simple. !In particular, there is a dress-
ing of nonlinear effective interactions by linear Debye
bonds."
The term !18d", also called the diffraction term in the

absence of B0 , is a quantum dynamical effect due to the fact
that the long-ranged Coulomb potential is only algebraically
screened. This term vanishes at order #2 because of the local
neutrality relation. It can be decomposed into a part indepen-
dent from B0 plus a correction which involves a generaliza-
tion L [3](x) of the Langevin function that appears in the
orbital magnetization !14" of a gas of independent charges.
L [3](x),L(x)!x/3 behaves as !x3/45 when x goes to zero.
Thus the correction to the diffraction term that is due to the
magnetic field is proportional to B0

2 when B0 goes to zero,
whereas it goes to a constant in the limit of strong fields. The
diffraction term may be expressed in terms of the plasma
frequencies 2p'"$44e'

2#' /m'%
1/2, which are related to the

dynamics of the center of mass.
All thermodynamic quantities can be obtained from the

free-energy density. For instance, the pressure P"! f
#)'#'6 f /6#' has an expression similar to that of f up to
order #5/2. On the contrary, the expression of the volume
magnetization M"!6 f /6B0 requires a detailed spectral
analysis, which is far beyond the scope of the present paper.
The diamagnetic and paramagnetic magnetizations of the
MB quantum ideal gas are renormalized and coupled by in-
teractions and quantum statistics. In Eq. !158" the term
#'
2 tanhuS' /tanh$(2S'#1)uS'% is the sum of the squared den-
sities of particles ' in the 2S'#1 spin states in the absence
of Coulomb interactions, and the combination of exchange
and direct density-matrix elements in position space is linked
to the origin of ferromagnetism.

D. OCP free energy

The formulas for the OCP are derived in Sec. VI from
those established for a two-component plasma by using the
following procedure. First, the mass of one given species
goes to infinity; then its charge vanishes as its density be-
comes infinite so that their product is kept constant and en-
sures global neutrality.
We introduce a generalization of the standard notations Q

and E used in Ref. $7%,

Q! !
-e2

/
,uC#

"
1

44/3 limR→9
( '

r%R
dr% !44/2"3/2 sinhuCuC

7r$e!-hrel$r8

!1#
-e2

r !
-2e4

2r2 &#
24
3 -3e6% ln! 3R/ ##C & ) !24"

and

E! !
-e2

/
,uC#"2!4

sinhuC
uC

' dr7!r$e!-hrel$r8. !25"

The difference with the formulas for B0"0 is that there ap-
pear two dimensionless variables, !-e2// and uC , instead
of one. With these notations, we get

- fOCP!- ,# ,B0"

"#&ln$!24/2"3/2#%!1(##ln! sinhuCuC
#

##ln! sinhuS
sinh$!2S#1 "uS%

#!
1
124 .D

3 !26a"

!24!!1 "2S#2$1#-.De2%
tanhuS

tanh$!2S#1 "uS%

'/3E!!-e2// ,uC" !26b"

!24#2$1#-.De2%/3Q!!-e2// ,uC" !26c"

!
4

3 -
3#2e6$1#-.De2%ln!/.D"

#-4.D#
2e8(43 !1#ln3!2ln2 "#

C1
64 #

C2
2442)

!26d"

#
4

3
-2+2

m #2e2%1#
1
2 -.De

2&%1#
2
uC

L [3]!uC"&
#o!#5/2". !26e"

The expression for the pressure has an analogous structure,
as in the case of the multicomponent plasma.
Up to order #5/2, the result for the OCP is similar to Eq.

!16", apart from the diffraction term, which does not vanish
at order #2 and reads (44/3)(-+ec/B0)#2L [3](-*BB0).
The origin of the diffraction terms for the OCP may be
viewed as the sum of two contributions. First, there is a
contribution from moving particles as for a multicomponent
plasma, but in the latter system the term of order #2 is can-
celed, because all species move and obey the neutrality rela-
tion. Second, there is an extra contribution at order #2 that
comes from the expansion of the direct quantum term Q12
between species 1 and 2 when particles of species 2 are
turned into a rigid background. !At order #5/2 the coupling in
e2 is of higher orders and the contribution from Q12 disap-
pears in the limit where m2 goes to infinity and e2 vanishes."
Besides, in regimes of low degeneracy and weak quantum

dynamical effects at uC,-*BB0 fixed, the expression of the
OCP free energy can be expanded with respect to + , because
the OCP has a well-defined thermodynamic limit even with
MB statistics. The exchange density-matrix element in posi-
tion space vanishes exponentially fast when + goes to zero
$8,9,11%. According to Ref. $8%, in the semiclassical limit,
valid for any strength of Coulomb and magnetic couplings in
a regime of low degeneracy, the quantum term of lowest
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order in + in the free-energy density is the contribution from
the MB gas of independent charges, which is of order # . The
interactions are involved only in the next-order +2 term,
which is exactly proportional to #2 for any density $8,9%. We
have checked that the first two terms in the + expansion of
the exact low-density free energy up to order #5/2 !valid for
weak Coulomb coupling and derived in the present paper"
coincide with the first four terms in the # expansion of the
exact semiclassical free energy up to order +2 !valid for any
Coulomb coupling and given in Ref. $8%". In particular, the
contributions of order #5/2 in the low-density expression can-
cel each other at order +2, as they should.

E. Comments about the method

A few comments may be made about our method. In the
absence of magnetic field, pioneering work about the deriva-
tion of the free energy was achieved by the method of effec-
tive potentials $7%, and an exact analytic expression up to
order #5/2 is given in Ref. $1% and derived in Refs. $2–4%. Our
method, which has various similarities with that used in the
latter references, allows us first to retrieve the previous re-
sults and to study very straightforwardly, and to our knowl-
edge for the first time, the differences that originate from the
magnetic field. Indeed, as already stressed in Paper I, the
presence of the magnetic field is entirely contained in a
phase factor incorporated in the generalized fugacity of each
loop in the path integral formalism. Moreover, in the low-
density limit, calculations can be performed explicitly !in
terms of matrix elements of a two-body Hamiltonian", be-
cause they involve the covariance of Brownian paths of in-
dependent particles in a magnetic field: the latter problem is
solvable and the covariance can be exactly expressed in
terms of products of hyperbolic functions.
Two advantages of Mayer-diagram methods derived from

the path integral representation, and which are also used in
Refs. $2–4%, are the following. First, the origin of effects at
stake is clearly exhibited. Classical !and quantum" screening
of monopole-monopole interactions is described by the bond
Fcc, diffraction effects resulting from the combination of the
long range of the Coulomb potential and the wave nature of
quantum dynamics are described by the bond Fcm, while
short-distance properties generated by quantum dynamics,
such as the absence of collapse of two opposite charges to-
gether with the existence of bound and scattering states, are
contained in the bond FR .
Another interest of the Mayer-bond method is that a scal-

ing analysis allows us to select very quickly from which
order in density a diagram contributes. Moreover, half-
integer powers of the density appear in the low-density ex-
pansions in a quite natural way; they come through a length
scale arising from screening collective effects which is the
only length depending on the density that is involved in the
three kinds of bonds.
The differences between our method and that used in

Refs. $2–4% are essentially of two kinds. First, in the loop
formalism exchange effects are not treated perturbatively
from the start but they are handled systematically. For in-
stance, up to order #5/2, the exchange contribution comes
from the loop density with exchange degeneracies p equal to
2 and from the expansion of . around its low-degeneracy

value .D in the contribution from interaction bonds for loops
with p"1.
Second, our basic formula for the derivation of the free

energy reduces the problem to the identification of partial
derivatives with respect to the particle density in the expres-
sion of the diagrammatic expansion of the density around its
MB value for an ideal gas. In the other Mayer-diagram
method $2–4%, the free energy is related to the integral of the
internal energy for a coupling parameter g when g varies
from 0 to 1. This integral is expressed in terms of the dia-
grammatic expansion of the particle correlations !times a
Coulomb interaction". The difference in the starting formula
has three consequences. First, the diagrams to be considered
in the diagrammatic expansion of # are less numerous than
in the expansion of the correlation. Second, the identification
of partial derivatives proves to be more elementary than the
subtle integration over the coupling parameter g and the de-
vices needed to obtain an explicit result only in terms of
matrix elements at the considered value of the coupling,
namely, g"1. Third, from a practical point of view, the ne-
cessity of collecting various contributions as the sum of the
different terms in the derivative of a product of functions is a
good guide to avoid numerical mistakes. Indeed, the global
coefficient 1/2 that is missing in Eqs. !4.2" and !4.3" of Ref.
$3% and which comes from a symmetry factor must be taken
into account in the analogous part of our calculation in order
to recognize a sum of classical ‘‘bridge’’ contributions as the
derivative of a bridge function times a function of densities
and .D . Nevertheless, we stress that the existence of the two
methods is a good means for checking analytical results de-
rived from rather long procedures.

III. SCHEME FOR LOW-DENSITY EXPANSIONS

A. Thermodynamic formula for the free energy

In this subsection we derive an integral thermodynamic
relation between the free-energy density and the densities.
This relation provides a starting point for the calculation of
the free energy that is different from the procedure used in
Refs. $2–4%. We start from the relation

6!- f "
6#'

*
- ,&#1(1"” ' ,B0

"-*' . !27"

Let #'
id! ,MB(- ,&*'(,B0) be the density of particles of spe-

cies ' in an ideal gas S id! in the MB approximation at the
same inverse temperature - and with the same chemical po-
tentials *' . According to the well-known expression of
#'
id! ,MB , which will be rederived in the following:

-*'"ln! !24/'2 "3/2#' sinhuS'
sinh$!2S'#1 "uS'%

sinhuC'
uC'

#
!ln! #'

#'
id! ,MB# . !28"

In Eq. !28" the density #' of the interacting system has been
artificially introduced.
Now let us consider another ideal gas S id in the MB ap-

proximation at the same inverse temperature - and with the
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same densities &#'(. Inspection of the expression !11" shows
one that the first term in the right-hand side of Eq. !28" is just
equal to 6(- f id

MB)/6#' . Subsequently,

- f !- ,&#1(,B0""- f id
MB!- ,&#1(,B0"!' ln! #'

#'
id! ,MB# ,

!29"

where : ln(#' /#'
id! ,MB) denotes the primitive of

ln(#' /#'
id! ,MB)"g'(- ,&#1(,B0) that reduces to the ideal-gas

exchange terms when there is no interaction. The derivation
of the low-density expansion of the free energy is thus re-
placed by the calculation of the low-density expansion of #'
around its value for an ideal gas S id! in the MB approxima-
tion and with the same chemical potentials &*1(.

B. Basic relations valid at any density

The low-density expansions will be derived from the three
following equations. First, the relation between the particle
density #' and the loop densities #' ,p(Xp) of species ' with
various exchange degeneracies p reads

#'")
p"1

9

p' D!Xp"#' ,p!Xp". !30"

Contrarily to what was done in Paper I, in the present paper
we add a subscript p to the loop-shape variable X in order to
keep track of the exchange degeneracy.
Second, the representation of the loop density #(L)

"#' ,p(Xp) in terms of diagrams where each internal point
has a weight #(L) and where bonds depend on the loop
density only through .,44-)' ,p(pe')2:D(Xp)#' ,p(Xp)
takes the form

#' ,p!Xp""z' ,p!Xp"exp$J!La"% , !31"

where

z' ,p!Xp""! e-*'

!24/'
2 "3/2

# p;'p!1

p

'
sinh!$2S'#1%puS'"

sinh!puS'"

'e ! ie/2+c "B0• '0
pXp!<""dXp!<"e!-E-

int!Xp", !32"

with the definitions given in Sec. III C of Paper I. J(L) arises
from the Mayer diagrams in the presence of interactions and
involves powers of #(L)n.m with 2n#m(0. When p
"1, z' ,1(!) involves no interaction. Thus, in the absence of
interactions, according to Eq. !31", the loop density for p
"1 in the quantum ideal gas with the same chemical poten-
tials &*1( is #' ,1

id!(!)"z' ,1(!). Since the value #'
id! ,MB of the

ideal-gas density in the MB approximation reduces to the
contribution from the loops with an exchange degeneracy p
equal to 1, according to Eq. !30", it reads

#'
id! ,MB"' D!!"z' ,1!!". !33"

Third, the expression of . itself has a low-density expan-
sion, because, as shown in Ref. $12%,

."( .D2 #44-)
'
e'
2 ' dr#''

!2 " T$exch!r") 1/2, !34"

where .D
2,44-)'e'

2#' is the squared inverse Debye
length. In Eq. !34"

#''
!2 " T$ exch!r"")

p"2

9

p' D!Xp" )
l*"2

p

=!xl*!x1!r"#' ,p!Xp"

!35"

is the part of the particle-particle distribution function arising
from the configurations where the two particles separated by
the distance r belong to the same exchange cyclic permuta-
tion.

C. First simple results at low density

1. Reference quantities

In a low degeneracy and weak Coulomb coupling regime,
#' is of order #'

id,MB , with #'>a!3, #'
id,MB

>exp(-*')/(24/'
2)3/2, and /$a . Thus the small dimension-

less parameter that measures the order in the expansion is
exp(-*')>(//a)3 and z' ,p(Xp) is of order #'

p , z' ,p(Xp)
"O(#p). O(#p) denotes a term which is of order #p,
namely, whose density expansion starts at order #p. Accord-
ing to Eqs. !31" and !32", the term in #' ,p(Xp) that is of
lowest order in density #' coincides with z' ,p(Xp) and

#' ,p!Xp""O!#'
p ". !36"

Henceforth, the part !35" of the correlation that comes from
exchange effects involves has a low-density expansion which
starts at order #2. !Indeed, exchange involves at least two
particles." Thus, according to Eq. !34",

.".D#O!#3/2", !37"

where .D is of order #1/2 by definition. Another consequence
of Eq. !36" is that, according to Eq. !30", #'
":D(!)z' ,1(!)#o(#), where o(#) denotes a term which is
of greater order than # . Subsequently, according to Eq. !33",
we retrieve that

#'"#'
id! ,MB#o!#". !38"

We notice that if the neutrality relation

)
'
e'#'"0 !39"

were not satisfied, then, according to the explicit low-density
expressions derived below in Sec. IV, the expression of #'
calculated from the Mayer diagrams would not be equal to
#'
id! ,MB at first order in density # . Since this coincidence
must happen in the weak Coulomb coupling and low-
degeneracy limit, the Mayer diagrams must be calculated
with the constraint !39". !Subsequently, the ideal gas S id
defined in Sec. III A also satisfies the neutrality relation."
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2. Explicit results for the ideal MB gas

The explicit analytical results in the case of the ideal gas
that will be used are the following. If B0"0, uS'"0, and
z' ,1(!) is independent from !. Thus, according to Eqs. !32"
and !33", #'

id! ,MB reduces to

#'
id! ,MB!B0"0""!2S'#1 "

e-*'

!24/'
2 "3/2

. !40"

When B0"” 0, uS'"” 0, and z' ,1(!) involves a phase factor
arising from the magnetic field and the spin degeneracy fac-
tor 2S'#1 is changed into a paramagnetic expression. Thus

#'
id! ,MB!B0"” 0"" sinh!$2S'#1%uS'"

sinhuS'
uC'

sinhuC'
e-*'

!24/'
2 "3/2

.

!41"

In Eq. !41" the well-known diamagnetic contribution to
#'
id! ,MB is derived by using the Feynman-Kac-Itô formula,

' D!!"exp% ie/'22+c B0•'0
1
!!s ""d!!s "&

"!24/'
2 "3/27r$exp$!-hB0 ,'

!0 " $r8"
uC'

sinhuC'
, !42"

where hB0 ,'
(0) is the position-dependent part of the Hamil-

tonian of one particle of species ' in the magnetic field B0 ,

hB0 ,'
!0 " "

1
2m'

%p!
e'
2c B0"r&2. !43"

!See Appendix A for further details." For convenience’s
sake, in the following we shall use the normalized measure
DB0(!), such that :DB0(!)"1. According to Eq. !42"

DB0!!",
sinhuC'
uC'

D!!"e ! ie'/'
2 /2+c "B0•'

0

1
!!s ""d!. !44"

Contrarily to the case of free motion, the covariance in the
presence of B0 ,

cov*?
' !s ,s!;B0",' DB0!!"$!!s "%*$!!s!"%?

"cov*?!s ,s!;uC'", !45"

depends on the considered species when * and ? are indices
of coordinates in the plane perpendicular to the direction of
B0 , because the coupling with the magnetic field depends on
e' /m' . Properties derived from symmetry arguments have
been displayed in Sec. VC of Paper I. The values of the
various nonvanishing covariances are calculated by three dif-
ferent methods in Appendix A with the following results. In
the z-axis direction, the motion is still free, and

covzz!s ,s!""inf!s ,s!"$1!sup!s ,s!"% . !46"

On the contrary

covxx
' !s ,s!;B0""covyy

' !s ,s!;B0"

"
1

uC'sinhuC'
cosh$!s!s!"uC'%

'sinh$ inf!s ,s!"uC'%

'sinh&$1!sup!s ,s!"%uC'( !47"

while

covxy
' !s ,s!;B0""!covyx

' !s ,s!;B0"

"!isgn!s!s!"
1

uC'sinhuC'

'sinh$ $s!s!$uC'%sinh$ inf!s ,s!"uC'%

'sinh&$1!sup!s ,s!"%uC'(. !48"

$In fact Eq. !48" will not be used in the following.% In the
limit of weak coupling with the magnetic field, Eqs. !47"
does tend to the free motion expression !46" and Eq. !48"
becomes covxy

' (s ,s!;B0"0)"0, as it should.
According to Eqs. !32", !38", and !41", the first term in the

# expansion of #' ,p
&p( (Xp) reads

#' ,p
&p( !Xp""z' ,p

&p( !Xp" !49"

with

z' ,p
&p( !Xp""#'

p;'
p!1

p
sinh!p$2S'#1%uS'"

&sinh!$2S'#1%uS'"(p
!sinhuS'"p

sinh!puS'"

'! sinhuC'uC'
# pexp% ie

2+c B0•'0
p
Xp!<"

"dXp!<"&exp$!-E-
int!Xp"% . !50"

D. Effects of exchange and interactions

1. Double-stepped scheme

The low-density expansions are performed in two steps.
The first step will be called loop-density expansion and de-
noted by # loop expansion. The integrals corresponding to the
Mayer diagrams with weight #(L) are expanded in terms of
powers of #(L) and . . Indeed, . is the only length scale
through which the Mayer bonds depend on the densities and
. vanishes with the densities. The order in loop density will
be denoted by # loop

n and we use the convention that each
length scale . defined in Eq. !34" gives a contribution that
starts at order # loop

1/2 . Thus n may take half-integer values.
The diagrammatic survey and the scaling analysis performed
in Sec. III will show that

#!L""z' ,p!Xp ;-*'"exp$J loop
&1/2(!pe'"

#J' , loop
&1( !Xp"#J' , loop

&3/2( !Xp"% , !51"

where J' , loop
&n( (Xp) is of order # loop

n . In the following, the
quantities denoted by f loop

&n( (Xp) will always refer to quanti-
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ties that are exactly of order # loop
n and which are not inte-

grated over the shape Xp of the loop.
In the second step, we turn to the expansions in terms of

.D and of the quantum particle densities #' . For that pur-
pose, #' /#'

id! ,MB and . are expanded around their low-
degeneracy values 1 and .D , respectively, in terms of the
#1’s; simultaneously the loop densities, namely the
z' ,p(Xp)’s and the J' , loop

&n( (Xp)’s, are expanded in powers of
the particle densities #1 . When the term of order
$exp(-*')%p in # is known, we can calculate #' ,p!(Xp!),
with 1@p!@p#1 up to order #p#1. Indeed, #' ,p!(Xp) con-
tains the multiplicative factor z' ,p!(Xp) that starts at order
#p! by a term #' ,p!

&p!( (Xp!) that is exactly known and the
J(Xp!) have to be calculated only up to order #

p#1!p!,
which is lower than or equal to #p. As shown below, we get

)
n"1

9

J' , loop
&n/2( !Xp"")

n"1

9

J'
&n/2(!Xp", !52"

where f &n/2( is a term of order #n/2, and

z' ,p!Xp ;-*'""#' ,p
&p( !Xp"#)

n"0

9

z' ,p
&p#1#n/2(!Xp". !53"

#' ,p
&p( (Xp) is given by Eq. !50". In Eq. !53" the jump in pow-
ers from #p to #p#1 is determined by the fact that #'
"#'

id! ,MB#O(#2), as proved just below.
We notice that the summation over the species indices

and the exchange degeneracy p do not increase the order in
#(L) and . of a given diagram. These summations may at
most cancel some contributions, in which case they may in-
crease the order in the loop density !as already discussed in
Sec. III B of Ref. $3%".

2. Useful property

A property that simplifies explicit calculations of # ex-
pansions is the following. As shown in Sec. VB, the only
contribution of order # loop

1/2 in J(La) reads

J' , loop
&1/2( !pe'""

1
2 -!pe'"

2. !54"

and is independent from Xa . According to Eq. !37",

J &1/2(!pe'""
1
2 -!pe'"

2.D , !55"

which is the value of J' , loop
&1/2( (pe') when . is replaced by .D .

3. Starting point of the recurrence scheme

The recurrence scheme may be started as follows. The
fact that J &1/2((e') is independent from ! implies that

D!!"#' ,1!!""#'DB0!!"#O!#2". !56"

Indeed, we first notice that Eqs. !32" and !41" and the nor-
malization !44" imply the relation

D!!"z' ,1!!"

#'
id! ,MB "DB0!!". !57"

Thus, according to Eq. !30", the contribution to #' /#'
id! ,MB

from the loops with p"1, for which E-
int(!)"0, is the inte-

gral of

D!!"#' ,1!!"

#'
id! ,MB "eJ

&1/2(!e'"DB0!!"e
[J'
&1(!!"#J'

&3/2(!!"]#O!#2",

!58"

where we have used Eqs. !36" and !37". Since the low-
density expansion of #' ,p(X) starts at order #'

p , Eqs. !30"
and !58" lead to

#'"#'
id! ,MBeJ

&1/2(!e'"#O!#2". !59"

Equation !56" is derived from Eqs. !58" and !59", while Eqs.
!55" and !59" imply that

#'"#'
id! ,MB%1#

-

2 e'
2.D&#O!#2". !60"

On one hand, #' ,2(X2) may be calculated readily up to
order #5/2 according to Eqs. !50" and !51" and to the simple
form of J &1/2((pe'), and we get

#' ,2!X2""#'
2 1
2$1#-e'

2.D%Eexch,'* !X2"#O!#3", !61"

with

Eexch,'* !X2",;'
tanhuS'

tanh!$2S'#1%uS'"
! sinhuC'uC'

# 2
'e ! ie/2+c "B0• '0

2X2!<""dX2!<"e!-E-
int!X2".

!62"

Indeed, by combining of Eqs. !50", !51", and !59", we get

#' ,2!X2"
#'
id! ,MB "

1
2#'e

J&1/2(!2e'"!J&1/2(!e'"Eexch,'* !X2"#O!#2".

!63"

According to Eqs. !30", !55" and !63", the contribution from
loops with p"2 to #' /#'

id! ,MB reads

2' D!X2"#' ,2!X2"

#'
id! ,MB "#'%1#

3
2 -e'

2.D&E'*#O!#2".

!64"

We have set E'*,:D(X2)Eexch,'* (X2) where r is the relative
position of the particles in the loop. E'* involves

' D!X2"e ! ie'/2+c "B0•'0
2
X2!<""dX2!<"e!-E-

int!X2"

"' dr!24/'
2 "37r,0$e!-H''$0,r8, !65"
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where H'1 is the two-body Hamiltonian without the spin
contribution defined in Eq. !19". In Eq. !65" we could choose
r1"0 and r2"r, because the left-hand side of Eq. !65" is
invariant under translation of the loop position. The right-
hand side of Eq. !65" may be reexpressed in terms of a one-
body Hamiltonian thanks to Eq. !21".
On the other hand, #' ,1(!) may be calculated up to order

#5/2. Indeed, J loop,'
&1( (!)#J'

&3/2((!) can be expressed explicitly
in terms of the densities #1 by using Eq. !56" and the equa-
tion

.".D#24-)
'
e'
2 #'

2

.D
E'*#O!#2". !66"

Equation !66" is derived from Eqs. !34" and !61".

E. Formal results up to order "5/2

1. Free energy

A straightforward low-density expansion implies that, af-
ter expansion of the exponential in the generalization of Eqs.
!58" and !63", an integration over the loop shapes gives

#'

#'
id! ,MB")

p"1

9

)
n"0

9

Ap
&p!1#n/2(!e'", !67"

where the index p refers to the integrals :D(Xp) . . . where
Ap
&q( comes from; for instance, A1

&1/2("J &1/2((e'), A1
&1(

":DB0(!)J
(1)(!), A1

&3/2(":DB0(!)J'
(3/2)(!), A2

&1("#'E'* ,
and A2

&3/2("$J &1/2((2e')!J &1/2((e')%#'E'* where E'* is de-
fined in Eq. !64". A reexponentiation of the expansion !67"
leads to

ln! #'

#'
id! ,MB# ")

n"1

9

B'
&n/2( , !68"

where B'
&1/2("A1

&1/2( , B'
&1("A1

&1(#A2
&1( , and B'

&3/2("A1
&3/2(

#A2
&3/2(!A1

&1/2(A2
&1( . More explicitly,

B'
&1/2("J &1/2(!e'", !69a"

B'
&1("' DB0!!"J

&1(!!"##'E'* , !69b"

B'
&3/2("' DB0!!"J'

&3/2(!!"

##'$J &1/2(!2e'"!2J &1/2(!e'"%E'*. !69c"

As a consequence, in order to calculate the free-energy
density up to order #5/2, we have to compute the loop density
only up to order #3/2 for p"1, while the contribution from
loops with p"2 has already been taken into account up to
order #3/2. The scaling analysis of diagrams in terms of the
loop density is presented in Sec. IV and the low-density ex-
pansions themselves are given in Sec. V.
We already notice that the terms of order #1/2 and # con-

tain obvious partial derivatives with respect to #' . Accord-
ing to Eqs. !69a" and !55" the term

B'
&1/2("

1
2 -e'

2.D"
6

6#'
! .D3124 # !70"

is the opposite of the derivative of the Debye free energy.
Moreover, at order # the contribution to ln(#' /#'

id! ,MB) from
exchange effects given by Eq. !69b" is also a partial deriva-
tive by itself,

Bexch,'
&1( "#'E'*"

6

6#'
! 12)1 #1

2E1*# . !71"

2. Loop density

The # expansion of the loop densities #' ,p(Xp) will be
useful in the discussion of Paper III. By inversion of Eq.
!68", #'

id! ,MB may be expressed in terms of the #1’s, and
insertion of this expansion in Eqs. !58" and !63" leads to

D!!"#' ,1!!""#'DB0!!"( 1#J'
!1 "!!"!' DB0!!!"J'

!1 "!!!"

!#'E'*#J'
!3/2"!!"!' DB0!!!"J'

!3/2"!!!"

!#'-e'
2.DE'*) #O!#3" !72"

while #' ,2(X2) is given up to order #5/2 by Eq. !61".

IV. SCALING ANALYSIS IN LOOP DENSITY

A. Formal scale decomposition

Since the bonds introduced in Paper I depend on the den-
sity, a scale decomposition is introduced in order to deter-
mine to which orders in #(L) and . a given diagram con-
tributes. Similar principles are used in the decomposition
chosen in Sec. VD of Ref. $2%.
We first notice that in the simple diagrams which we will

have to consider, all terms that involve an odd number of
derivatives with respect to r disappear after integration over
X. Indeed, every such term originates from a large-distance
expansion of a function f , and it takes the form g(X)$X%*1•••$X%*n6*1 , . . . ,*n f (r) where g(X) is invariant under rota-
tions of X !while 6*1*2 denotes a derivative with respect to
the components $r%*1 and $r%*2). Since the weight
D(X)#(X) is invariant under inversion of X and is short
ranged with respect to the extent of $X$, the integration over
X may be performed first and terms with an odd number of
components of X are canceled. Thus terms with an odd num-
ber of derivatives vanish in the absence as well as in the
presence of the magnetic field.

1. Bonds entirely scaled by #

For bonds F , such as Fcc and Fcm, that are entirely scaled
by . , the scale decomposition takes the very simple form

F!r;."")
n"0

9

F 7n8!r;." !73"

with
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F 7n8!r;.",.nF̃ 7n8!r/.". !74"

The dependence on the charges ei and e j will not be men-
tioned in the argument of the bonds. In the case of Fcc, only
one power of . is involved,

Fcc!r"x/.;."".Fcc̃!x", !75"

with Fcc̃(x)"!- i jexp(!x)/x and - i j,-eie j .
In the case of Fcm, there appears a series in powers of . .

This series is derived from the Taylor expansion ET$Fcm% of
Fcm at large distances, though it does not coincide with this
expansion, as explained in the following. A term in the Tay-
lor expansion of Fcm(r,Xj) is denoted by

Tcm7n8!r,Xj""- i j'
0

p
d<$Xj!<"•“%n!1A!r;.", !76"

with nB2 and

A!r;.""
e!.r

r . !77"

Tcm7n8 is entirely scaled by the nth power of . and

ET$Fcm!r"x/. ,Xj ;."%")
n"2

9

.nT̃cm7n8!x,Xj". !78"

For instance,

T̃cm728!x,Xj",- i j'
0

p
d< Xj!<"•“x! e!x

x #
"- i j'

0

p
d< Xj!<"• x̂%!

e!x

x !
e!x

x2 & , !79"
where x̂ is the unit vector x̂,x/x . More generally the term
Tcm7n8 is a sum of n contributions each of which decays as
exp(!Ap.r)/rp where Ap is a constant and 1@p@n . In the
Taylor expansion the Tcm7n8’s with nB3 are not integrable at
the origin. Henceforth, the term F̃cm7n8(x,Xj) in the scale
decomposition does not coincide with the term Tcm7n8 in the
Taylor expansion of Fcm,

Fcm!r"x/. ,Xj ;."")
n"2

9

.nF̃cm7n8!x,Xj", !80"

with F̃cm7n8"” T̃cm7n8. The problems arising from the nonin-
tegrability of Tcm7n8 at short distances can be solved by a
regularization procedure in Fourier space, but the latter is far
beyond the scope and need of the present paper.
Indeed, in the following, we will use the property that, if

g(r) is a function invariant under rotations and is regular at
the origin

' dx g! $x$"F̃cm7n8!x,Xj""' dx g! $x$"T̃cm7n8!x,Xj".
!81"

Equation !81" holds though F̃cm7n8(x,Xj)"” T̃cm7n8(x,Xj) be-
cause :dx g($x$)T̃cm7n8(x,Xj) is integrable at the origin. The
reason relies on two facts: each Tcm7n8 involves derivatives
of order n!1 of the function A(r;.), and it is multiplied by
functions that are invariant under rotations of r. Let us con-
sider the integral of g times any partial derivative of a func-
tion f , where both f and g are invariant under rotations. After
integration over the orientation of r, any partial derivative of
f with an odd number of coordinates gives a vanishing con-
tribution, whereas the derivative of order 2p gives a term
which is proportional to Cp f times a tensor of rank 2p . !This
result can be easily derived in Fourier space." For instance, a
fundamental relation used in the following is

' dr g! $r$"6*? f ! $r$""=* ,?
1
3' dr g! $r$"C f ! $r$".

!82"

Moreover, A obeys the equation

CA!.2A"!44=!r" !83"

and, subsequently, it can be shown by recurrence that CpA is
integrable at the origin. Thus :dx g($x$)Tcm72p8(x,Xj) in-
volves in fact only gCpA , which is integrable at the origin
even in the presence of the magnetic field.

2. Bond FR
In the case of the bond FR three kinds of scale lengths are

involved: the lengths -$e'e1$ that measure the coupling with
the Coulomb potential and, for each species, the radius of the
orbits in the first Landau level lC'"!2+c/e'B0 and the
thermal de Broglie wavelength /' . Thus, after integration
over r, the corresponding truncated two-body density-matrix
element depends on at most three kinds of dimensionless
parameters -e'e1 /!/'/1, /'2 /lC'2 "-+2C'/2"uC' ,
/1
2 /lC1

2 "uC1 , and /' //1"!m1 /m'. We notice that, when
e' /m'"e1 /m1 , the motion equations can be decoupled in
two independent equations for the motions of the center of
mass and a relative particle, respectively; then uC'"uC1 .
On the other hand, the large-distance Taylor expansion of

FR reads

FR!r;."")
n"2

9

TR
7n8!r;.". !84"

The first term

TR
728!r;.""

1
2 $F

cc!r;."%2"
- i j
2

2 A2!r;." !85"

is integrable at short distances, whereas the higher-order
terms in the Taylor expansion are not. In the following we
will consider separately $Fcc%2/2, because $Fcc%2/2 decays
only as 1/r2 at ."0 and is integrable at large distances for
any finite . , while it is integrable at short distances for any
. . We define the truncated resummed bond

FRT,FR!TR
!2 " . !86"
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The diagrams D are then replaced by diagrams DT which are
built as the diagrams D !namely, with the same topological
rules but" with the only difference that there are now five
bonds Fcc, Fcm, Fmc, FRT , and $Fcc%2/2.
FRT decays as 1/r3 at ."0 and is conditionally conver-

gent for any finite . when integrations over angles are per-
formed in the first place. As a consequence, the low-density
expansion of :drFRT(r,Xi ,Xj) starts by a singular ln. term
when . goes to zero, as detailed in the next section. Let us
denote the low-density expansion of a function F by
ELD$F% . The fundamental formula that allows one to pro-
duce a scale decomposition of the Fourier transform of
FRT , FRT(k;.),:drexp$ik•r%FRT(r;.), reads

ELD% ' dr eik•rF!r"&" lim
R→9

( '
r%R

drELD$F!r"eik•r%

#ELD% '
r(R

drFas!r" eik•r& ) ,
!87"

where Fas is the part of the asymptotic behavior of F that
gives nonvanishing contributions to

'
r(R

drFas!r"exp! ik•r"

when R goes to infinity. !We notice that the notation R for
the parameter that goes to infinity has nothing to do with the
subscript R in FRT .) Since TR7

n8 denotes the term with (n
!1) derivatives with respect to r in the Taylor expansion of
FRT at large distances r $see Eq. !76"%, TR7

n8 is a sum of
contributions entirely scaled by .n. According to Eq. !87",

ELD$FRT!.q;."%

" lim
R→9

( '
r%R

drELD$FRT!r"e i.q•r%

#'
x(.R

dx T̃R7
38alg!x"e iq•x

#)
n"3

9

.n!3ELD % '
x(.R

dx T̃R7
n8exp!x"eiq•x& ) ,

!88"

where we have omitted the dependence on the loop shapes,
because it does not play any role in the formula. In Eq. !88"
T̃R
738alg denotes the purely algebraic part of T̃R7

38 , T̃R7
38alg

"W3 , while T̃R7
n8exp denotes the part of TR7

n8 that decays ex-
ponentially at large distances. The T̃R7

n8exp are not integrable
at the origin, but it does not matter because they appear only
at distances r(R . T̃R

7n8alg with nB4 do not appear in the
right-hand side of Eq. !88", because their contribution van-
ishes when R goes to infinity. On the contrary the contribu-
tion from the T̃R

7n8exp lead to expansions in powers of
.m(.R)m!.

For instance, :x(.Rdxexp(iq•x)exp(!3x)/x3 arises in the
contribution of T̃R7

38exp ; this integral can be expanded in posi-
tive powers of .R and includes a ln(.R) term. Indeed,

'
x(.R

dx
e!3x

x3
eiq•x"A!3.R "#' dx

e!3x

x3
$eiq•x!1%

!'
r%R

dr
e!3.r

r3
$ei.q–r!1% , !89"

where

A!n.R ",'
x(.R

dx
e!nx

x3
!90"

and !see, for instance, page 956 of Ref. $13%"

ELD$A!n.R "%"A !0 "!n.R "#.n'
r%R

dr
1
r2

!.2
n2

2 'r%R
dr
1
r #O„!.R "3…, !91"

where A (0)(n.R)"!44$C#ln(n.R)% and C is the Euler
constant.The ln. terms in the low-density expansion of
:drFRT arise from the A (0)(n.R)’s. Moreover, the second
term in the right-hand side of Eq. !89" reads

' dx
e!3x

x3
$eiq•x!1%

"!44% ln!!9#q2

3 # #
3
qarctan! q3 #!1& .

!92"

The integral in the third term in the right-hand side term of
Eq. !89" is convergent at the origin and its low-density ex-
pansion is merely obtained by expanding the integrand in
powers of . . This procedure generates a series in powers of
q.R that starts at order O(q2.2R2). Another example of
contributions arising from T̃R

748exp is the contribution from
A4. After an integration by parts,

.'
x(.R

dx
e!4x

x4
"44

e!4.R

R !4.A!4.R ". !93"

The corresponding low-density expansion reads

ELD%.'
x(.R

dx
e!4x

x4 &"
44
R !164.!4.A !0 "!4.R "

#O!.2R ", !94"

where the first term vanishes when R goes to infinity.

B. Explicit value of the scale decomposition of FRT
In the following, after determination of the diagrams that

contribute to the first three orders in density, FRT will only
appear in convolutions. Thus the calculations will be per-
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formed in Fourier space, and we give only the explicit value
of the low-density expansions involving the Fourier trans-
form of FRT .

1. Short-ranged contributions

The expressions of $Fcc%2/2 and FR given in Sec. IVA of
Paper I are expanded in powers of . for a fixed r with the
result

ELD$FRT%!r,Xi ,Xj"" f T#- i j$vmc#vcm%

#.pip j- i j% f T#
!- i jpip j"2

2r2 &
#O!.2", !95"

with f T defined as

f T!r,Xi ,Xj""e!- i jv!r,Xi ,Xj "!1#
- i jpip j

r !
!- i jpip j"2

2r2
.

!96"

f T is integrable at the origin and decays as 1/r3 at large
distances. So its contribution to : r%R••• behaves as lnR and
is compensated by the ln(.R) that comes from :dr TR7

38exp .
The second term in Eq. !95" is the so-called diffraction term
which is specific to the long range of the Coulomb potential,

'
r%R

dr- i jvcm!r,Xj"

"- i j
1
2'0

p
d< $Xj!<"%*

2 '
r%R

dr6**! 1r # . !97"

In Eq. !97" we have only written the first term coming from
the large-distance Taylor expansion of vcm. Indeed, after in-
tegration over the orientation of r, the next terms involve
only the functions Cp(1/r) or $62n/(6z)2n%Cp!n(1/r), with
p(n , or $62p/(6z)2p%(1/r), with pB2. The first two expres-
sions are equal to derivatives of the Dirac distribution, and
their integrals vanish, while the third function is proportional
to the Legendre polynomial P2p(cosE) and gives a zero con-
tribution after integration over the angle E between the z axis
and r !see Sec. VC of Paper I".
For loops with p"1, X1"/'! and Eq. !97" involves the

covariance defined in Eq. !45" with the result

'
r%R

dr( ! '
0

1
ds covxx

' !s ,s;B0" # $6xx#6yy%! 1r #
#! '

0

1
ds covzz!s ,s " # 6zz! 1r # )

"!44%C0# 2
3 =C!uC'"& , !98"

where we have used Eq. !82" with g(r)"1 and f (r)"1/r
together with the identity : r%RdrC(1/r)"!44 . In Eq. !98"
C0 denotes the integrated covariance in the absence of mag-
netic field,

C0,'
0

1
ds cov xx!s ,s;B0"0""

1
6 . !99"

Since cov zz(s ,s)"cov xx
' (s ,s;B0"0)

=C!uC'",'
0

1
ds $cov xx

' !s ,s;B0"!cov xx
' !s ,s;B0"0 "%

"
1

2uC'
L !3 "!uC'", !100"

where L [3](x)"cothx!(1/x)!(x/3) is a generalization of
the Langevin function L(x) defined in Eq. !14". Finally, the
diffraction contribution from :drFRT given by Eq. !97"
reads

'
r%R

dr' DB0!!j"- i jv
cm!r,!j"

"!- i j24/' j
2 %C0# 2

3 =C!uC' j"& , !101"

where

C0#
2
3 =C!uC'""

1
6%1#

2
uC'

L [3]!uC'"& . !102"

2. Long-ranged contributions

At the orders of interest we have to consider only the
contributions from T̃R

738alg"W3 , TR7
38exp , and TR7

48exp to inte-
grals of the form

'
x(.R

dx ' D!Xi"D!Xj"gi!Xi"g j!Xj"F!x,Xi ,Xj"eiq•x,
!103"

where the weights D(Xi)gi(Xi) are invariant under inversion
of Xj .
Since W3(r,Xi ,Xj) is odd under inversion of each loop

shape, the contribution from W3 to an integral !103" vanishes
according to parity arguments. When we consider the case
q"0, another argument can be used. Indeed, after integra-
tion over the orientations of r, W3 gives a term proportional
to C(1/r), which is short ranged, so that : r(RdrW3"0.
The exponential part of the large-distance Taylor expan-

sion of FRT can be written for the n"3 and 4 terms as

TR
738exp"!- i j$Aelect

738 !Aelect
cm738!Aelect

mc738%#- i j
2A Aelect

728 !
- i j
3

3! A
3

!104"

and

TR
748exp"!- i j$Aelect

748 !Aelect
cm748!Aelect

mc748%

#- i j
2 %12 !Aelect728 "2#AAelect

738 &!
- i j
3

2 A2Aelect
728 #

- i j
4

4! A
4.

!105"
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!- i jAelect
7n8 and !- i jAelect

cm7n8 are the nth-order terms in the
large-distance Taylor expansion of !- i jAelect and Fcm with
the notations of Sec. IVA in Paper I. Aelect738 !Aelect

cm738

!Aelect
mc738 involves a product $Xi%*$Xj%? , while Aelect728 and the

Aelect
748 ’s contain odd numbers of components of either Xi or
Xj . Thus, after integration over the loop shapes with weights
that are invariant under inversion of X, only the term pro-
portional to A3 in TR

738exp(x) does contribute to Eq. !103"
!and it has already been computed in Sec. IVA", while only
(Aelect728 )2, AAelect738 , and A4 in TR7

48exp give nonvanishing con-
tributions to Eq. !103". After integration over the loop
shapes, the contribution from the term (Aelect728 )2 is propor-
tional to

'
x(.R

dx%“! e!x

x # &2"24e!2.R#44
e!2.R

.R

"
44
.R !64#O!.R " !106"

while the contribution from the term AAelect
738 involves

'
x(.R

dx
e!x

x C! e!x

x #"24e!2.R"24#O!.R ".

!107"

The contribution from A4 has already been given in Eq. !94".

3. Relevant results

By collecting the previous results we get at order .0

' DB0!!i"' DB0!!j"FRT!.q;!i ,!j"

"Q' i' j
* !3."!24- i j( /' i2 %C0# 2

3 =C!uC' i"&
#/' j

2 %C0# 2
3 =C!uC' j"& )

!
- i j
3

3! ' dx
e!3x

x3
$eiq•x!1%#O!.", !108"

where the last integral is given in Eq. !92" and

Q' i' j
* !n.", lim

R→9
( '

r%R
dr' DB0!!i"' DB0!!j" f T

!
- i j
3

3! A
!0 "!n.R ") . !109"

Q' i' j
* (n.) may be written in terms of matrix elements by

using the Feynman-Kac-Itô formula given in Sec. III of Pa-
per I. According to the value of A (0)(n.R) given in Eq. !91",

Q' i' j
* !n."" lim

R→9
( '

r%R
dr% sinhuC' iuC' i

sinhuC1 j
uC1 j

'!24/' i/' j"
370,r$e!-H' i' j$0,r8!1

#
-e' ie' j

r !
!-e' ie' j"

2

2r2
&

#
24
3 !-e' ie' j"

3$C#ln!n.R "%) , !110"

where H' i' j
has been defined in Eq. !19".

Moreover, we shall need the following expression up to
order .:

' dr' DB0!!i"' DB0!!j"FRT!r,!i ,!j ;."

"Q' i' j
* !3."#.- i jQ' i' j

* !4."!! 24- i j#.
4

2 - i j
2 #

'( /' i2 %C0# 2
3 =C!uC' i"&#/' j

2 %C0# 2
3 =C!uC' j"& )

!.
2
3 4- i j

4 #O!.2". !111"

When we expand . in powers of .D , expressions !108" and
!111" remain unchanged apart from the replacement of . by
.D at the considered orders. Thus according to Eq. !111" the
low-density expansion of

' dr' DB0!!i"' DB0!!j"FRT!r,!i ,!j ;."

does start by a logarithmic term which is equal to
(24/3)(-e'e' j)

3ln(3.). The next term is a constant plus a
rest of order . .

C. Minimal order of diagrams in loop density

The minimal order in density to which a diagram DT
introduced in Sec. IVA contributes can be determined by the
following procedure. We recall that the powers .n are
counted as powers # loop

n/2 . The problem to be handled is that
the bonds Fcc, Fcm, and $Fcc%2/2 are entirely scaled by . ,
whereas the bond FRT is at the border of integrability and
decays as 1/r3 over a length scale which does not depend on
the density $see Eq. !88"%. For instance,
lim.→0:drFRT(r,!i ,!j) is independent from . apart from a
ln. term. Let N be the number of internal points in the dia-
gram. Let MFRT (MFcm) be the number of bonds FRT (Fcm

or Fmc) and MFcc be the number of functions Fcc contained
in the bonds Fcc and $Fcc%2/2. The integral corresponding to
a given diagram is proportional to

' %F
i"1

N

dridG i#!G i"& F
bonds

F!Li ,Lj". !112"
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For the sake of pedagogy, let us first consider the case
MFRT"0. Then all bonds are entirely scaled by . and the
scaling change r"x/. is performed for the position of every
internal point of the diagram. Each integration volume dri
gives a factor .!3 and is associated with a weight #(L) that
starts at the order .2. Each bond Fcc ($Fcc%2/2) leads to a
factor . (.2) and, according to Eq. !80", each bond Fcm

gives rise to a series in powers of . , the first term of which
is of order .2 and may vanish after integration over the ori-
entation of r or over the loop shapes. Thus, since . is con-
sidered as a term that starts at order # loop

1/2 , the first term in the
# loop expansion of Eq. !112" is of order # loop

n with

n!MFRT"0 "B!
N
2 #

1
2MFcc#MFmc. !113"

We recall that the summations over the species or the ex-
change degeneracies or the integration over the loop shapes
may only increase the order in # loop . We notice that, since
any diagram in Eq. !112" is connected and without any !in-
ternal or root" articulation point !see Sec. III C of Paper I" the
number of bonds is greater than N#1 the total number of
points in the diagram. Since the number of bonds is also
lower than MFcc#MFmc, MFcc#MFmcBN#1, and
n(MFRT"0)B1/2.
In the generic case MFRT"” 0. The integration over the

distance between two points that are directly linked by a
bond FRT !and possibly indirectly linked by other paths of
bonds" leads to a finite value whose limit when . goes to
zero is independent from the density, up to ln. terms, be-
cause the distances that mainly contribute to the integrals
involving FRT are within a range l0 which is independent
from the density. So, as a first step, we integrate over all
relative distances between pairs of points directly linked by a
bond FRT . We call rj

(1) the positions of the internal points
L j
(1) that are left over after this first integration. Since only

regions contained in a ‘‘contraction disk’’ with a radius l0
and centered around either the position ra of La or around
the rj

(1)’s ( j"1, . . . ,Ndisk
(1) !1) do contribute to the integral

!112", the first integration step can be represented by a dia-
grammatical process. In this process, similar to that used in
Sec. III of Ref. $3%, every pair of points that are linked by a
bond FRT is replaced by a single point. !The latter is any one
of the two points in the pair when they both are internal
points, whereas the root point is chosen as the single point
resulting from the collapse when it is involved in the bond

FRT .) The contraction process of the first step ends when
there is no more FRT bond. A given contraction disk may
originate from the fusion of several points that are linked
together in the original diagrams by bonds FRT and other
kinds of bonds. Since l0 does not depend on the density, .!1

is far greater than l0 in the low-density limit, so that, in the
integral !112", the bonds Fcc and Fcm inside every contrac-
tion disk can be replaced by their values when . vanishes
and the result from the integration over all variables inside
the contraction disks, except their centers L j

(1) , is indepen-
dent from the density. Consequently, at the lowest order in
density, the integrations over the N!(Ndisk

(1) !1) internal
points of the original diagram that are not centers rj

(1) of
contraction disks lead to a contribution of order
# loop
N!(Ndisk

(1) !1) . Moreover, at the first order in loop density,
each argument in any bond is replaced by the variable L j

(1)

which is in the same contraction disk !or by La in the case of
an argument which is in the contraction disk centered on the
root point". Thus the # loop expansion of the integral !112"
starts by a contribution of order # loop

N!(Ndisk
(1) !1) times,

' % F
j"1

Ndisk
!1 " !1

drj
!1 "dG j#!G j"&

' F
bonds disks/disks

Fdisk/disk
!1 " !Li

!1 " ,L j
!1 "". !114"

In Eq. !114" the bonds Fdisk/disk
(1) between the centers of the

contraction disks are products of bonds Fcc and Fcm. Some
of these bonds decay at least as 1/r3 over a length l0$.!1

when . vanishes.
Consequently, a second step is needed in the contraction

procedure. Indeed, if we made the scaling transformation

FIG. 1. Diagrams that contribute from order #1/2 to
ln(#' /#'

id! ,MB). In Fig. 1, as in the following figures, a white disk
represents the root point La and a black disk denotes an internal
point whose loop coordinates are integrated over. I rgT is the contri-
bution of order #1/2 from the ‘‘ring’’ diagrams which is given in
Sec. V B. A wavy line corresponds to a bond Fcc and the symmetry
factor of diagrams is not recalled in the figures; neither is the weight
#(G) of every internal point. Thus the second diagram in Fig. 1
stands for (1/2):dr:dG#(G)$Fcc(r,Ga ,G)%2.

FIG. 2. Diagram with a single bond FRT . This diagram contrib-
utes from order # to ln(#' /#'

id! ,MB).

FIG. 3. Diagram which completes the direct contribution of or-
der # from Fig. 2. in order to write it as a single partial derivative
with #' .
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rj
(1)".xj

(1) at once, then the integration over r of any bond
that decays as exp$!A.r%/rmj with mjB3 would lead to a
contribution .mj!3 with mj!3B0, whereas its low-density
limit is in fact of order .0 because it decays at least as 1/r3
when . vanishes. So, in order to obtain the lowest order in
density, we have to perform a second step in which we inte-
grate over the bonds Fdisk/disk

(1) that decay at least as 1/r3 at
."0. This procedure is equivalent to introducing Ndisk

(2) new
contraction disks. The integration over the $Ndisk

(1) !1%
!$Ndisk

(2) !1% internal points of these disks except their cen-

ters gives a contribution that starts at order # loop
Ndisk
(1) !Ndisk

(2)
. Thus

the # loop expansion of the integral !114" starts by the latter
contribution times an integral that can be written as Eq. !114"
with a superscript (2) in place of (1). The contraction pro-
cess is repeated until there remain only bonds between disks
that decay as 1/r or 1/r2 at ."0. Let Ndisk,irr be the number
of irreducible disks at the end of the contraction procedure.
The # loop expansion of the integral !112" starts by a term of
order # loop

N!(Ndisk,irr!1) times an integral similar to Eq. !114"
where the bonds Fdisk/disk

(irr) are only single bonds Fcc, $Fcc%2

or Fcm. As discussed above in the case MFRT"0, the change
of variable r"x/. for the (Ndisk, irr!1) positions of the cen-
ters which are to be integrated over shows that the latter
integral is of order # loop

n! with n!"!(1/2)(Ndisk,irr!1)
#(1/2)MFcc, irr#MFmc, irr , where MFcc, irr (MFcm, irr) is the
number of bonds Fcc (Fcm or Fmc) between the irreducible
disks. Eventually the term of lowest order in the # loop expan-
sion of the contribution of the diagram is of order

n!MFRT"BN!
3
2 !Ndisk,irr!1 "#

1
2MFcc, irr#MFcm, irr .

!115"

We notice that, if MFRT"0, there is no contraction process,
Ndisk,irr"N#1, and we retrieve Eq. !113". If MFRTB1, the
number of disks is lower than the total number of points N
#1 in the original diagram minus one, NBNdisk,irr . More-
over, since the diagram made with irreducible disks is still
connected, the number of bonds is greater than Ndisk,irr!1;
since it is lower than MFcc, irr#MFcm, irr , we get MFcc, irr
#MFcm, irrBNdisk,irr!1. Subsequently, the lower bound in
Eq. !115" is greater than or equal to 1#(MFcm/2)B1. If the
diagram is sufficiently connected with FRT bonds—and there
is no criterion about MFRT for this phenomenon, contrary to
what was said in Sec. III C of Ref. $3%—then all disks col-
lapse into a single one and, according to Eq. !115" with
Ndisk,irr"1 and MFcc"MFcm"0, the order in density may be
equal to #(L)N as in the case of short-ranged interactions.

V. EXPLICIT CONTRIBUTIONS FROM DIAGRAMS

We recall that, according to Sec. III C of Paper I, J(La) is
the sum of a constant I rgT !coming from some truncated con-
tribution of Coulomb rings" and of all unlabeled topologi-
cally different connected diagrams P* with one root point La
and at least one internal point, and which are built with
bonds Fcc, Fcm, Fmc, and FR . The topological rules for
these diagrams are the following. They contain no articula-
tion point, they remain as a single piece when all bonds
involving the root point are cut, and they obey the following
excluded-convolution rule: there can be no convolution
Fcc*Fcc, Fcc*Fcm, or Fmc*Fcc.
Diagrams that should contribute from one given order in

density according to the scaling analysis but that prove to
vanish after integration over the shape of the root point Xa
will not be drawn. In Figs. 1–7 diagrams are put together
according to the minimal order in density to which they con-
tribute and according to the nature of the effects they de-
scribe. Moreover, diagrams whose sum gives one derivative
with respect to the density are collected in a single figure.
The species of the root point La will be called ' in order to
simplify the notations.

A. Single bonds with no contribution

The contribution from Fcc to J(Xa) disappears by virtue
of the neutrality relation. Indeed, it reads

' dr' dG#!G"Fcc!r,pae' ,pe1""!pae'
44-
.2 )1 e1#1 .

!116"

FIG. 4. Diagram which completes the direct contribution of or-
der #3/2 from Fig. 2. in order to write it as a single partial derivative
with #' .

FIG. 5. Classical diagrams whose sum gives a contribution of
order #3/2 exactly and is a partial derivative with respect to #' of a
term proportional to (1/.D)()1#1e1

3)2()1!#1!e1!
4 ).

FIG. 6. Classical diagrams whose sum gives a contribution of
order #3/2 exactly and is a partial derivative with respect to #' of a
term proportional to (1/.D

3 )()1#1e1
3)4.
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We notice that if the neutrality relation !39" did not cancel
the contribution from Fcc, this contribution would be respon-
sible for the existence of a term of order #0 that would not be
a partial derivative with respect to #' . In fact, such a term is
not allowed, because, otherwise, #' would not be equal to
#'
id! ,MB in the strict zero-density limit, as explained in Sec.
III C.
The contribution from Fcm(r,Ga ,G) or Fmc(r,Ga ,G) van-

ishes after integration over the relative position r of the two
loops,

' drFcm!r,X""0. !117"

A first argument can be given in Fourier space. Since the
Fourier transform of Fcm reads

Fcm!k,X""!-pae'e1'
0

p
d<!e!ik•X!<"!1 "

44

k2#.2

!118"

and is multiplied by a function #(X) every moment of which
is integrable, its contribution vanishes when $k$ goes to zero.
Another reason may be provided in position space. Accord-
ing to Sec. IVA,

' drFcm!r,X"")
p"1

9 ' drTcm72p8!r,X" !119"

and the contribution from each Tcm72p8 is proportional to that
from Cp(exp$!.r%/r). Equation !83" and the identity

' dr
exp!!.r "

r "
44
.2

!120"

imply that :drCA(r)"0. A recurrence allows one to show
easily by using Eq. !83" again that, for any pB1,

' drCp! exp!!.r "
r #"0. !121"

B. Diagrams contributing from the order "1/2 to ln„"$ /"$
id! ,MB…

Now we turn to the contributions from order # loop
1/2 to

ln(#' /#'
id! ,MB). We calculate J (1)loop

&1/2( for any p because we
need its value for p"1 and p"2, according to Eq. !69a" and
!69c". After inspection, every diagram, but Fig. 1, proves to
be at least of order # loop . In other words, the term of order .
that comes from Fig. 1, J (1)loop

&1/2( (pae'), is the only contribu-
tion of order # loop

1/2 to ln$#',p(Xp)/z' ,p(Xp)% .
With the same notations as in Eq. !51", the contribution

J (1)loop
&1/2( of order # loop

1/2 from Fig. 1 is the sum of two contri-
butions. First, after splitting FR into FRT and $Fcc%2/2, the
contribution from the diagram with only one bond FR gives
a term

' dr' dG#!G"
1
2$F

cc%2!r,pae' ,pe1""
1
4 -!pae'"

2.

!122"

according to the definition of . recalled just before Eq. !31".
The other contribution to J loop

&1/2( comes from I rgT . As ex-
plained in Sec. IV B of Paper I, I rgT contains the sum of rings
of Coulomb bonds plus the value that must be subtracted
from FRT in order to avoid any double counting. The value
of I rgT is given in Sec. IV B of Paper I. The contributions
from (1/2)$Fcc%2 and I rgT are entirely scaled by . . The # loop
expansion of their sum starts at order # loop

1/2 by

J !1 "loop
&1/2( !pae'""

1
2 -!pae'"

2. . !123"

I rgT also gives a contribution proportional to .3,

!.3
1
4 -!pae'"

2( '
0

pad<
pa
'
0

pad<!
pa

1
3 Xa!<"•Xa!<!"

!'
0

pad<
pa

1
3 $Xa!<"%

2) !124"

plus higher-order terms in .2n#1 with nB2. The expression
!124" is derived from the property !82" and from

' dx! 1!e!x

x # ! 1x #"24 , !125"

' dx 6*! 1!e!x

x # 6*! 1x #"24 !126"

!with implicit summation over *)

' dx( ! 1x #C! 1!e!x

x ##! 1!e!x

x #C! 1x # ) "!44 .

!127"

Since Fig. 1 provides the only contribution of order # loop
1/2 ,

the only term of order #1/2 in J(Xa), J &1/2((pae'), is ob-
tained by inserting the # expansion !66" of . around .D in

FIG. 7. The sum of these diagrams is analogous to that of dia-
grams in Fig. 6, apart from the fact that in the case of Fig. 6 the
numerical coefficient involves a one-dimensional integral with el-
ementary functions, whereas in the case of Fig. 7, the coefficient is
a three-dimensional ‘‘bridge’’ integral.
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J loop(1)
&1/2( (e') $namely, by replacing . by .D in the value !123"
of J (1)loop

&1/2( (e')] with the result

J &1/2(!pae'""J !1 "
&1/2(!pae'""

1
2 -!pae'"

2.D . !128"

By using the fundamental formula that will be used several
times in the following:

6.D
n

6#'
"n24-e'

2.D
n!2 , !129"

we get

J &1/2(!pae'""pa
2 6

6#'
! .D3124 # . !130"

For pa"1 J &1/2( is the classical Debye contribution. On the
other hand, according to the formal study in Sec. III E,
J &1/2((pae') for pa"1 is in fact the only contribution at or-
der #1/2 in ln(#' /#'

id! ,MB), namely, B'
&1/2("J &1/2((e'). Thus

the Debye term is the only contribution of order #3/2 in the
free energy density and quantum corrections appear only at
larger orders.
According to the results of Sec. III E, the next terms in the

# expansion of J(La) contribute to the # expansion of
ln(#' /#'

id! ,MB) up to order #3/2 only through :D(!)J &n((!)
with n"1 or n"3/2. For the sake of conciseness, we intro-
duce

IDT
&n(,' D!!"JDT

&n(!!". !131"

Figure 1 gives no contribution of order # , I (1)
&1("0, while

I (1)
&3/2( is the sum of two terms.
One term in I (1)

&3/2( is an exchange term that comes from the
#3/2 term in the expansion of . around .D when it is inserted
in the value !123" of J (1)loop

&1/2( (pae'). It reads

I !1 "exch
&3/2( "4-2e'

2 1
.D
)
1
e1
2#1

2E1*"
-

2
6.D
6#'
)
1
e1
2#1

2E1* .

!132"

After inspection of diagrams, there proves to be no other
diagram that would give exchange contributions at order
#3/2. The term of order # has already been identified as a
derivative with respect to #' in Sec. III E. According to Eq.
!69c", the exchange term B'

&3/2( in ln(#' /#'
id! ,MB) at order #3/2

is the sum of two contributions. The first one,
:DB0(!)Jexch

&3/2((!), originates from the term I (1)exch
&3/2( and may

be expressed as f 6g/6#' . The other one comes from the
loops La with pa"2 and is written in Eq. !69c". After inser-
tion of the value of J &1/2((pe') in Eq. !69c", the latter con-
tribution may be written as g6 f /6#' . More precisely,

' D!!"Jexch
&3/2(!!"##'$J &1/2(!2e'"!2J &1/2(!e'"%E'*

"
6

6#'
! 12 -.D)1 #1

2e1
2E1*# . !133"

Equation !133" is the first example of the adequate combina-
tion of different kinds of contributions in order to produce
derivatives of products of functions that all depend on the
density.
The other term in I (1)

&3/2( arises from the replacement of .3
in Eq. !124" for pa"1 by its leading low-density value .D

3 .
It reads

I !1 "diff
&3/2( "!.D

3 1
8 -e'

2/'
2 %C0# 2

3 =C!uC'"&
"!

-

8 .D
3 6

6#'
!)

1
%C0# 2

3 =C!uC'"&#1e12/12 # .
!134"

In Eq. !134" we have used the index diff because the latter
term comes from # expansions of integrals involving the
bond Fcm and the existence of the latter bond originates from
the combination of quantum fluctuations with the resumma-
tion of collective effects arising from the long range of the
Coulomb potential. We have already called ‘‘diffraction’’
contributions the terms in Eq. !111" that have a similar origin
in the # expansion of :drFR(r,!i ,!j).

C. Diagrams contributing from order " to ln„"$ /"$
id! ,MB…

1. Single bond FRT and first ‘‘direct’’ contributions

The diagram in Fig. 2, which reduces to a single bond
FRT , is responsible for another kind of contributions, called
‘‘direct’’ terms in the following, because they involve the
diagonal matrix element of the two-body Gibbs factor. These
terms contain both short-ranged quantum effects, such as the
existence of bound states, and a proper truncation that makes
the contributions from Rydberg and diffusive quantum states
finite, as a consequence of the screening of monopoles which
is valid both at the classical and quantum levels. The direct
terms appear from order # . The diagram in Fig. 3 !Fig. 4"
will allow the completion of the direct contributions of FRT
!in Fig. 2" in order to obtain derivatives with respect to #' of
a term of order # (#3/2).
The contribution from Fig. 2 to :DB0(!a)J(!a),

I !2 ""' dr)
1
#1' DB0!!a"' DB0!!"FRT!r,!a ,!",

!135"

is given by formula !111". I (2) may be decomposed as

I !2 ""I !2 "dir
&1( #I !2 "diff

&1( #I !2 "dir
&3/2( #I !2 "diff

&3/2( #o!#3/2". !136"

Terms of two kinds emerge at order # . One is a direct
term,
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I !2"dir
&1( ")

1
#1Q'1* !3.D""

6

6#'! 12)1 ,1!
#1#1!Q11!

* !3.D"#
!
2
3 4

2-4e'
2 1

.D
2 %)1 #1e1

3 & 2,
!137"

where the second equality comes from the fact that
Q11!
* (3.D) depends on # by a ln.D term. The other term of

order # is a diffraction contribution and may be viewed as a
partial derivative,

I !2 "diff
&1( "!24-( e'/'2 %C0# 2

3 =C!uC'"& !)1 #1e1#
#e'!)

1
%C0# 2

3 =C!uC1"&#1e1/12 # )
"

6

6#'%!24-!)
1

%C0# 2
3 =C!uC1"&#1e1/12 #

'!)
1!

#1!e1!# & . !138"

At order #3/2 the bond FRT also provides a direct as well
as a diffraction contribution,

I !2 "dir
&3/2( "!

2
3 4-

4e'
4.D)

1
#1e1

4#-e'.D)
1
#1e1Q'1* !4.D",

!139"

I !2 "diff
&3/2( "!

1
8 .D

3 -e'
2/'

2 %C0# 2
3 =C!uC'"&

!
4

2 -
2.De'

2 !)
1

%C0# 2
3 =C!uC1"&#1e12/12 # .

!140"

2. Diagram of Fig. 3 and completion of the direct term
at order "

The diagram in Fig. 3, namely,

' dr&Fcc*!1/2"$Fcc%2*Fcc(!r",

contributes from order # loop . More precisely, Fig. 3 has a
symmetry factor equal to 2 and

J !3 "!!a""
1
2 -

4e'
2
%)
1
e1
3)
p"1

9

p3' D!X"#1 ,p!X"& 2
.2

A ,

!141"

where A,(1/2):$dq/(24)3%$Ã(q)%2$A 2̃%(q) where Ã(x)
"A(x/.;.) is defined in Eq. !77". Since

Ã!q""
44

1#q2
!142"

and

1
2$A

2̃%!q""
24
q arctan! q2 # !143"

we find A"442/3.
After # expansion, the first term in

I !3 ",' DB0!!a"J !3 "!!a"

is of order # . I (3)
&1( completes I (2)dir

&1( in order to form a partial
derivative, and the next term in I (3) is only of order #2 ac-
cording to Eqs. !36" and !56". More precisely,

I3
&1("I !3 "dir

&1( "
2
3 4

2-4e'
2 1

.D
2 %)1 #1e1

3 & 2 !144"

and comparison with Eq. !137" shows that, since there is no
other direct contribution at order # ,

' DB0!!"Jdir
&1(!!""I !2 "dir

&1( #I !3 "dir
&1(

"
6

6#'! 12)1 ,1!
#1#1!Q11!

* !3.D"# .
!145"

We notice that the diagram Fmc*(1/2)$Fcc%2*Fcc gives a
contribution whose # loop expansion should a priori start at
order # loop

3/2 . However, the # loop
3/2 term vanishes after integra-

tion with the measure DB0(!a) and its contribution to
:DB0(!a)J(!a) starts only from order # loop

2 .

3. Diagram of Fig. 4 and completion of the direct term
at order "3/2

The contribution from Fig. 4, namely, Fcc*FRT*Fcc,
starts at order # loop

3/2 and, at this order, it only involves FRT̃(q)
at order # loop

0 . Figure 4 has a symmetry factor equal to 2 and

J !4 "!!a""
1
2 -

2e'
2 1
.' dq

!24"3
$Ã!q "%2

')
1 ,1!

#1e1#1!e1!' DB0!!"' DB0!!!"

'F̃RT
&0(!q,!,!!". !146"

The point is that, after # expansion, the sum I (2)dir
&3/2( #I (4)dir

&3/2( is
a partial derivative.
The first term in the # expansion is calculated by using

Eq. !108" at order #0, :$dq/(24)3%$Ã(q)%2"24 , and the
formula !92" in order to calculate
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' dq
!24"3

$Ã!q"%2' dx$eiq•x!1%
e!3x

x3
"842$ ln3!2ln2% .

!147"

The contribution from Fig. 4 at order #3/2 may be decom-
posed in two terms

I !4 "dir
&3/2( "4-2e'

2 1
.D
)
1 ,1!

#1e1#1!e1!Q11!
* !4.D" !148"

and

I !4 "diff
&3/2( "!4-2e'

2.D)
1

%C0# 2
3 =C!uC1"&#1e12/12 .

!149"

After inspection of diagrams, it turns out that the sum of
the direct terms at order #3/2 is given by Eqs. !139" and
!148",

' DB0!!"Jdir
&3/2(!!"

"I !2 "dir
&3/2( #I !4 "dir

&3/2(

"
6

6#'! 12 -.D)1 ,1!
#1e1#1!e1!Q11!

* !4.D"#
!

6

6#'
!43 -4.D%)1 #1e1

4 & 2# !150"

while the sum of the diffraction terms at order #3/2 arises
from Eqs. !134", !140", and !149" with the result

' DB0!!"Jdiff
&3/2("I !1 "diff

&3/2( #I !2 "diff
&3/2( #I !4 "diff

&3/2(

"!
-

4
6

6#'
! .D3)

1
%C0# 2

3 =C!uC1"&#1e12/12 # . !151"

Both sums prove to be partial derivatives, as they should.

D. Purely classical contributions at order "3/2

The last figures contain purely classical diagrams which
are exactly of order #3/2(L) and which do not involve short-
ranged effects. We have chosen to collect all diagrams whose
sum is a derivative with respect to #' in one given figure.
Moreover, we already notice that diagrams in Fig. 5 give a
contribution to ln(#' /#'

id! ,MB) of the form (#e3)2#e4
whereas the terms arising from the diagrams in Figs. 6 and 7
have the same (#e3)4 structure. The detailed calculations are
displayed in Appendix B and the results are the following.
The total contribution from diagrams in Fig. 5 at order

#3/2 is

I !5 "
&3/2("!44K1-5

6

6#'% 1.D!)1 #1e1
3 # 2!)

1!
#1!e1!

4 # & ,
!152"

where K1 is defined as

Kn,'
0

9

dq
1

$1#q2%n%arctan! q2 # &2. !153"

The sum of the terms arising from Fig. 6 at order #3/2 reads

I !6 "
&3/2("842K2-6

6

6#'
% 1
.D
3 !)1 #1e1

3 # 4& . !154"

Each contribution from the two diagrams in Fig. 7 may be
expressed in terms of a dimensionless integral Ĩ bridge 6
,(1/.D

3 )Ibridge 6 with the result

I !7 "
&3/2("

1
24-

6 Ĩ bridge 6
6

6#'
% 1
.D
3 !)1 #1e1

3 # 4& , !155"

where

Ĩ bridge 6,' dq
!24"3

' dq!
!24"3

' dq"
!24"3

Ã!q"Ã!q!"Ã!q""

'Ã!q!q!"Ã!q!q""Ã!q!!q"". !156"

The integral Ĩ bridge 6 can be reduced to a triple integral by the
following transformation. In the same way as in Ref. $14%,
the integral is written in Fourier space in spherical coordi-
nates. Then, according to the method in Ref. $15%, the three
functions that depend on relative angles are expanded in
terms of Legendre polynomials. The addition and orthogo-
nality theorems for Legendre polynomials lead to

Ĩ bridge 6"384)
b"0

#9

!2b#1 "'
0

9

du1
1

1#u1
2

''
u1

9

du2
Qb!x12"

1#u2
2 'u2

9

du3
Qb!x13"Qb!x23"

1#u3
2 ,

!157"

where Qb(x) is a Legendre function of the second kind,
Qb(z),(1/2):!1

1 dtPb(t)/(z!t), and xi j,(1#ui
2#u j

2)/
2uiu j .

E. Free-energy expression

By collecting the previous exact results up to order #5/2 ,
we find that, for sets of densities that satisfy the local neu-
trality relation )'e'#'"0, we get Eqs. !16"–!18d". The dif-
ference, up to order #5/2, between the exact volume densities
f of free energies with or without B0 reads
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- f !- ,&#'(,B0"!- f !- ,&#'(,B0"0 "

")
'
#'ln! sinhuC'uC'

##)
'
#'ln! !2S'#1 "sinhuS'

sinh$!2S'#1 "uS'%
#!

1
2)'

!!1 "2S'
2S'#1 $1#-.De'

2 %#'
2 !44/'

2 "3/2

'' dr% !2S'#1 "tanhuS'
tanh$!2S'#1 "uS'%

sinhuC'
uC'

7!r$e!-hrel,'!B0"$r8!7!r$e!-hrel,'!B0"0"$r8&
!
1
2)' ,1 $1#-.De'e1%#'#1!24/'/1"3' dr% sinhuC'uC'

sinhuC1
uC1

70,r$e!-H'1!B0"$0,r‹!70,r$e!-H'1!B0"0"$0,r8&
#
1
6
-+c
B0

.D
3)

'
#'e'L [3]!-*B'B0"#o!#5/2". !158"

In the direct terms, the difference between quantities with B0"” 0 and B0"0 automatically performs the truncations needed for
extended states, and the corresponding contribution at order #2 is the same as in the case of short-ranged interactions.
The pressure can be derived from Eqs. !16"–!18d" by using the thermodynamic relation P")'#'(6 f /6#')! f . Terms of

the form Fn
&p(,.D

n )'1 , . . . ,'p#'1'•••'#'pB'1 , . . . ,'p in f are just multiplied by $(n/2)#p!1% in the pressure P , whereas
terms with the structure (ln.D)Fn

&p( in f lead to &(1/2)#$(n/2)#p!1%ln.D(Fn
&p( in P . Eventually,

-P")
'
#'!

1
244 .D

3 !159a"

!
1
2)' !!1 "2S'! 1#

3
2 -.De'

2 # tanhuS'
tanh$!2S'#1 "uS'%

#'
2 sinhuC'

uC'
!44/'

2 "3/2' dr7!r$e!-hrel ,'$r8 !159b"

!
1
2)' ,1 ! 1#

3
2 -.De'e1# #'#1 limR→9

( '
r%R

dr% sinhuC'uC'

sinhuC1
uC1

!24/'/1"370,r$e!-H'1$0,r8!1#
-e'e1
r !

!-e'e1"2

2r2 &
#
24
3 !-e'e1"3ln!.DR ") !

4

3 %12#C#ln3 &-3!)
'
#'e'

3 # 2#4%13!
C
2 !ln2&-4.D!)

'
#'e'

4 # 2 !159c"

#
1
16+

2-2.D
3)

'
#'

e'
2

m'
#
1
4
-+c
B0

.D
3)

'
#'e'L [3]!uC'" !159d"

#C1-5
1
.D

!)
'
#'e'

3 # 2!)
1
#1e1

4 # #C2-6
1

.D
3 !)' #'e'

3 # 4. !159e"

When B0"0, we retrieve the result given in $4%.

VI. CASE OF THE ONE-COMPONENT PLASMA

A. From the two-component plasma to the OCP

1. Limit procedure

The free energy of the OCP is derived from the formulas
valid for a two-component plasma !TCP" by the procedure
used in Ref. $4%. First, the mass of one given species goes to
infinity so that the positions of the corresponding particles
are fixed; then its charge vanishes as its density becomes
infinite while their product is kept constant so that global
neutrality remains valid. This second step ensures that the
fixed particles turn into a uniform neutralizing background.
In this section, we will call (#1 ,m1 ,e1) $(#2 ,m2 ,e2)% the
density, mass, and charge of the light $heavy"% particles. The

procedure has already been tested successfully in the absence
of any magnetic field. In this case its results have been com-
pared with those of a direct derivation of the low-density free
energy for the OCP through Mayer expansions $16%. More-
over, the classical terms for the OCP that are derived through
this procedure in Ref. $4% coincide with those of Ref. $14%
which are directly calculated for the OCP.
In the limit where m2 goes to infinity, the heavy particles

become classical because m2 always appears through the ra-
tio m2 /+ . The matrix elements involving species 2 can be
derived in this limit from the generalized Wigner-Kirkwood
expansions in the presence of a magnetic field of any inten-
sity !see $8%". Indeed, if H'1 is written as hB0 ,1

(0) #Vr'(r1)
where hB0 ,1

0 (r1 ,“r1) is the Hamiltonian !43" of a heavy par-
ticle of species 1 alone in the magnetic field, then in the
classical limit for the heavy particle, according to Eq. !5.2"
of Ref. $8%,
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lim
m1→9

sinhuC1
uC1

!24/1
2 "3/2

'7r1$exp&!-$hB0 ,1
!0 " !r1"#Vr'!r1"%($r18

"exp$!-Vr'!r1"%$1#O!+2"% . !160"

In the right-hand side of Eq. !160" r1 is no longer an opera-
tor, but Vr'(r1) may involve operators acting on the coordi-
nates r' of the light particle.

2. Straightforward limits

When m2 goes to infinity, /2 goes to zero as well as uC2.
In this limit, the purely classical terms !18c" are unchanged,
and when e2 goes to zero the summation over ' and 1 re-
duces to the contribution from one species. The diffraction
contributions !18d" from the heavy particles, which are pro-
portional to /2

2 at uC2 fixed, vanish while those from the light
particles remain unaltered. For light particles, the exchange
term remains unchanged, whereas it tends to its classical
limit in the case of heavy particles.
Since the variables of the center of mass and of the rela-

tive particle are decoupled for identical particles, even in the
presence of B0 , they can be separated. According to Eq.
!21" the exchange !direct" term for two heavy particles
of species 2 is proportional to (sinhuC2 /uC2) times
(44/2

2)3/27r!$exp$!-hrel,2%$r8 with r!"!r (r!"r). In the
classical limit, uC2 goes to zero, the term sinhuC2 /uC2 tends
to 1. The exchange integral :dr7!r$exp$!-hrel,2%$r8 indeed
vanishes. It becomes exponentially small when + goes to
zero; more precisely, this was shown for small B0 in Ref. $9%
and for infinite B0 and in two dimensions in Ref. $8%. For
7r$exp$!-hrel,2%$r8 , the classical limit of the contribution
from the relative particle is obtained from Eq. !160" where
there is no particle of species ' and the role of species 1 is
played by the relative particle with mass m2/2, charge e2/2,
and V(r2)"e2

2/r . Then the classical Boltzmann factor is re-
trieved,

lim
m2→9

! sinhuC2uC2
# 2!24/22"370,r$e!-H22$0,r8"e!-e2

2/r.

!161"

By inserting Eq. !161" in the truncated integral of Eq. !18b"
and taking the limit e2 going to zero, we obtain that the
direct term for species 2 vanishes.

3. Direct term with two different species

In the case of the direct terms involving the two species 1
and 2, there is no separation of variables, but when species 2
becomes classical, an effective separation turns out through
Eq. !160" where the role of species ' (1) is played by
1 (2) and Vr'(r1)"hB0,1

(0) #e1e2 /r . By inserting Eq. !160"
into Q12* (n.D) given by Eq. !110" we get

lim
e2→0*e2#2"!e1#1

% limm2→9
#1#2Q12* !n.D"&

" lim
e2→0*e2#2"!e1#1

#1#2A12 , !162"

with

A12"'
r%R

dr( !24/12"3/2 sinhuC1uC1

'7r$e!-[hB0,1
!0 " #e1e2 /r]$r8!1#

-e1e2
r ) , !163"

with /1"!-+2/m1"limm2→9/12 , where /12 is associated
with the relative particle with reduced mass
!m1m2 /(m1#m2).
In order to study the limit of A12 when e2 vanishes, we

use the expansion of Dyson equation up to order e2 ,

e!-hB0,1
!0 "

!-'
0

1
ds e!-!1!s "hB0,1

!0 " e1e2
r e!-shB0,1

!0 "
#O!e2

2",

!164"

where hB0,1
(0) and 1/r denote operators. !In fact the small di-

mensionless parameter is 012"-e1e2 /a$1). According to
Eq. !42" and the closure relation :dr!$r!87r!$"I !where I is
the identity operator", the e2 expansion of A12 reads

A12"!-e1e2'
0

1
ds'

r%R
dr' dr!% 1r! !

1
r &

'!24/1
2"3/2

sinhuC1
uC1

7r$e!-!1!s "hB0,1
!0 "

$r!8

'7r!$e!-shB0,1
!0 "

$r8#O!e2
2". !165"

We set r!"r#t and make a Taylor expansion of (1/r!)
!(1/r) around 1/r . After integration over orientations of r,
all derivatives eventually lead to Cp(1/r) terms. Equation
!82" can be generalized to an integral over a finite volume
with the result : r%RdrCp(1/r)"0 for pB2, already used in
Eq. !97". Eventually,

A12"!- e1e2'
0

1
ds'

r%R
dr
1
2)* g*!s "6**! 1r ##O!e2

2",

!166"

with, according to Eq. !42",

g*!s ",!24/1
2"3/2

sinhuC1
uC1

' dt$t*%270$e!-!1!s "hB0,1
!0 "

$t8

'7t$e!-shB0,1
!0 "

$08"
70$exp$!-hB0,1

!0 " %$xH!s "%2$08

70$exp$!-hB0,1
!0 " %$08

,

!167"
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where xH(s) is the position operator in Heisenberg represen-
tation at ‘‘imaginary time’’ s . According to the relation be-
tween the path integral of a function and the average value of
the corresponding operator in Heisenberg representation
!see, for instance, page 174 of Ref. $17%",

70$exp$!-hB0,1
!0 " %$xH!s "%2$08

"/1
2cov**!s ,s;uC1"70$exp$!-hB0,1

!0 " $08,

!168"

where cov**(s ,s;uC1) is defined in Eq. !45". Moreover,
by using the identity :dr6**(1/r)"!44/3 !without any
implicit summation over the index *), we find a result
similar to the diffraction term !98" in
:dr:D(!1):D(!2)FRT(r,!1 ,!2),

A12"-e1e224/1
2%C0# 2

3 =C!uC1"&#O!e2
2". !169"

As a conclusion, in the limit where e2 goes to zero with
the neutrality constraint #2e2"!#1e1 , #1#2Q12* (n.D)
leads to a nonvanishing diffraction term whereas
e1e2.D#1#2Q12* (n.D) disppears. Henceforth, in the case of
the OCP, the diffraction term is nonzero at order #2, whereas
this term does not appear in the free energy of a multicom-
ponent plasma because of the neutrality equation for the den-
sities of moving particles. On the contrary, diffraction con-

tributions at order #5/2 have the same structure in both kinds
of systems. We notice that this section is a demonstration of
the result

lim
e2→0*e2#2"!e1#1

% limm2→9
#1#2Q12* !n.D"&

"+2#1
2 4

3 -
2
e1
2

m1
%12#

1
uC1

L [3]!uC1"& . !170"

4. OCP free energy

From now on, we change the notation (#1 ,m1 ,e1) into
(# ,m ,e). In the absence of B0 , the quantities Q* and E*
introduced in the calculations of the present paper differ
from Q and E introduced in Ref. $7% only by a multiplicative
factor 1/(44/3) and an additive constant in the case of Q .
According to the operator representation of Q* given in Eq.
!110",

Q! !
-e2

/
,uC#"

1
44/3%Q*!3.D"! 24

3 -3e6ln!.D/"&
!171"

while, according to Eqs. !21" and !65", E(!-e2// ,uC)
"(1/44/3)E*.
In order to point out the difference arising from the pres-

ence of B0 we may write Eq. !26" as

- fOCP!- ,# ,B0"!- fOCP!- ,# ,B0"0 ""#ln! !2S#1 "sinhuS
sinh$!2S#1 "uS%

###ln! sinhuCuC
##24

!!1 "2S#1

2S#1 #2/3$1#-.De2%

'% !2S#1 "tanhuS
tanh$!2S#1 "uS%

E!!-e2// ,uC"!E!!-e2// ,uC"0 "& !172a"

!24#2/3$1#-.De2%$Q!!-e2// ,uC"!Q!!-e2// ,uC"0 "% !172b"

#
24
3
-2+2

m #2e2! 1#
1
2 -.De

2# 1uC L [3]!uC"#O!#3ln#". !172c"

Up to order #5/2, the results with or without B0 !see Ref. $4%"
are similar to those for a multicomponent plasma !158", apart
from the diffraction term !26e", which does not vanish at
order #2 !see the end of the preceding section".
We notice that the origin of the diffraction terms in the

method of Ref. $3% is essentially the same, though it turns out
in a different technical way. Indeed, the diffraction terms of
a multicomponent plasma come both from bonds of the same
nature as our bond Fcm and from the integration of f T ,g over
g , where f T ,g is the value of f T when the Coulomb interac-
tion is multiplied by the dimensionless coupling parameter
g . The latter integration over g , with 0@g@1, involves cal-
culations similar to those that we used to get the limit of the
OCP, in particular an expression analogous to Eq. !165" is
used.

B. Semiclassical limit for the OCP

In regimes of low degeneracy (//a@1) and weak quan-
tum dynamical effects at uC,-*BB0 fixed, the expression
of the OCP free energy can be expanded with respect to + ,
because the exchange density-matrix element in position
space vanishes exponentially fast when + goes to zero as
discussed above, and because the OCP has a well-defined
thermodynamic limit even with MB statistics.

1. Semiclassical regime

The system is semiclassical for any value of a given cou-
pling if the length scale /qu beneath which the quantum ef-
fects are important is negligible with respect to the smallest

PRE 58 5315QUANTUM PLASMAS WITH OR . . . . II. . . .



length l that characterizes the coupling, whether the latter is
weak or strong. The corresponding dimensionless parameter
reads

tqu,! /qul # 2. !173"

There is no semiclassical parameter associated with the spin
because the latter internal degree of freedom is intrinsically
quantum.
Let us first consider a system with only one kind of inter-

actions. Then /qu may be chosen to be equal to the amplitude
/' of the quantum position fluctuations of free particles with
MB statistics at temperature T . The semiclassical parameter
tqu which measures the importance of quantum dynamical
effects for particles submitted to only one given interaction
at a given temperature may be interpreted as the ratio

tqu"
Hqu! l "
H th

, !174"

where H qu(l) is the kinetic energy of the quantum dynamical
position fluctuations with an amplitude l which is the small-
est length characteristic of the interaction, while H th is the
average kinetic energy of free particles at equilibrium at tem-
perature T . H qu(l) is derived from the uncertainty prin-
ciple and the form of the interaction, while, in a low-
degeneracy regime, H th is given by the Maxwell-Boltzmann
expression, H th"1/- .
In the case of Coulomb interaction, the two-body poten-

tial has no intrinsic characteristic length. When collective
coulombic effects are taken into account, according to Eq.
!7", the smallest length l associated with these effects at tem-
perature 1/- is either the classical closest distance of ap-
proach b'' !when 0$1) or the screening length 3D !when
0)1).
In the case of the magnetic orbital interaction, there is no

coupling between particles and l is merely the intrinsic
length derived from the one-body interaction with the exter-
nal field. From the point of view of statistical mechanics, the
orbital magnetic interaction is essentially quantum in its fun-
damental origin, though the one-body problem may be ac-
counted for by classical relativistic dynamics. Therefore the
corresponding characteristic length l is chosen to arise from
quantum instead of classical dynamics; namely, we use the
characteristic quantum length lC' in place of the classical
thermal gyromagnetic radius RC' defined after Eq. !8" and

tqu, mag,! /'lC'#
2

"2uC' . !175"

$However, RC' is the relevant scale for semiclassical expan-
sions of thermodynamic quantities, because then the refer-
ence quantities used in the statistical framework are calcu-
lated with classical dynamics. Moreover, /' /RC' is equal to
the square of /' /lC' , as mentioned in Eq. !8", so that both
parameters increase with the intensity B0 of the magnetic
field according to Eq. !4".%
We point out that when B0 !i.e., uC') is increased, the

system becomes more and more quantum $i.e., /' /lC' in-
creases, according to Eq. !9", and tqu, mag gets larger%. How-

ever, at the same time the length /qu beneath which quantum
dynamics is crucial changes from /' to lC' in the plane
perpendicular to B0 $8%, because, when the magnetic field is
very strong, the particles are in the lowest Landau level
while the radius lC' of the Landau orbits is negligible with
respect to /' , according to !9". Then the Feynman-Kac-Itô
integral is controlled by the phase factor, whose amplitude is
proportional to uC' and oscillates very fast, as discussed in
Ref. $8%. In the plane perpendicular to the axis of B0 , the
Landau orbits behave as heavy point particles with mass m'
times uC' /tanhuC' that increases with B0 and only the z
component of the quantum fluctuations does survive.
Subsequently, when both Coulomb and magnetic interac-

tions are taken into account, a semiclassical regime shows up
for any values of the coupling parameters 0 and uC' when
the four following conditions are met. If the magnetic field
B0 is weak (uC'$1), quantum fluctuations appear over
scales smaller than or of order /qu"/' . On the other hand,
according to Eq. !7", the smallest length l associated with
Coulomb interaction is l"b'' when 0$1 and l"3D when
0)1. Thus the system is semiclassical for any strength of
the Coulomb coupling if both /'$b'' and /'$3D ,
namely,

/'
a $0'1 , !176a"

! /'a # 2$ 1
0''

. !176b"

These two inequalities are indeed satisfied in the semiclassi-
cal calculations of Ref. $9% which are performed in a limit of
weak magnetic field. On the other hand, when the magnetic
field is strong, quantum phenomena in the plane perpendicu-
lar to B0 show up over scales smaller than /qu"lC' . Thus,
by changing /' into lC' in the previous argument and by
using Eq. !8", the semiclassical conditions !176a" and !176b"
become

/'
a $0''!uC', !177a"

! /'a # 2$ 1
0''

uC' . !177b"

2. Semiclassical and low-density limits

According to the preceding section, conditions for low
degeneracy, (//a)2@1, weak Coulomb coupling, and
weakly quantum dynamics at uC fixed may be fulfilled si-
multaneously. In the semiclassical expansions of Ref. $8%,
statistics is that of Maxwell-Boltzmann and dynamics is
weakly quantum for any strength of the Coulomb and orbital
magnetic couplings: conditions !176a", !176b", !177a", and
!177b" are satisfied. On the other hand, in our low-density
expansions, which correspond to low degeneracy and weak
Coulomb coupling regimes, dynamics is fully quantum and
magnetic coupling is arbitrary. Thus our low-density results
may be expanded in powers of + at uC fixed in situations
where Eqs. !176a" and !177a" are valid. Thus it is legitimate
to compare the double expansions in # and + obtained by
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making either + or # go first to zero when Eqs. !176a" and
!177a" are fulfilled. In this section we omit the superscript
OCP in f in order to simplify notations.
First, the exchange terms are exponentially small when +

goes to zero in the absence $11% as well as in the presence
$8,9% of B0 . Moreover, the strict weak-coupling limit of the
semiclassical formula for exchange effects coincides with the
first-order term in the low-density exchange contribution
!26b". First, we consider the strict low-density limit of the
result !26b". In a strict weak-coupling limit 1#-.De2 tends
to 1 !the collective effects disappear" and the latter exchange
contribution tends to

- f exch"#2!2!4/"3
tanhuS

tanh$!2S#1 "uS%
sinhuC
uC

1
2

'' dr7!r$e!-hrel$r8#O!#5/2". !178"

On the other hand, if we generalize the semiclassical formula
!5.10" of Ref. $9% which is derived for S"1/2 and small uC
to an expression valid for any S and a finite value of uC , the
contribution from exchange effects to the free energy at finite
density when + goes to zero at uC fixed reads

- f exch"#2eC!2!4/"3
tanhuS

tanh$!2S#1 "uS%
1
2
sinhuC
uC

'' dr7!r$e!-hrel$r‹$1#OuC!+
2"% . !179"

In Eq. !179" OuC(+
2) is to be understood as a term of order

+2 times a function of uC which remains finite when uC goes
to zero. C is related to the short-ranged behavior of the clas-
sical pair distribution function and takes the many-body ef-
fects into account. In the low-density !weak Coulomb cou-
pling" limit C vanishes and we get the announced result.
Now, we turn to terms of other kinds, namely, the part

fMB of f that is calculated with MB statistics. We show that
up to order #5/2+2 the # expansion of the semiclassical result
up to order +2 coincides with the + expansion of the low-
density result up to order #5/2. First, we consider the double
expansion where we expand the free energy with respect to #
then to + . According to Eq. !26" the low-density expansion
of fMB takes the form

fMB&@5/2(!- ,# ,B0"! f para!- ,# ,B0"! f dia!- ,# ,B0"

" f cl
&@5/2(!- ,#"#Cquf dir

&@5/2(!- ,# ,B0"

#Cquf diff
&@5/2(!- ,# ,B0", !180"

where f &@n( denotes the low-density expansion of f up to
order #n included, and the quantum corrections read

-Cquf dir
&@5/2(!- ,# ,B0"

,!#2$1#-.De2%( 24/3Q! !-e2

/
,uC#

! lim
+→0

24/3Q! !-e2

/
,uC"0 # ) !181"

and

-Cquf diff
&@5/2(!- ,# ,B0"

,#2%1#
1
2 -.De

2&43 -+2m e2%1#
2
uC

L !3 "!uC"& . !182"

Let us consider the semiclassical limit of the direct term
-Cquf dir

&@5/2( . The + expansion at uC fixed of the diagonal
matrix element for a particle with mass m/2 and charge e/2
in a potential e2/r and submitted to B0 is given by formula
!5.2" of Ref. $8% where uC is unchanged and /2 is multiplied
by 2. This formula gives the correction of order +2/m at 0
and uC fixed to formula !160" of the present paper. When
B0"0, it reads

!44/2"3/27r$e!-hrel,B0"0$r8

"e!-e2/r! 1#
+2-2e2

12m (-e2%“! 1r # &2!2C! 1r # ) #
#O!+4". !183"

When B0"” 0, it may be expressed as the sum

!44/2"3/2
sinhuC
uC

7r$e!-hrel,B0$r8

"!44/2"3/27r$e!-hrel,B0"0$r8#e!-e2/r +
2-2e2

4m

'
1
u L

[3]!u "(-e2%“!! 1r # &2!2C!! 1r # ) #OuC!+
4".

!184"

We recall that, by definition, L [3](uC"0)"0. By using

' dr%6*! 1r # &2e!-e2/r"
1
3' dr%“! 1r # &2e!-e2/r"

44
3

e2

-
!185"

and

' dr 6**! 1r # e!-e2/r"
1
3' drC! 1r # e!-e2/r"0

!186"

together with the definition !24" of Q , the formulas !183"
and !184" lead to

44/3Q! !
-e2

/
,uC"0 #! lim

+→0
%44/3Q! !

-e2

/
,uC"0 # &

"+2
4

3
-2e2

m #O!+4" !187"

and

44/3%Q! !
-e2

/
,uC#!Q! !

-e2

/
,uC"0 # &

"+2
24
3
-2e2

m
1
uC

L [3]!uC"#OuC!+
4". !188"
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As a consequence, we get

Cquf dir
&@5/2(!- ,# ,B0"

"!+2#2$1#-.De2%
4

6
-2e2

m %1#
2
uC

L [3]!uC"&
#OuC!#

2+4". !189"

Equation !189" shows one that in the semiclassical limit, the
difference between the direct term with or without B0 and its
classical corresponding contribution up to order #5/2 gener-
ates diffraction terms at order +2. When the latter ones are
added to the diffraction contributions already present in
-C f diff

&@5/2( given by Eq. !182", the diffraction terms at order
+2#5/2 cancel each other. Eventually, the + expansion of Eq.
!180" starts as

-$ fMB&@5/2(! f para! f dia%

"- f cl
&@5/2(#+2#2

4

6
-2e2

m %1#
2
uC

L [3]!uC"&
#OuC!#

2+4". !190"

On the other hand, the + expansion of the free energy
around its classical value f cl at finite density may be ex-
pressed from Eqs. !5.4"–!5.9" of Ref. $8% as

-$ fMB! f para! f dia%"- f cl#
4

6 -
2+2#2

e2

m %1#
2
uC

L [3]!uC"&
#OuC!+

4", !191"

where the term of order +2 is exactly of order #2. Compari-
son of Eqs. !190" and !191" shows one that the # expansion
up to order #5/2 of the semiclassical fMB given in Eq. !191"
up to order +2 coincides with the + expansion !190" up to
order +2 of fMB&5/2(. As a conclusion, we have checked that
the double expansion with respect to # and + of the free
energy is independent of the order in which the two expan-
sions are performed.

ACKNOWLEDGMENT

This work was partially supported by the Région Rhône-
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APPENDIX A

There are three different methods that allow one to obtain
the values !47" and !48" of the covariances for independent
particles in a magnetic field. The first method provides one
only with covxx

' (s ,s!;B0) and may be found in $18% as a part
of a more intricate calculation. We summarize it very
quickly and we give two other methods which we have de-
vised.
!a" In the first method, the two-dimensional measure

D!3x"D!3y"exp! iC'
0

1
$3xd3y!s "!3yd3x!s "% # , !A1"

with C,e'/'
2B0/2+c , is expressed as an effective one-

dimensional Gaussian measure

D!3x"exp%!'
0

1
ds'

0

1
ds!3x!s "Â!s ,s!"3x!s!"& !A2"

and covxx
' (s ,s!;B0) is identified as the Green function

K(s ,s!) of the quadratic operator Â(s ,s!). The calculations
can be made explicitly by using basic properties of the
Gaussian measure D(!). Indeed, a characteristic property of
generalized Gaussian measure is the following. If F$3y% is a
linear functional of 3y and d3y ,

' D!3y"exp&iF$3y%("exp( !
1
2' D!3y"!F$3y% "2) ,

!A3"

where :D(3y)(F$3y%)2 is in fact a function of the covari-
ances :D(3y)3y(s)3y(s!), :D(3y)d3y(s)3y(s!), and
:D(3y)d3y(s)d3y(s!). The expressions of the free covari-
ances involving derivatives are derived from Eq. !46". By
using the Itô lemma introduced in Sec. III B of Paper I, we
get

D!3x"' D!3y"exp( iC'
0

1
$3xd3y!s "!3yd3x!s "%)

"D!3x"exp( !2C2'
0

1
ds'

0

1
ds!

'$=!s!s!"!1%3x!s "3x!s!") . !A4"

The quadratic form in the exponential of the right-hand side
can be written in terms of an operator Â(s ,s!) as in Eq. !A2".
The corresponding Green function K(s ,s!), such that
:ds":ds!Â(s ,s")K(s",s!)"=(s!s!), is the solution of the
equation

!
d2

ds2 K!s ,s!"#2C
2%K!s ,s!"!'

0

1
ds"K!s",s!"&

"=!s!s!", !A5"

with K(0,s!)"K(s ,0)"0.
!b" In the ‘‘sources’’ method, the covariance is derived as

the second functional derivative of the generating functional
Z(E),

/'
2 cov*?

' !s ,s!;B0""
1
-2

=2!Z$E% "
=E*!s "=E?!s!"

*
E"0

, !A6"

where Z(E) is the integrated measure in the presence of an
external field E that is linearly coupled to the field !,

Z$E%,' DB0!!"exp( /'-'01ds" E!s""•!!s"") .
!A7"

This functional can be calculated explicitly when it is ex-
pressed as a path integral in the phase space !with positions
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and momenta as variables" and when the gauge is chosen to
be A"(0,B0x ,0). Indeed, with the latter choice, the integrals
over the variables 3y and 3z are trivial and the problem is
reduced to the calculation of the path integral of a one-
dimensional harmonic oscillator in the presence of a uniform
external force that depends on time s as on page 131 of Ref.
$17%. The result may be expressed as the exponential of a
quadratic form

Z$E%,exp( !/'2-2/2"'
0

1
ds'

0

1
ds!E*!s "E?!s!"K*?

' !s ,s!")
!A8"

so that cov*?
' (s ,s!;B0)"$K*?

' (s ,s!)#K?*
' (s!,s)%/2.

!c" In the third method, the covariance may be expressed
in terms of time-displaced correlations for position operators
in Heisenberg representation,

/'
2 cov*?

' !s ,s!;B0""E!s!s!"G*?!s ,s!"

#E!s!!s "G?*!s!,s ", !A9"

where

G*?!s ,s!""
70$e!-hB0 ,'

!0 "
$rH!s "%*$rH!s!"%?$08

70$e!-hB0 ,'
!0 "

$08
.

!A10"

The calculations can be made explicitly because the equa-
tions of motion for the position operators are those of a uni-
form rotation around the axis of B0 . This method is the most
elementary as regards its application. The details can be sum-
marized in four steps as follows.
First, the calculation of the covariance is changed into the

determination of matrix elements of operators in Heisenberg
representation. According to Eqs. !42"–!45", and the relation
between path integrals of functions and the corresponding
operators in Heisenberg representation !see page 174 of Ref.
$17%",

7r!$e!-hB0 ,'
!0 "

$r!8&$r!%*$r!%?#/'
2 cov*?

' !s ,s!;B0"(

"E!s!s!"7r!$e!-hB0 ,'
!0 "

$rH!s "%*$rH!s!"%?$r!8

#E!s!!s "7r!$e!-hB0 ,'
!0 "

$rH!s!"%?$rH!s "%*$r!8,

!A11"

where 7r!$exp$!-hB0 ,'
(0) %$r!8 is given by Eq. !42" and rH(s)

is the position operator in Heisenberg representation at the
imaginary time t"!i-+s . The operators without any sub-
script are in Schrödinger representation.
Then rH(s) is determined by the equations of motion in

Heisenberg representation in imaginary time. They read

dpH!s "
ds "-$hH

!0 "!s ",pH!s "% , !A12a"

drH!s "
ds "-$hH

!0 "!s ",rH!s "% . !A12b"

By introducing the velocity operator v"(1/m')$p
!(e' /c)A% , the Hamiltonian can be rewritten as hB0 ,'

(0) (s)
"(m'/2)v2(s). For a uniform magnetic field B0 , $vx ,vy%
"i+2C' /m' in any gauge $19% and in Schrödinger as well
as in Heisenberg representation. In the symmetric gauge A
"(1/2)B0"r,

1
!i-+

dvH!s "
ds "!2C'B̂0"vH!s ", !A13a"

1
!i-+

drH!s "
ds "vH!s ". !A13b"

Thus rH(s) and vH(s) turn around the axis B̂0 with an imagi-
nary frequency i-+2C'"2iuC' ,

xH!s ""x#
1
2C'

&!i$v%xsinh!2uC's "

#$v%y$1!cosh!2uC's "%(, !A14"

yH!s ""y#
1
2C'

&!$v%x$1!cosh!2uC's "%

!i$v%ysinh!2uC's "(. !A15"

Thus the calculation of the covariance reduces to the calcu-
lation of matrix elements 7r!$exp$!-hB0 ,'

(0) %O1O2$r!8,
where O1 and O2 are the components of either the position
or the velocity Schrödinger operators.
The value of the thermal propagator between two nonco-

incident points may be found in the literature !see, for in-
stance, $17%". For a magnetic field B0"B0êz , it reads

7rb$e!-hB0 ,'
!0 "

$ra8"
1

!24/'
2 "3/2

uC'
sinhuC'

'exp( !
1

2/'
2 % !zb!za"2#

uC'
tanhuC'

'$!xb!xa"2#!yb!ya"2%

#i2uC'!xbya!xayb"& ) . !A16"

Since the position operator is diagonal in the basis $r8, the
matrix elements with O1"$r%* and O2"$r%? are just equal
to $r!%*$r!%? times 7r!$exp$!-hB0 ,'

(0) %$r!8. When O1"$r%*
and O2"$v%? , we use the commutation relation
†$r%* ,$v%?‡"i(+/m')=* ,? , the Hermiticity of operators and
the result

7r!$ve!-hB0 ,'
!0 "

$r!8"0. !A17"

When O1 and O2 are velocity components, we use the Her-
miticity of operators again to reduce the calculation to that of
the following matrix elements:
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7r!$$v%x
2e!-hB0 ,'

!0 "
$r!8"7r!$$v%y

2e!-hB0 ,'
!0 "

$r!8

"
1

-m'

uC'
tanhuC'

7r!$e!-hB0 ,'
!0 "

$r!8,

!A18"

7r!$$v%x$v%ye!-hB0 ,'
!0 "

$r!8"!7r!$$v%y$v%xe!-hB0 ,'
!0 "

$r!8

"i
1

-m'
uC'7r!$e!-hB0 ,'

!0 "
$r!8 .

!A19"

Finally, we get the results given in Eqs. !47" and !48".

APPENDIX B

The present appendix is devoted to the derivation of the
contributions from classical diagrams to ln(#' /#'

id! ,MB) at or-
der #3/2.

1. Contributions from diagrams of Fig. 5

Contributions from diagrams of Figs. 5!a", 5!b", and 5!c"
are simply expressed in terms of Fourier tranform of convo-
lutions that involve Ã(q) and Ã2(q). We notice that e'

n

"6()1#1e1
n)/6#' . By using Eq. !129" and introducing the

definition !153" we find

I5!a""!44K1-5
6

6#'
% !)

1
#1e1

3 # 2& !)
1!

#1!e1!
4 # 1.D ,

!B1"

I5!b""!44K1-5!)
1
#1e1

3 # 2 66#'%)1!
#1!e1!

4 & 1.D ,
!B2"

I5!c""!84K2-5!)
1
#1e1

3 # 2!)
1!

#1!e1!
4 # 6

6#'
% 1.D& .

!B3"

The contribution from the diagram 5!d" contains L1 with the
definition

Ln,' dq
!24"3

$Ã!q"%2' dq!
!24"3

Ã!q!q!"

'$Ã!q!"%n
1
2Ã

2!q!". !B4"

If we notice that

' dq
!24"3

$Ã!q"%2Ã!q!q!""
242

1#!q!2/4"
"
4

2 Ã! q!2 #
!B5"

then a mere integration by parts allows one to reexpress L1
in terms of K1 and K2 ,

L1"842$K1!2K2% . !B6"

Eventually,

I5!d""!44$K1!2K2%-5!)
1
#1e1

3 # 2
'!)

1!
#1!e1!

4 # 6

6#'
% 1.D& !B7"

and we get the formula !152".

2. Contributions from diagrams of Fig. 6

Again, the contributions from Figs. 6!a" and 6!b" are
readily expressed as Fourier transforms of convolutions and
involve functions Kn defined in Eq. !153". The results are

I6!a""842K2-6
6

6#'
% !)

1
#1e1

3 # 4& 1
.D
3 , !B8"

I6!b""
32
3 4

2K3-6!)
1
#1e1

3 # 4 66#'% 1.D3 & . !B9"

The contribution from diagram 6!c" may be written in terms
of L2 with the definition !B4". As in the case of L1 , we use
Eq. !B5" and an integration by parts to write L2 in terms of
K2 and K3 ,

L2"3243$3K2!4K3% . !B10"

Finally

I6!c""
8
3 4

2$3K2!4K3%-6!)
1
#1e1

3 # 4 66#'% 1.D3 &
!B11"

and we get formula !154".

3. Contributions from diagrams of Fig. 7

We introduce the ‘‘bridge’’ integral with six bonds Fcc,

Ibridge 6,' dk
!24"3

' dk!
!24"3

' dk"
!24"3

A!k"A!k!"A!k""

'A!k!k!"A!k!k""A!k!!k"". !B12"

The symmetry factor of diagram 7!a" is equal to 3!, because
any permutation of the three internal points does not change
the integrand. Thus

I7!a""
1
3! -

6e'
3 !)

1
#1e1

3 # 3Ibridge 6
"
1
24-

6 6

6#'
% !)

1
#1e1

3 # 4& Ibridge 6 . !B13"

The symmetry factor of diagram 7!b" is 4, because, if 1 and
2 denote the two points that are linked to the root point while
3 and 4 label the two other internal points, the allowed per-
mutations that do not change the integrand are the following:
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the identity, the permutation of 1 with 2, that of 3 with 4, and
the simultaneous permutations of 1 with 2 and 3 with 4. The
contribution from 7!b" is

I7!b""!
1
4 -

7e'
2 !)

1
#1e1

3 # 4Ibridge 6[2] , !B14"

where Ibridge 6
[2] denotes an expression similar to Eq. !B12"

where A(k) is replaced by $A(k)%2. Moreover, we

notice that Ibridge 6
[2] "!(24/3)dIbridge 6 /d(.D

2 ) and e'
2

"(1/44-)6.D
2 /6#' . Henceforth

I7!b""
1
24-

6 6Ibridge 6
6#'

!)
1
#1e1

3 # 4 !B15"

and we obtain Eq. !155".
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