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For a multicomponent plasma of point charges with Coulomb interactions, the exact analytical low-density
expressions for leading algebraic tails of various quantum static correlations at large distances are derived at
the first two orders in density in the absence as well as in the presence of a uniform magnetic field B0 . The
calculation is nonperturbative in the Planck constant # and in the coupling with the magnetic field. It settles the
existence of algebraic quantum screening for position correlations with or without charge summations. In the
case of a one-component plasma !OCP" our calculation does coincide with another expression which we derive
from an exact sum rule specific to the OCP. A simple physical picture emerges from our results. At low
density, each algebraic tail arises merely from one effective quantum interaction: a squared dipolar energy
when B0!0 and a quadrupolar interaction in the anisotropic case B0$0. Only Maxwell-Boltzmann statistics
and free quantum motion are involved at the first two orders in density. Thus for a given value of the magnetic
coupling constant the coefficient is exactly proportional to #4, and when B0!0, it coincides with the low-
density limit of the semiclassical calculation for a Coulomb potential regularized at the origin. Quantum
dynamics and quantum statistics in the presence of Coulomb interactions show up only at the third order in
density where a singular dependence in # appears. In the case B0!0, the classical the Debye screening proves
to be sufficient to enforce a cascade in the exponents of the leading algebraic tails when charges are summed
over. When B0$0 a cancellation between the Debye screening effect and its semiclassical diffraction correc-
tion may be interpreted as a consequence of the intrinsic quantum nature of statistical magnetic properties.
Subsequently, the charge density induced by an external charge %q is nonlinear in %q at the first order in
density when B0$0. Finally, the crossover distance between classical exponential and quantum algebraic
falloffs is estimated: it is a few Debye lengths, because quantum effects are still quantitatively small in the
regime where exact analytical results are available. &S1063-651X!98"02810-4'

PACS number!s": 05.30."d, 05.70.Ce, 71.45.Gm

I. INTRODUCTION

In the present paper we exhibit the exact analytical low-
density limits of leading algebraic tails for various correla-
tions at large distances r in a quantum plasma of point
charges with Coulomb interaction at finite temperature
1/(: we address the particle-particle, particle-charge, and
charge-charge correlations, )*+

(2)T(r), ,+e+)*+
(2)T(r), and

,* ,+e*e+)*+
(2)T(r), respectively. !In fact correlation means

two-body distribution function." We also produce the tail of
the induced charge density ,+e+)+

ind(r;q) in the presence of
an external point charge q , which may be either finite or
infinitesimal. &In the latter case we use the notation
,+e+)+

ind,L(r;%q), where the extra superscript L !not intro-
duced in previous papers" refers to the linear response
theory.' These exact analytical results settle the existence of
algebraic screening in quantum plasmas whose Hamiltonian
is that given in Paper I. Indeed, the argument of Paper I
about the algebraic decay of quantum correlations in Cou-
lomb systems at any finite density is only perturbative in the
sense that it is derived from expansions with respect to an
auxiliary variable, namely, the loop density. The low-density
regime corresponds to physical situations of low degeneracy
and weak Coulomb coupling, and the present low-density
limits are derived by using the same techniques as those
introduced in Paper II. Moreover, we point out that an exact

sum rule for the model of the one-component plasma !OCP"
implies the existence of an algebraic tail for the quantum
static correlation in the presence of B0 , as already noticed in
the analogous case of the classical time-displaced correlation
for the same system &1'. Our result for the OCP seen as some
limit of a two-component plasma does coincide with the low-
density coefficient derived from the exact sum rule. The vari-
ous qualitative and quantitative results have been summa-
rized elsewhere in the cases B0!0 &2' and B0$0 &3'.
The paper is organized as follows. The main results are

displayed in Sec. II. In Sec. II A we give the expressions and
the formal structures of low-density tails of )*+

(2)T(r) in order
to exhibit physical mechanisms at stake. At low density, al-
gebraic tails arise merely from squared dipolar interactions
when B0!0 or from quadrupolar forces in the anisotropic
case B0$0. Their coefficients at order )2 and )5/2 are ex-
actly proportional to #4 !for a given value of the orbital
magnetic coupling". A singular dependence shows up only
from order )3 when quantum statistics and quantum dynam-
ics with Coulomb interactions begin playing a role. Simi-
larly, spin and position variables are coupled only by the
latter ones so that the spin does not appear at the first two
orders in densities. In Sec. II B, we point out how the exact
low-density tail for the OCP may be derived from an exact
sum rule established in another framework. In Sec. II C the
order of magnitude of the crossover distance at which the
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algebraic quantum tail begins dominating the exponential
classical tail is shown to be a few Debye lengths: the effect
proves to be quantitatively small in the low-density regime.
In Sec. III we recall relations between distribution functions
for quantum particles and for loops !Sec. III A". The invari-
ance of the measure for loop shapes under inversion allows
one to simplify the discussion of the small-k behavior of
correlations in Fourier space !see Sec. III B". In Sec. IV we
sketch the scheme for low-density expansions. First, we per-
form loop-density expansions by using the scaling analysis
of diagrams introduced in Paper II !Sec. IVA" and then we
replace loop densities by their expressions in terms of par-
ticle densities !Sec. IVB". Section V is devoted to the case
B0!0. As at any finite density, there occurs a cascade of
power laws when charges are summed over: a simple mecha-
nism involving only classical Debye screening is shown to
be efficient enough at the first two orders in density !Sec.
VA". Explicit results at these orders are produced !Secs. V B
and VC" and diagrams that contribute at next order in den-
sity are listed in order to discuss other quantum effects that
appear only from third order !Sec. VD". In particular, we
discuss the dependence of coefficients upon the Planck con-
stant # . The case B0$0 is investigated in Sec. VI. Argu-
ments of invariance under inversion enforce constraints on
the diagrams to be considered !Sec. VI A". A cancellation
between classical Debye screening and its semiclassical dif-
fraction correction, which occurs only at the first order in
density, is analyzed !Sec. VI B". The explicit values of the
1/r5 tails and their limits in weak or strong magnetic field are
given !Sec. VI C". In Sec. VII the case of the OCP is handled
as a limiting case of a two-component plasma in the absence
!Sec. VII A" as well as in the presence !Sec. VII B" of B0 . In
the conclusion !Sec. VIII", after discussion of some qualita-
tive results !Sec. VIII A", we consider other approaches to
get a deeper insight into physical mechanisms at stake. The
compatibility of algebraic screening with exact sum rules
which characterize perfect screening is discussed in the low-
density regime !Sec. VIII B". When B0!0, low-density ex-
pansions of exact quantum tails coincide with low-density
expansions of semiclassical expressions, because the exact
result is exactly proportional to #4 at the first two orders in
density !Sec. VIII C". When B0$0 !Sec. VIII D", the intrin-
sic quantum nature of the algebraic tails which occur only in
the presence of the magnetic field is discussed by compari-
son with the simple model recalled in Paper I. The nonlin-
earity of the induced charge at the first order in density is
explained. Finally !Sec. VIII E", we recall that algebraic tails
with the same exponents as in the quantum case also appear
in classical time-displaced correlations. In the latter case the
polarization cloud cannot follow instantaneously the motion
of the charge, because of inertia effects that are involved as
soon as time-displaced averages are considered; then the dy-
namical classical fluctuations of the instantaneous dipole as-
sociated with a charge and its screening cloud play a role
similar to that of the static quantum fluctuations.

II. MAIN RESULTS

A. Formal structures of low-density tails

In the present section we resume the description that
emerges from our final expressions for the low-density

particle-particle correlation at the first two orders )2 and
)5/2. !As in Paper II, ) is a generic notation for particle
densities, while a term which is exactly of order )n is de-
noted by f -n..) A particle of species * is characterized by its
mass m* , its charge e* , and its spin #S* . In fact, the spin
will not be involved in the expressions at order )2 and )5/2.
When B0!0, at the first order in density,

)*+
!2 "T!r"!B0!0 /

r→0

(4#4

240 )*)+e*e+" e*m*
"
1e/m
2

1D
2 #" e+m+

"
1e/m
2

1D
2 # ,
!1"

where (!(kBT)"1 is the inverse temperature, 1D is equal to
the inverse Debye screening length, 1D!!42(,*)*e*2 ,
and 1e/m

2 342(,*()*e*
3 /m*). The leading algebraic decay

A*+ /r6 of )*+
(2)T(r)!B0!0 at orders )2 and )5/2 turns out to

arise only from the squared fluctuations of some dipolar in-
teraction combined with classical Debye screening effects.
More precisely, A*+

-n./r6, with n!2 or 5/2, may be inter-
preted as the tail of the convolution

,
*1 ,*2

SD ,**1
cl *&"(V*1*2

eff!6 "!-n.'*SD ,*2+
cl , !2"

where V*1*2
eff(6)(r)!-n. is a purely algebraic effective potential

proportional to 1/r6. SD ,*+
cl (r), which decays exponentially

fast, is the Debye part of the classical structure factor. The
structure factor is defined as

S*+!r"!)*+
!2 "T!r"#%* ,+)*%!r" !3"

and its classical !linearized" Debye approximation SD ,*+
cl cor-

responds to

)D ,*+
!2 "Tcl!r"!)*)+""(e*e+

e"1Dr

r #3)*)+FD ,*+
cc . !4"

In terms of dimensionless Brownian bridges !i which de-
scribe quantum position fluctuations !see Sec. III B of Paper
I", V*1*2

eff(6)(r)!-n. is the average of some squared dipolar inter-
action over all possible shapes 4* i!i with a normalized
Gaussian measure D(!i) and a typical extent equal to the de
Broglie thermal wavelength 4*3!(#2/m*. At zero density

"(V*1*2
eff!6 "!r "!-0.!

1
2$ D!!1"$ D!!2"

$&W3!r,!1 ,!2 ;*1 ,*2"'2, !5"

where W3 is a purely quantum dipole-dipole potential,

W3!r,!1 ,!2 ;*1 ,*2"3($
0

1
ds1$

0

1
ds2&%!s1"s2""1'

$&4*1!1!s1"•“'&4*2!2!s2"•“'

$% e*1e*2r & , !6"

and W3(r,!1 ,!2 ;*1 ,*2) is the 1/r3 tail of
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W3"(e*1e*2$0
1
ds1$

0

1
ds2&%!s1"s2""1'

$vC„r#4*2!2!s2""4*1!1!s1"…, !7"

where vC(r)!1/r . The mean value 5D(!1)5D(!2)W3(r,
!1 ,!2 ;*1 ,*2) vanishes by arguments of invariance under
!i→"!i . All 1/rn terms Wn arising from the large-r Taylor
expansion of W and which are not canceled by inversion
invariance of the measure D(!) are in fact short ranged,
because, after the rotational invariance of D(!) has been
taken into account, the latter terms are reduced to powers of
the Laplacian of 1/r and 6(1/r)!"42%(r). The explicit
values of V*1*2

eff(6)(r)!-n. with n!0,1/2 are given in Sec. VC.
We notice that in the case of a two-component plasma
A*+ /)*)+ is independent from species * or + in the low-
density limit and the force corresponding to A*+

-2.#A*+
-5/2. is

attractive.
When B0$0, rotational invariance is broken in one space

direction and nonsquared multipole-multipole interactions
partially survive after statistical average. At the first order in
density,

)*+
!2 "T!r"!B0 /

r→0
")*)+(

3#4
e*e+
m*m+

A!uC* ,uC+"
P4!cos7"

r5 ,

!8"

where P4(x) is a Legendre polynomial and 7 is the angle
between B0 and r, as already noticed in Paper I, while
P4(x)!&35cos47#20cos27#9'/64. In Eq. !8"

A!uC* ,uC+"!
3
2' "

1

uC*
2 "uC+

2 " uC+2uC*3 cothuC*"
uC*
2

uC+
3 cothuC+#

#
1
45"

1

3uC*
2 "

1

3uC+
2 "

1

uC*
4

"
1

uC+
4 "

1

uC*
2 uC+

2 ( , !9"

where uC* is the dimensionless coupling constant for orbital
magnetic interaction uC*3(8B*B0 . The interpretation is
the following. The leading D*+

-2./r5 tail of )*+
(2)T(r)!B0 at the

first order )2 reads

D*+
-2.

r5
!)*)+&"(V*+

eff!5 "!r"!-0.' , !10"

where V*+
eff(5) is a purely quantum quadrupole-quadrupole in-

teraction

"(V*1*2
eff!5 "!r"!-0.

!$ DB0!!1"$ DB0!!2"W5!r,!1 ,!2 ;*1 ,*2", !11"

with

W5!r,!1 ,!2 ;*1 ,*2"

!"(
1
4$0

1
ds1$

0

1
ds2&%!s1"s2""1'

$&4*1!1!s1"•“'2&4*2!2!s2"•“'2% e*1e*2r & . !12"

W5 is not short ranged in spite of the harmonicity of the
Coulomb potential, because the measure DB0(!) is aniso-
tropic in the presence of B0 . By using the covariance of a
Brownian motion driven by a uniform magnetic field !given
in Sec. III C of Paper II", we get Eq. !8". D*+

-2./r5 contains
only one direct quadrupolar contribution without any Debye
screening &contrary to what happens in Eq. !2" for A*+

-2.] and
there is no dipole-dipole or dipole-quadrupole quantum in-
teraction screened by monopole-dipole Debye interaction ei-
ther. Indeed, there occurs a cancellation mechanism between
classical exponential Debye screening and semiclassical dif-
fraction corrections to it, so that the medium has no net con-
tribution to Eq. !10". At next order, the same cancellation
mechanism is involved but it does not suppress all screening
contributions.
The cancellation of Debye screening contributions may be

related to the intrinsically quantum dynamical nature of sta-
tistical effects due to the magnetic field. It does not appear in
the case of the 1/r6 subleading tail in the presence of B0 .
Indeed, according to Sec. VIII A of Paper I, a 1/r6 decay
arises from the same diagrammatic structure whether B0 is
switched on or not, and A*+

-2.( r̂;B0)/r6 !with r̂3r/!r!) is
analogous to the tail of the convolution !2" with the mea-
sure DB0(!) in place of D(!) in Eq. !5". The coefficient
A*+
-2.( r̂;B0) is anisotropic, because the effective potential

V*1*2
eff(6)!-0. is now calculated with the measure DB0(!).
The coefficients of all considered tails at orders lower

than )3 are entirely determined by quantum dynamics of
independent particles !in the absence or in the presence of
B0), Maxwell-Botzmann !MB" statistics, and classical De-
bye screening. However, from order )3 on, mechanisms are
more intricate and contributions from quantum dynamics and
quantum statistics for interacting charges appear in the struc-
tures of algebraic tails.
When charges are summed over, internal screening is in-

volved in the relation between exponents of correlation de-
cays at any finite density !as already discussed in Fourier
space in Paper I". At the first two orders in density, when
B0!0, classical Debye screening by itself is sufficient
to lead to the cascade of power laws A*+ /r6, B* /r8,
and C/r10 for )*+

(2)T(r)!B0!0 , ,*e+)*+
(2)T(r)!B0!0 , and

,* ,+e*e+)*+
(2)T(r)!B0!0 , respectively. Indeed, at the first two

orders in density, B* /r8 and C/r10 may also be interpreted
as the tails of the convolution !2" with corresponding charge
summations with the results

,
+
e+)*+

!2 "T!r ")
B0!0

/
r→0

1
r8

1
322(

3#4)*e*
1e/m
2

1D
2 "1e/m2

1D
2 "

e*
m*

# , !13"
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,
* ,+

e*e+)*+
!2 "T!r ")

B0!0

/
r→0

1

r10
7

1622 (
2#4

1e/m
4

1D
4 . !14"

When B0$0, all correlations !with or without summation
over charges" decay with the same 1/r5 inverse power law.
At first orders )2 and )5/2 this may be accounted for by the
fact that internal screening mechanisms, involving both the
classical monopole-monopole Debye potential and its semi-
classical ‘‘diffraction’’ correction !more precisely a dipole-
monopole Debye interaction" partially cancel one another at
first orders in density.
Screening of an external charge is also investigated. At

low density, when B0!0, classical Debye screening of an
external charge enforces a cascade in the density orders at
which the coefficients A*+ , B* , and C start. The leading
B!/r8 tail of the induced charge density reads

,
+
e+)+

ind,L!r;%q ")
B0!0

/
r→0

1

r8
1
322 (

3#4
1e/m
4

1D
4 %q . !15"

It starts at order )0; henceforth the 1/r8 tail of the induced
charge density does not vanish in the strict zero-density
limit. The reason is that such a tail is valid for distances
which are far larger than the Debye screening length so that
the existence of the medium is always taken into account
implicitly. When B0$0, the tail D*+ /r5 of )*+

(2)T(r)!B0 at the
lowest order )2 !but not at order )5/2) results only from
nonlinear effects in each charge e* . Indeed, at order )2, it
does not involve any net contribution from Debye screening
!which is linear in e*) while the bare Coulomb interaction is
proportional to e* and the quadrupolar moment associated
with the quantum motion of each charge e* in Eq. !12" is
quadratic in small e* when B0 is switched on. &More pre-
cisely it varies as e*

2 /m*
3 ; this can be checked from the ex-

plicit formula !8".' As a consequence, the tail of the induced
charge density ,+e+)+

ind(r;q)!B0, which can be derived from
)*+
(2)T(r)!B0 !see Sec. VIII C of Paper I", is nonlinear in q at
the corresponding order ): it becomes cubic with respect to
the ratio q/mq for the external charge when the latter goes to
zero—and henceforth vanishes for a fixed infinitesimal ex-
ternal point charge which cannot be sensitive to the magnetic
field !since its mass must be seen as infinite". Indeed, accord-
ing to the loop formalism, the tail of the induced charge
density ,+e+)+

ind,L!B0(r;%q) given by the linear response
theory vanishes at order ) and shows up only at order )3/2
!see Sec. VI B 4".

B. The OCP as a test bench

An interesting test bench for our calculations is the model
of the quantum OCP. The OCP is special in the sense that
there exists an exact sum rule &4' that determines the value of
the term of order !k!2 in the Fourier transform of the struc-
ture factor S OCP(r)!)%(r)#)OCP

(2)T(r). !This sum rule arises
from the fact that the center of mass decouples from relative
coordinates and is only submitted to the harmonic force of
the background."When B0!0, this term is analytic, which is

in agreement with the 1/r10 leading algebraic decay of the
charge-charge correlation e2S OCP(r). When B0$0, the ex-
act !k!2 term in the small-k expansion of S OCP(k) oscillates
in its dependence upon the angle 7k between B0 and k. A
part of this oscillating term is nonanalytic in the components
of k and it gives the coefficient of the DOCP /r5 tail of
SOCP(r) at any density implicitly.
More precisely, according to Eq. !5.63" of Ref. &4', the

!k!2 term is given by

42( lim
!k!→0)7kfixed

e2SOCP!k"!B0
!k!2

!
1

9#
2 "9"

2 " !9#
2 "9c

2"
(#9#

2 coth% (#9#

2 &
"!9"

2 "9c
2"
(#9"

2 coth% (#9"

2 & # . !16"

The term in the right-hand side of Eq. !16" corresponds to
the double limit limL→0limR→0 of 5Cdr!5drvC(r
"r!)e2S OCP(r!) where r! is integrated over a cylinder C
with radius R and length 2L and whose axis is parallel with
B0 . The !k!2 term in e2SOCP!B0(k) is not analytic in the
components of k, because frequencies 9# and 9" oscillate
with the angle 7k ,

9%
2 !

1
2 -9p

2#9c
2%&!9p

2#9c
2"2"4!9p9ccos7k"2'1/2.,

!17"

where 9c3(e/mc)B0 is the cyclotronic frequency and 9p
!!42e2)/m is the plasmon frequency. When B0$0 such
an oscillatory behavior in the angle 7k between B0 and k also
appears in density waves with large wavelength in the ran-
dom phase approximation &5'. We notice that if B0!0, then
9#
2 !9p

2 and 9"
2 !0, and Eq. !16" reduces to the sum rule

derived in &6,7',

42( lim
!k!→0

e2SOCP! !k!"!B0!0

!k!2
!
(#9p

2 coth% (#9p

2 & .
!18"

The dependence on cos7k of the exact term !16" is intri-
cate. However, explicit analytical results may be obtained in
the low-density regime at uC!(#9c/2 fixed. At order ) , the
!k!2 term in S OCP(k) involves a term proportional to k2 plus
a contribution with k2(cos7k)2!&k'z

2 , which is anisotropic
but analytic. At order )2 there appears an extra k2(cos7k)4
!&k'z

4/k2 term, which is nonanalytic. We have checked that
the low-density coefficient DOCP

-2. at order )2 which is derived
from our low-density results for a two-component plasma
does coincide with the inverse Fourier transform of the
nonanalytic part in the low-density limit of the exact !k!2
term in SOCP(k).
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C. Orders of magnitudes

The crossover distance r* between the Debye exponentialdecay and the algebraic tail may be calculated in some physi-
cal situations, where conditions for low-density expansions
are met. In regimes of weak Coulomb coupling and low de-
generacy, the numerical value of the algebraic tail of the
particle-particle correlation becomes more important than
that of the Debye exponential decay only at distances of
about ten Debye lengths, in the absence &2' as well as in the
presence &3' of B0 .
The latter estimations are obtained by considering tails of

particle-particle correlations for a symmetric two-component
plasma in order to get very simple analytical expressions in
terms of dimensionless parameters of the problem. For a
symmetric two-component plasma in which e#!"e"3e ,
the local neutrality relation implies that )#!)"3) . The
Debye expression, which is exact for a classical plasma in
the limit of weak Coulomb coupling &8', reads

)*+ ,D
!2 "Tcl!r" /

r→0
"sgn!e*"sgn!e+")2!3:3/2

e"x

x , !19"

where sgn(e*) is the sign of the charge e* , x3r/;D , and ;D
is the Debye length, ;D31D

"1 . The mean interparticle dis-
tance a is calculated from the relation (42/3)a3(2))!1, so
that the coupling constant is :3(e2/a!(1/3)(a/;D)2.
When B0!0, the first-order term !1" in the 1/r6 tail of
)*+
(2)T(r)!B0!0 is reduced to

)*+
!2 "T!r"!B0!0 /

r→0
)2

9
320:

5% 4"

a & 4"1#
m"

m#
#2 1x6 , !20"

where 4" is the de Broglie thermal wavelength of negative
charges, 4"3!(#2/m". For instance, the core of the Sun
may be seen as a hydrogen plasma almost fully ionized by
pressure and temperature, with a mass density )m
/160 g/cm3 at temperature T/1.5$107 K. Thus a/0.1
Å, the system is rather weakly degenerated, 4" /a/0.7, and
weakly coupled, :/0.1. The contribution from the algebraic
tail A*+ /r6 becomes as large as the classical Debye-Hückel
approximation at a crossover distance r*/31;D . In thepresence of B0 , we use the simple form !8" valid in the limit
where B0!!B0! becomes infinite,

)*+
!2 "T!r"!B0 /

r→0
"sgn!e*"sgn!e+")2

$
3!3
10 :

7/2% 4*a & 2% 4+a & 2P4!cos7"x5 . !21"

In the opposite regime of very weak B0 , the limiting law is
just equal to Eq. !21" multiplied by (1/105) times
((8B*B0)2((8B+B0)2, where 8B* is the Bohr magneton,
8B*!e*#/2m*c .
An example where we can compare results with or with-

out magnetic field is that of an intrinsic semiconductor where
the charge-carrier gas !made of electrons and holes" is indeed
at finite temperature and weakly degenerated as well as
weakly coupled. For instance, in germanium, holes have the
same mass as electrons, a/1530 Å and T/300 K, so that

4" /a/0.01, :/0.4, and r*/43;D . In laboratory experi-ments, magnetic fields are not much stronger than a few
teslas. For B0/1 T, (8BB0/2.2$10"3 T and we are in
conditions of weak coupling with the external magnetic field.
Then we find that r*/66;D . We notice that if it were pos-sible to generate magnetic fields so intense that the coeffi-
cient of the 1/r5 tail would no longer depend on B0 at lead-
ing order, then r*/36;D .It is not surprising that r* is about ten ;D . Indeed, ouranalytical expressions do correspond to fully quantum dy-
namics but quantum effects are not quantitatively important
at low density. However, there may exist some system with
stronger quantum features where r* might be of the sameorder as ;D .

III. BASIC FORMULAS AT ANY DENSITY

A. Particle versus loop correlations

The part of the correlation that arises from configurations
where particles at positions 0 and r are not exchanged under
a cyclic permutation of quantum statistics may be expressed
as &9'

)*a*b
!2 "T !nonexch!r"

! ,
pa ,pb

papb$ D!Xa"$ D!Xb")!<a")!<b"h!r,<a ,<b",

!22"

with notations of Paper I. In the part of the paper devoted to
the derivation of the coefficients of algebraic tails, we use the
notation *a and *b in order to keep track of loops that are
root points in the diagrammatic representation of the Ursell
function h . We recall that a ‘‘point’’ in a diagram denotes
the loop variables (R,<). The analogous nonexchange part
of the induced charge density reads &10'

,
+
e+)+

ind)
nonexch

%q!k" !"
42(

k2
$ d<a)!<a"e*apaGh!k,<a",

!23"

where Gf is defined as

Gf!k,<"3$ d<b)!<b"e*b$0
pb
d=e"ik•Xb!=" f !k,<;<b".

!24"

The structures of leading algebraic tails of various corre-
lations have been given in terms of diagrams with weight
)(L) before any expansion in Paper I. They involve dia-
grams >̃ with bonds Fcc, Fcm, FR"W , and W . For all kinds
of correlations, they are expressed in terms of one and the
same function hnn, with proper ‘‘dressings’’ which describe
screening of monopole-monopole and monopole-multipole
quantum interactions. hnn is the sum of all diagrams in h in
which root points are not Coulomb root points, i.e., in which
each root point Lr is neither the end point of a single bond
Fcc(Lr ,Li) or Fcm(Lr ,Li). For instance, the 1/r6 tail of
)*a*b
(2)T comes from
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?D*hnn*?D , !25"

where ?D describes a loop surrounded by a polarization
cloud in the mean-field ‘‘Debye’’ approximation !see Sec.
VIII A of Paper I". We recall that * denotes a convolution in
position space and an integration over the internal degrees of
freedom of the intermediate loop.

B. Structure of Fourier transforms of correlation tails

Since diagrams of interest are convolutions, we work in
Fourier space. Indeed, the large-distance behavior of a con-
volution f*g is merely given by the nonanalytical singulari-
ties in the product of small-k expansions of Fourier trans-
forms of f and g !see Sec. VI B of Paper I".
According to the general study performed in Paper I, the

orders in !k! of dressings and of hnn are determined by two
kinds of symmetry arguments: on one hand, parity arguments
which occur when loop shapes are integrated over and, on
the other hand, arguments of rotational invariance around
any axis !or only around some given direction" which make
!or do not make" some terms analytical in the components of
k. In the very simple example which we mentioned in Eq.
!25" when B0!0, the terms of order !k!0, !k!, and !k!2 in the
singular part Shnn(k,<1 ,<2) of the Fourier transform of hnn
are canceled by symmetry arguments at any finite density
and singularities of hnn(k) appear only from order !k!3. We
notice that, if the first term in the Fourier transform of the
dressing is of order !k!p with p&0, then the order of the
singular term to be looked for in Shnn is lowered for a given
inverse power law in the decay of the considered correlation.
Moreover, the part of Shnn(k,X1 ,X2) which is relevant

has a given parity in Xi , because each term of a given order
in !k! in the small-k expansion of the dressing has a given
parity in the shapes of its arguments. As in Paper I, we use
the notation f [q ,q!](< ,<!) where q!0 (q!!0) if f is even
under inversion of X (X!) and q!1 (q!!1), if it is odd.
According to Sec. VIII A of Paper I

?D!k,<1 ;<a"!%<1 ,<a"e*apa
42()!<1"e*1p1

12
"1"

k2

12
#

#Oanal! !k!4", !26"

where Oanal(!k!4) denotes a term of order !k!4 which is ana-
lytical in the components of k, and at any order in !k!

?D!?D
[0,0] . !27"

With the convention that the root point is always a Coulomb
point in dressings by ?D and Fcm, so that Fcm(k,<1 ;<a)
3Fcm(k,<a ,<1),

)!<1"Fcm!k,<1 ;<a"

!e*apa
42(e*1p1)!<1"

12
" $

0

p1d=
p1
ik•X1!="

#$
0

p1d=
p1

1
2 „k•X1!="…2##O! !k!3". !28"

Thus the term Fcm(p)(k,< ,<!) of order !k!p in Fcm(k,< ,<!)
is such that

Fcm!p "!Fcm!p "[0,7!p "], !29"

where 7(p)!0 if p is even and 7(p)!1 if p is odd. In fact,
Fcm is independent of Xa . Moreover, according to Sec. VA
of Paper II,

$ drFcm!r,<1 ;<a"!0. !30"

Other properties arising from parity arguments are useful
to simplify formulas. First,

$ dr&FR"W'!r,< ,<!"!$ dr&FR"W3'!r,< ,<!",
!31"

where W3 is the 1/r3 part in the purely algebraic term

W!r,< ,<!"!"(e*e*!$0
p
d=$

0

p!
d=!-%„&="P!="'

"&=!"P!=!"'…"1. 1

!r#X!!=!""X!="!
.

!32"

Only W3 contributes to 5drW(r) in Eq. !31", because every
derivative of greater order than 2 that is not canceled by
parity arguments involves an even power of the Laplacian of
1/r , the integral of which vanishes. !This property has al-
ready been used in Sec. IV B of Paper II." Since 6(1/r)!
"42%(r),

$ drW3!r,< ,<!"

!"
42
3 (e*e*!$0

p
d=$

0

p!
d=!-%„&="P!="'

"&=!"P!=!"'…"1.X!="•X!!=!". !33"

Moreover,

W3
[0,0]!0 !34"

and subsequently, according to Eq. !31",

$ dr&FR"W' [0,0]!r,< ,<!"!$ drFR
[0,0]!r,< ,<!".

!35"

In the present simple example !25", only the part
Shnn
(3)[0,0](k,<1 ,<2) of Shnn

(3) (k,<1 ,<2) is to be considered be-
cause ?D(k!0,<;<!) is even under inversion of both its
arguments. As a conclusion, the part from h that does con-
tribute to the 1/r6 tail of )*a*b

(2)T (r)!B0!0 arises only from
?D*hnn*?D and has a very simple structure in Fourier
space,
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Sh
!3 "!B0!0!k,<a ,<b"!$ d<1$ d<2

$?D
!0 "!k,<1 ;<a"Shnn

!3 "[0,0]!k,<1 ,<2"

$?D
!0 "!k,<2 ;<b". !36"

IV. SCHEME FOR LOW-DENSITY EXPANSIONS

Once structures of correlation tails have been analyzed in
Fourier space, the low-density expansions may be achieved
in two steps: a first expansion in terms of the loop density,
and a second one in terms of the particle density. As in Paper
II, the order in density !of loops or of particles" is denoted by
braces in order to avoid confusion with the order in k which
is referred to in parentheses. We use the notation ) loop

n &)n'
for the order in loop &particle' density.

A. Loop-density expansions

1. Dressings at low loop density

Dressings are entirely scaled by 1!!42(5d<p2e2)(<)
according to the definitions of Fcc and Fcm given in Sec.
IVA of Paper I. Simple results are the following.
)(<!)Fcc(k!0,< ,<!) is of order ) loop

0 exactly, and, accord-
ing to Eq. !26",

?D!k!0,< ,<!"!O!) loop
0 ". !37"

Moreover, the term of order !k!2q is proportional to ) loop
"q , so

that the order in ) decreases when the order in !k! increases.
On the contrary, Fcm has a more complex structure. Never-
theless, we only need a property derived from Eq. !28",
namely,

)!<!"Fcm!1 "!k,<;<!"!O!) loop
0 ". !38"

2. Loop-density expansions for tails of hnn

According to Ref. &10' and Sec. VII A of Paper I, a tail
Shnn
(+) (r,< ,<!) is expressed as a 1/r+ term independent of any
loop density times integrals of functions G that involve
graphs >̃ with weights )(L) and bonds Fcc, Fcm, FR"W ,
and W . These G’s are expanded in powers of loop density
and then in powers of particle density by decomposing dia-
grams >̃ in terms of diagrams >̃T with bonds Fcc, Fcm,
&Fcc'2/2, FRT"W , and W , with FRT3FR"&Fcc'2/2. In-
deed, the ) loop then ) expansions rely on a scale analysis in
) loop introduced in Sec. IVA of Paper II for the derivation of
the low-density free energy, with the only difference that the
bond FRT is split into FRT"W and W , because the latter
decomposition is the proper one for selecting algebraic tails.
The orders in ) loop for Fcc and Fcm have already been

given. FR(k) and W(k) are known from Sec. IVB of Paper
II, and

)!<!"&FRT"W'!k!0,< ,<!"!O!) loop". !39"

We notice that properties !31" and !35" also hold when FR is
replaced by FRT . As shown below, the expansions of alge-
braic tails of Shnn start at order zero in ) loop .

B. Particle-density expansions

Expansions in terms of quantum particle densities are per-
formed by using the ) expansions of )(L), 1 , and of bonds.
We recall that integration over loop shapes cannot diminish
the order in density, but, on the contrary, it can only increase
it.
The fundamental properties for the )-expansion of the

loop density have been derived in Sec. III D of Paper II:
)* ,p(Xp) starts at order )p,

D!!")* ,1!!"!)*DB0!!"#O!)2" !40"

and 1!1D#O()3/2). Equation !40" is valid in the presence
as well in the absence of a magnetic field !because it comes
from a diagrammatic structure".
As shown below, only loops with p!1 will have to be

taken into account in the study of the coefficients of leading
tails at the first two orders in density. For instance, the coef-
ficient A*a*b of the 1/r

6 tail of the particle-particle correla-
tion )*a*b

(2)T !B0!0(r) will be easily calculated up to order )5/2,
because, according to Eqs. !22", !36", and !37", it involves
only Shnn

(6)[0,0]-0.(r,!1 ,!2) and Shnn
(6)[0,0]-1/2.(r,!1 ,!2) which are

of order )0 and )1/2, respectively.
The tail of the particle-particle correlation will not be cal-

culated up to order )3, because sources of mistakes are too
numerous. Indeed, )(L) should be expanded up to order )2,
dressings in Fourier space should be taken into account fur-
ther than up to the first simple orders in ) and k, and dia-
grams with more numerous internal points would be in-
volved. For the same reasons, we will not give the
subleading tails of correlations.
However, in view of the qualitative discussion of higher-

order terms in ) , we give more precise formulas for )* ,1(!)
and )* ,2(X2) at orders )2 and )5/2. These expressions are
derived from results in Sec. III D of Paper II. In the differ-
ence J -1.(!)"5DB0(!!)J -1.(!!), only the part of J -1.(!) that
explicitly depends on ! does contribute and, according to a
formula in Sec. III E and calculations in Sec. IV B of Paper
II,

D!!")* ,1
-2.!!"!,

+
)+ lim

R→0
$
r'R

dr$ DB0!!!""e"(e*e+v!r,!,!!"

"$ DB0!!""e"(e*e+v!r,!",!!"#")*E** . !41"

In Eq. !41" we have used notations of Sec. III E of Paper II
where E**35D(X2)Eexch,** (X2). The term of order )3/2 has
the structure

J*
-3/2.!!""$ DB0!!!"J*

-3/2.!!!""(e*
2)*1DE** . !42"

The loop density with p!2 is

)* ,2
-2.!X2"!)*

2 1
2 Eexch,*
* !X2". !43"

The correction of order )5/2 is equal to the term of order )2
given in Eq. !43" times (e*

21D . Equations !41"–!43" will

5328 PRE 58F. CORNU



not be written more precisely, because the only important
point is that, after integration over ! or X2 , these terms will
give rise to diagonal or exchange matrix elements of two-
body quantum Gibbs factors.

V. CASE B0"0

The diagrammatic structures of leading tails of various
correlations have been given in Secs. VIII B and VIII C of
Paper I. In the present section we immediately select the part
of the Fourier transform of the dressing that gives the con-
tribution to the first orders in ) loop . This selection is done
from the start in order to avoid writing the more complex
formulas that hold before ) loop expansions.

A. Structure in Fourier space and dressing at low loop density

The structure of the Fourier transform of the 1/r6 tail of
the particle-particle correlation has been derived as an ex-
ample in Sec. II A. We recall briefly the main lines of the
arguments leading to Eq. !36". According to Paper I, the
A*a*b /r

6 tail of )*a*b
(2)T comes from the 1/r6 tail of

?D*hnn*?D , and more precisely only from the values of the
?D’s for k!0 and from the 1/r6 tail Shnn

(6) (r,Xa ,Xb) of hnn
before integration over the shapes Xa and Xb . Moreover,
parity arguments show that only the part Shnn

(6)[0,0](r,<1 ,<2)
of the 1/r6 tail of hnn that is even under inversion of each
argument is to be considered.
Since ?D(k!0,<1 ;<a) is exactly of order ) loop

0 and since
Shnn
(6)[0,0](r,<1 ,<2) starts at order ) loop

0 !according to Appen-
dix A", the A*a*b /r

6 tail of the particle-particle correlation at
the first two orders ) loop

2 and ) loop
5/2 is given by inserting Eq.

!36", where Shnn
(3)[0,0](k,<1 ,<2) is reduced to its parts of or-

ders ) loop
0 and ) loop

1/2 , into Eq. !22". The result is

A*a*b
r6

!$ d<1p1)!<1"" %e*1,e*a"42(e*1
$

e*a,pa
pa
2$ D!Xa")!<a"

12
# $ d<2p2)!<2"

$" %e*2,e*b"42(e*2 e*b,pb pb
2$ D!Xb")!<b"

12
#

$-Shnn
!6 "[0,0]! loop

-0. !r,<1 ,<2"#Shnn
!6 "[0,0]! loop

-1/2.!r,<1 ,<2".

#O!) loop
3 ". !44"

The B*a /r
8 tail of the particle-charge correlation

,*be*b)*a*b
(2)T !B0!0(r) comes from ?D*hnn*?D** with ?D**

!?D#)Fmc#)Fcc*)Fmc, according to Sec. VIII B of Pa-
per I. The analysis of the structure in Fourier space is the
following. After summation over charges, the Fourier trans-
form of ?D** gives a contribution that begins at order !k!.
Indeed,

$ d<b)!<b"e*bpb?D**!k,<2 ;<b"

!)!<2"p2e*2" k212 #A !2 "!k"

"$
0

p2d=
p2
!eik•X2!=""1 "#O! !k!3"# !45"

and a priori both 1/r5 and 1/r6 tails of hnn should contribute
to the 1/r8 tail of interest. However, only the term
k2&)(<2)/12' does contribute at the first orders ) loop

2 and
) loop
5/2 in B* /r8. In other words, terms of interest come only
from ?D*hnn*?D , as in the case of the particle-particle cor-
relation, though the general diagrammatic structures of
)*a*b
(2)T !B0!0(r) and ,*be*b)*a*b

(2)T !B0!0(r) are different at fi-
nite density. Therefore these terms involve only
Shnn
(6)[0,0](r,<1 ,<2) &and not Shnn

(5)[0,0](r,<1 ,<2)]. They read

"
1
12$ d<1p1)!<1"" %e*1,e*a"42(e*1

$

e*a,pa
pa
2$ D!Xa")!<a"

12
#

$$ d<2p2e*2)!<2"-6Shnn
!6 "[0,0]! loop

-0. !r,<1 ,<2"

#6Shnn
!6 "[0,0]! loop

-1/2.!r,<1 ,<2".#O!) loop
2 ". !46"

The C/r10 tail of the charge-charge correlation

,
*a ,*b

e*ae*b)*a*b
!2 "T !B0!0!r "

comes from ?D***hnn*?D** . An analysis similar to that per-
formed for the particle-charge correlation shows that, at the
first two orders in ) loop , the C/r10 tail arises only from
?D*hnn*?D . It is equal to

1
!12"2$ d<1p1e*1)!<1"$ d<2p2e*2)!<2"

$-66Shnn
!6 "[0,0]! loop

-0. !r,<1 ,<2"#66Shnn
!6 "[0,0]! loop

-1/2.

$!r,<1 ,<2".#O!) loop". !47"

The nonexchange part of the induced charge density
,+e+)+

ind(r;%q) in the presence of an infinitesimal external
charge %q located at the origin is given by the linear re-
sponse expression !23". It decays as 1/r8 &10', as the particle-
charge correlation. According to Sec. VIII C of Paper I, the
B/r8 tail of the induced charge density originates from
?D**hnn*?D** , with

?D*!k,<1 ;<a"3?D!k,<1 ;<a"#)!<1"Fcm!r,<a ,<1".
!48"

PRE 58 5329QUANTUM PLASMAS WITH OR . . . . III. . . .



According to Eqs. !26" and !28"

$ d<a)!<a"e*apa?D*!k,<1 ;<a"

!)!<1"e*ap1" k212 "$
0

p1d=
p1
!e"ik•X1!=""1 "#O! !k!3"# .

!49"

This expression is similar to Eq. !45" without the term
A (2)(k) and with the change of X2 into "X1 . Another
screening equation reads

G?D**!k,<2"!
)!<2"p2e*2

12
k2#O! !k!3", !50"

where Gf is defined in Eq. !24". Equations !49" and !50"
imply that the 1/r8 tail of the induced charge density at the
lowest order in ) loop is entirely determined by ?D*hnn*?D .
It is reduced to

42(
!12"2$ d<1p1e*1)!<1"$ d<2p2e*2)!<2"

$-6Shnn
!6 "[0,0]! loop

-0. !r,<1 ,<2"#6Shnn
!6 "[0,0]! loop

-1/2.!r,<1 ,<2".

#O!) loop". !51"

B. Loop-density expansions of the 1/r6 tail of hnn

According to Appendixes A and B, the 1/r6 tails of hnn at
orders ) loop

0 and ) loop
1/2 arise from purely 1/r6 structures with

two intermediate points. A*a*b /r
6 at order ) loop

2 is derived
from Eq. !44" with

Shnn
!6 "[0,0]! loop

-0. !
1
2 &W3'

2, !52"

where W3 is the 1/r3 tail of W defined in Eq. !32" and the
corresponding part of h comes from the diagram >̃ equal to
?D*&FR"W'*?D . At order ) loop

5/2 , A*a*b /r
6 originates

from Eq. !44" with

Shnn
!6 "[0,0]! loop

-1/2.!r,<1 ,<2"

!$ d<1!% $ dx"12 &Fcc'2)*?D#!x,<1 ,<1!" &
$
1
2 &W3!r,<1! ,<2"'2

#$ d<2!
1
2 &W3!r,<1 ,<2!"'2

$% $ dy"?D*)
1
2 &F

cc'2#!y,<2! ,<2" & . !53"

The corresponding part of h arises from the sum of the dia-
gram >̃,

?D*
1
2 &F

cc'2)*?D*&FR"W'*?D , !54"

and from the symmetric diagram

?D*&FR"W'*?D*)
1
2 &F

cc'2*?D . !55"

The leading large-distance behaviors of these diagrams are
obtained by replacing FR"W by (1/2)&W3'

2 and other func-
tions by their Fourier transforms at k!0.
A*a*b /r

6 at order ) loop
3 comes from an Shnn

(6) with an alge-
braic structure involving either two or three intermediate
points. In a simplified notation of the objects introduced in
Appendix A, terms with a purely 1/r6 tail involving two
intermediate points at order ) loop

3 read

) loop
-2. !1 "G 2-

0.!1,1!"
1
2 &W3!1!,2!"'2G 2-

0.!2!,2") loop
-1. !2 "

#sym. term !56"

or

) loop
-1. !1 "G 2-

1/2.!1,1!"
1
2 &W3!1!,2!"'2G 2-

1/2.!2!,2") loop
-1. !2 "

!57"

or

) loop
-1. !1 "G 2-

1.!1,1!"
1
2 &W3!1!,2!"'2G 2-

0.!2!,2") loop
-1. !2 ",

!58"

where ) loop
-1. denotes a contribution of the loop density )(<)

with p!1 while ) loop
-2. corresponds either to the exchange

term in the expansion of )(!) given in Eq. !41" or it refers to
the leading term in )* ,2(X2) which is equal to Eq. !43".
Terms with a purely 1/r6 tail involving three intermediate
points at order ) loop

3 are of the form

) loop
-1. !1 "G 3-

1.!1,1!,1""W3!1!,2!"W3!1",2!"

$G 2-
0.!2!,2") loop

-1. !2 ", !59"

where G 2-
0. , G 2-

1/2. , G 2-
1. , and G 3-

1. are given in Appendix B.
!We notice that in the present case the index -n. refers to the
order in density of the function after its integration over
position variables."

C. Results at the first two orders in particle density

An important conclusion of Sec. VB is that, at the first
two orders in ) loop , the coefficients of all tails A*+ /r6,
B* /r8, C/r10, and B!/r10 prove to arise only from
?D*hnn*?D . &From now on, we replace *a by * and *b
by + .
Now we turn to ) expansions by using the properties

)* ,p(Xp)!O()p) and )* ,1(!)!)*#O()2) for B0!0 &see
Eq. !40"'. At the first two orders in density the coefficients of
all tails of interest are determined by diagrams where !root or
internal" loops with only p!1 are to be considered. Thus
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5d< is replaced by ,*5D(!), and )*(!) by )* . Then the
dressing is reduced to a classical Debye contribution

,
pa

pa$ D!Xa")!<a"?D!k!0,<1 ;<a")-0.

!)*" %*1 ,*"e*
42(e*1)*1

1D
2 #!$ dxSD ,**1

cl !x", !60"

where SD ,**1
cl is given by Eq. !4". Besides, the 1/r3 tail W3 of

W in Eq. !32" takes the value !6" for p1!p2!1.

1. Particle correlation

According to the preceding section, the first two terms in
the ) loop expansion of A*+ /r6 are of orders ) loop

2 and ) loop
5/2

and are given by Eqs. !44", !52", and !53". When dressings
by ?D are replaced by Eq. !60", the 1/r6 tail of the particle-
particle correlation )*+

(2)T(r)!B0!0 at orders )n with n
!2,5/2 reads

A*+
-n.

r6
! ,
*1 ,*2

$ dxSD ,**1
cl !x"$ dySD ,*2+

cl !y"

$&"(V*1*2
eff!6 "!r "!-n.' , !61"

where V*1*2
eff(6)(r)!-0. is defined in Eq. !5" and

V*1*2
eff!6 "!r "!-1/2.!,

*!
V*1*!
eff!6 "!r ") -0.

$,
+!

$ dxSD ,*!+!
cl !x"$ dy

1
2 &FD ,+!*2

cc !y"'2

#sym. term. !62"

In Eq. !62" ‘‘ sym. term’’ denotes a symmetric term obtained
by exchanging the roles of *1 and *2 . Equation !61" is
indeed equal to the tail of the convolution !2".
In terms of the covariance introduced in Sec. III C of Pa-

per II, the squared mean dipolar potential reads

"(V*1*2
eff!6 "!r "!-0.!

!(e*1e*24*14*2"
2

2

$$
0

1
ds1$

0

1
ds2$

0

1
ds1!$

0

1
ds2!

$&%!s1"s2""1'&%!s1!"s2!""1'

$covxx!s1 ,s1!" covxx!s2 ,s2!"

$,
8 ,@

"A8@% 1r & #2. !63"

According to the explicit value of the covariance for inde-
pendent particles recalled in Sec. III C of Paper II, the four
integrations over the s variables give a factor 1/720. Since
,8 ,@&A8@(1/r)'2!6/r6, we get

"(V*1*2
eff!6 "!r "!-0.!

1
240(

4#4
e*1
2

m*1

e*2
2

m*2

1
r6 . !64"

The expression of "(V*1*2
eff(6)(r)!-1/2. is derived from Eqs.

!62", !64", and

,
+!

$ dxSD ,*!+!
cl !x"$ dy

1
2 &FD ,+!*2

cc !y"'2

!e*2
2 2

(2

1D
)*!e*!

" e*!"

42(,
+!

)+!e+!
3

1D
2

# . !65"

By using Eq. !60" the coefficients A*+
-n. (n!2,5/2) of the

1/r6 tail given by Eqs. !61", !62", !64", and !65" may be
written in the following concise form:

A*+
-n.!

(4#4

240 )*)+ ,*1 ,*2 " %* ,*1"e*
42(e*1)*1

1D
2 #

$" %+ ,*2"e+
42(e*2)*2

1D
2 #A *1*2

-n. , !66"

with

A *1*2
-0. !

e*1
2

m*1

e*2
2

m*2

, !67"

A *1*2
-1/2. !e*1

2 e*2
2 % 1

m*1

#
1
m*2

&2(21D

$",
*!

)*!

e*!
4

m*!

"
1e/m
2

1D
2 ,+ )+e+

3# , !68"

where 1e/m
2 !42(,*)*e*

3 /m* . For instance, summations
over *1 and *2 are performed with the result !1".
For a two-component plasma of charges e# and e" , with

masses m# and m" , the previous general formulas at orders
)2 and )5/2 may be specified by using the neutrality relation
e")"!"e#)# . We find

)*+
T!2 "!r "!B0!0 /

r→0

)*)+

r6
(4#4

240 % e#e"

e##!e"! & 2

$" e#

m#
#

!e"!
m"

#2"1#
1
2 (1De#!e"!# .

!69"

The ratio A*+
-5/2./A*+

-2. is of order (a/;D)3, namely, of order
:3/2 where : is the coupling constant defined after Eq. !19".
The correction is indeed negligible in the weak-coupling
limit. We notice that, in the case of a two-component plasma,
the neutrality relation implies that the coefficients A*+

-n. of the
1/r6 tail of particle-particle correlations at orders )n, with
n!2,5/2, are positive. The corresponding effective interac-
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tion is attractive, whatever the signs of the charges. More-
over these coefficients satisfy the relation

A##
-n.

)#
2 !

A""
-n.

)"
2 !

A#"
-n.

)#)"
, n!2,

5
2 . !70"

We stress that, from a technical point of view, this equality
arises only from the neutrality relation and from the structure
!66" where A *1*2

-n. has no special property. From a more
physical point of view, the peculiar identity !70" is due to a
classical contribution in the screening of every quantum
charge by the surrounding plasma, as discussed in Sec.
VIII D.

2. Other correlations

The B* /r8, C/r10, and B!/r8 tails of ,+e+)*+
(2)T(r)!B0!0 ,

,*+e*e+)*+
(2)T(r)!B0!0 , and ,+e+)+

ind,L(r;%q)!B0!0 are
given by Eqs. !46", !47", and !51" at the first two orders in
) loop . According to Eqs. !52" !53", !60", and !65", together
with 6(1/r6)!30/r8 and 6(1/r8)!56/r10 we get for n
!2,5/2

B*
-n"1.!"

(4#4

8
)*

1D
2 ,*1 ,*2 " %* ,*1"e*

42(e*1)*1
1D
2 #

$e*2)*2A *1*2
-n. , !71"

C -n"2.!7(4#4
1

1D
4 ,*1 ,*2

e*1)*1e*2)*2A *1*2
-n. , !72"

B!-n"2.!
2

2 (
5#4

1

1D
4 ,*1 ,*2

e*1)*1e*2)*2A *1*2
-n. .

!73"

As already mentioned, at the first two orders in density, these
tails arise only from ?D*hnn*?D with adequate summations
over charges. On the other hand, according to Eq. !60", the
small-k behavior of S*+ ,D

cl (k) is similar to the term
)(<a)?D

(2)(k,<1 ;<a) of order !k!2 given in Eq. !26" and
which is of order 1/) ,

,
+
e+S*+ ,D

cl !k" /
!k!→0

e*)*
1D
2 k2 !74"

and we retrieve Eqs. !71" and !72" from Eq. !2". Thus, at the
first two orders in density, the tails coincide with those of the
convolution !2" with adequate charge summation.
At the first order in density we get Eqs. !13", !14", and

!15". Comparison of Eq. !15" with the linear term with re-
spect to the given charge e* in Eq. !13" shows that the alge-
braic tails of the linearly induced charge density and of the
particle-charge correlation satisfy the more general relation

,
+
e+)+

ind!r;e*")
)*!0

! lim
)*→0

,
+
e+)*+

!2 "T!r "

)*
, !75"

which is valid at any distance. Equation !75" also holds for
any finite charge e* and we derive from Eq. !13" that the
B!-0./r8 tail of the charge density induced by a finite exter-
nal charge q reads

,
+
e+)+

ind!r;q ")
B0!0

/
r→0

1

r8
1
322 (

3#4
1e/m
4

1D
4 " q"

1D
2

1e/m
2

q2

mq
# ,
!76"

where mq is the mass of the particle with charge q . At the
first order )0 the response to an external charge q involves
both a linear contribution in q and a quadratic one. However,
the latter term exists only if the external charge is quantum—
according to its origin from the formula !66"—because a
classical external charge corresponds to the limit mq going to
infinity.

D. Diagrams that contribute at order #3

First, we recall that in order to perform density expan-
sions we have introduced bonds FRT!FR"&Fcc'2/2 and
&Fcc'2/2 to calculate the integrated functions that are in-
volved in the 1/r6 tail. 5dr&Fcc'2(r) is exactly of order
1/) loop

1/2 whereas the low-density expansion of 5drFRT(r)
starts at order ) loop

0 . At order ) loop
3 the purely algebraic term

in the 1/r6 tail of the particle-particle correlation may have a
structure with either two or three intermediate points. We
first consider structures !56"–!58", where the quantum inter-
action involves only two intermediate points, then the struc-
ture !59" where three intermediate points appear in the quan-
tum term.
At order )3 a tail of the form !56" arises from the most

simple diagram, )&FR"W') , either with pa!1 and )(!a)
expanded up to order )2 or with pa!2 and )* ,2(X2) taken
at order )2. According to Eq. !41", when pa!1 the )3 tail
is proportional to #4 times diagonal matrix elements of
exp&"(H*+!' and exchange matrix elements of
exp&"(H**'. When pa!2, according to Eq. !43", there ap-
pears only a term proportional to #4 times an exchange con-
tribution.
At order )3, all density weights in Eqs. !57"–!59" are

) loop
-1. , and only loops with p!1 do contribute at order )3. A
tail of the form !57" appears among the various 1/r6 tails of
)&FR*?D*)FR*?D*FR') . At order )3 one of these tails
!namely, the tail where every ?D is replaced by its part %)
gives a falloff

)"12 &Fcc'2)*
1
2 &W3'

2*)
1
2 &F

cc'2#) . !77"

The coefficient of this tail is purely proportional to #4.
The 1/r6 tails of the diagrams )&FR*)FR') and

)&FR*)Fcc*)FR') at order )3 are of the form !58". For
instance, at order )3 the 1/r6 tail of the former diagram de-
cays as

)"12 &W3'
2*)&FRT"W'#&FRT"W')*

1
2 &W3'

2#) .
!78"
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In fact W does not contribute to 5dr&FRT"W' according to
Eq. !35". A new dependence upon # appears in this tail: a
purely #6 term arises from an #4 in &W3'

2 and from an #2
contained in the ‘‘diffraction’’ contribution
5drvcm(r,<2 ,<b) in the decomposition of 5drFRT(r,<2 ,<b)
!see Sec. IV B of Paper II".
A structure where the quantum interaction links three in-

termediate points, with every p!1 at order )3, arises from
the diagram )FR)&FR*)FR' . This tail is of the form !59"
because it is the sum of three contributions,

)W3)&!FRT"W ")*W3'#)W3)&W3*)!FRT"W "'
!79a"

#)W3)&W3)*W3' . !79b"

Equation !79a" involves matrix elements of exp&"(H**1'
and exp&"(H*1+' whereas Eq. !79b" is purely proportional to
#6.
Eventually, terms of order )3 in A*+ are equal to

&a*+
-3.# f *+!#"'#4#b*+

-3.#6. !80"

In Eq. !80" f *+(#) is a function of # which is fully quantum
because it involves either a diagonal or a nondiagonal matrix
element of exp&"(H*!+!'.

VI. CASE B0$0

In the following, we will omit the indexes B0 . As in the
case B0!0, the scheme of the discussion is that presented in
Sec. III. In particular, we use the results of Paper I about the
structures of diagrams that contribute to the various 1/r5
tails. Since summations over charges do not change the ex-
ponents of the leading algebraic tails—their consequence in
the diagrammatic language is only to suppress contributions
from some diagrams—the D*+

-2.( r̂)/r5, D*
-2.( r̂)/r5, and

D -2.( r̂)/r5 tails of )*+
(2)T(r), ,+e+)*+

(2)T(r), and
,* ,+e*e+)*+

(2)T(r) !where r̂3r/!r!), respectively, satisfy

D*
-2.!,

+
e+D*+

-2. !81"

and

D -2.!,
+
e*e+D*+

-2. . !82"

These identities are explicitly checked at the first two orders
in density in Appendix C.

A. Structure in Fourier space

According to the analysis in Sec. VIII B of Paper I, the
D*+ /r5 tail of )*+

(2) T is given by Eq. !22" where h is replaced
by the 1/r5 tail Spp

(5)[0,0](r ,<a ,<b) of ?D**hnn*?D* , with
?D*(r,<1 ;<a) defined in Eq. !48" while ?D*(k,<2 ;<b)
3?D(k,<2 ;<b)#)(<2)Fmc(r,<2 ,<b). The 1/r5 tail of )*+

(2)T

may be written as

D*+

r5
!$ d<a)!<a"%e*a,*

$$ d<b)!<b"%e*b,+
Spp
!5 "[0,0]!r,<a ,<b". !83"

Since hnn(r,<1 ,<2) decays at least as 1/r3 before integration
over loop shapes Xa and Xb , hnn(k,<1 ,<2) contains singu-
larities from order !k!0 on; thus the Fourier transform
Spp
(2)(k,<a ,<b) involves terms of orders !k!0, !k!, and !k!2 in
the small-k expansion of ?D*(k,< i ;<r) where <r is a root
point. According to Eqs. !26" and !28", ?D* is even under
inversion of loop shapes of root points, while the term ?D*(q)
of order !k!q in ?D* is of parity ("1)q under inversion of
each internal loop shape Xi ; the latter property constrains
the parities of the tails of hnn that may contribute after inte-
gration over loop shapes. In order to simplify notations, we
will not indicate the parities of ?D* but only those of
Shnn
(p)[q ,q!] . A first contribution given by the dimensional
analysis of the order in !k! is

$ d<1$ d<2?D*!2 "!k,<1 ;<a"

$Shnn
!0 "[0,0]!k,<1 ,<2"?D*!0 "!k,<2 ;<b"!0. !84"

Equation !84" vanishes, because Shnn
(0)[0,0]!0 according to the

general study of the structure of tails before integration over
loop shapes !see Appendix A of Paper I". Spp

(2)(k,<a ,<b) may
be written as the sum of three contributions,

$ d<1$ d<2)!<1"Fcm!1 "!k,<a ,<1"

$Shnn
!0 "[1,1]!k,<1 ,<2")!<2"Fmc!1 "!k,<2 ,<b", !85a"

$ d<1$ d<2)!<1"Fcm!1 "!k,<a ,<1"Shnn
!1 "[1,0]!k,<1 ,<2"

$?D
!0 "!k,<2 ;<b"#sym. term, !85b"

$ d<1$ d<2?D
!0 "!k,<1 ;<a"Shnn

!2 "[0,0]!k,<1 ,<2"

$?D
!0 "!k,<2 ;<b", !85c"

where we have used the identities ?D*(0)!?D
(0) and

?D*(1)(k,< i ;<r)!)(<1)Fcm(1)(k,< i ;<r). The symmetric
term in Eq. !85b" is obtained by exchanging the roles of <a
and <b .

B. Density expansions

1. Loop-density expansions

All dressings in the nonvanishing contributions !85",
namely, ?D*(0)(k,<1 ;<a) and ?D*(1)(k,<1 ;<a), are exactly of
order zero in density. We notice that, on the contrary, ?D*(2q)
and ?D*(2q#1) with qB1 starts at order O() loop

"q ), according
to Eqs. !26" and !28" and the expansion of &1
#(k2/12)'"1. For instance, ?D*(2)(k,<1 ;<a) is the sum of
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two terms of orders ) loop
"1 and ) loop

0 , respectively, but ?D*(2) is
involved in faster falloffs than those considered here, be-
cause of parity arguments &see Eq. !84"'.
As a consequence, at the lowest order in ) loop ,

Spp
(2)(k,<a ,<b) is merely given by Eq. !85" where hnn is re-
placed by its value at first order in ) loop . The first term in the
low-density expansions of the 1/r3, 1/r4, and 1/r5 tails of
hnn are of order ) loop

0 . They are reduced to the bond W
possibly convoluted with bonds )Fcc or )Fmc, because the
first term in the k expansion of )Fcc or )Fmc is of order
) loop
0 . In order to take advantage of parity arguments, it is
convenient to rewrite W given in Eq. !32" as W!,n!3

0 Wn ,
with Wn decaying as 1/rn, and to push the decomposition
further by writing

Wn!Li ,Lj"!,
l!1

n"2 1
l!!n"1"l "!wn

[l ,n"1"l]!k,Xi ,Xj",

!86"

where

wn
[l i ,l j]!k,Xi ,Xj"!"(e* ie* j$0

pi
d=$

0

p j
d=!-%„&="P!="'

"&=!"P!=!"'…"1.& ik•Xi!="' l i

$&"ik•Xj!=!"'
l j
42

k2
!87"

is of parity ("1) l i &("1) l j' with respect to Xi (Xj). With
these definitions, we get in Fourier space

Shnn
!0 "[1,1]! loop

-0. !w3
[1,1]!w3 , !88"

Shnn
!1 "[1,0]! loop

-0. !
1
2 w4

[1,2] , !89"

Shnn
!2 "[0,0]! loop

-0. !
1
4 w5

[2,2] . !90"

At next order in loop density

Shnn
!0 "[1,1]! loop

-1/2.!0, !91"

Shnn
!1 "[1,0]! loop

-1/2.!' 12 w4[1,2]#"12 w4[1,2])Fcc!0 "#w3
[1,1])Fmc!1 "# (

$)
1
2 &F

cc'2!k!0", !92"

Shnn
!2 "[0,0]! loop

-1/2.!' 14 w5[2,2]#"14 w5[2,2])Fcc!0 "

#
1
2 w4

[2,1])Fmc!1 "# ( ) 12 &Fcc'2!k!0"

#sym. term. !93"

In Eqs. !92" and !93" charge indexes and summation over
species of intermediate points are implicit as in the notation
of convolutions in position space introduced in Eq. !25".

2. Cancellations at the first two orders in particle density

At the first two orders in density, many contributions in
Spp
(5)(r) cancel each other by virtue of the identity

$ DB0!!"' 12 &k•!!s "'2"&k•!!s "'$
0

1
ds!&k•!!s!"'( !0.

!94"

Indeed, the left-hand side of !94" is equal to

&k'8&k'@"12cov8@* !s ,s!;B0""$
0

1
ds!cov8@

* !s ,s!;B0"# ,
!95"

with an implicit summation over the space indices 8 and @
(8 ,@!1,2,3). The property covxy

* (s ,s!;B0)!
"covyx

* (s ,s!;B0) derived in Sec. VC in Paper I implies that

&k'8&k'@cov8@
* !s ,s!;B0"!&k'8

2 cov88
* !s ,s!;B0". !96"

Then we use the following property, which can be derived
from the explicit value of the covariance given in Sec. III C
of Paper II:

$
0

1
ds!covxx

* !s ,s!;B0"!
1
2covxx

* !s ,s;B0". !97"

Of course, this identity is also valid for covzz(s ,s!)
!limB0→0covxx

* (s ,s!;B0). Then, Eq. !94" is proved.
The identity !94" allows one to show that at first order in

density,

Spp
!5 "[0,0]!r,!a ,!b"!-0.!

1
4w5

[2,2]!r,!a ,!b". !98"

The reasons for this simple expression are the following.
Spp
(5)[0,0](r,<a ,<b) is given by Eq. !85" where ?D

(0) and
)Fmc(1) are exactly of order ) loop

0 . In order to prove Eq. !98",
we reorganize the effective contributions coming from
?D**W*?D* in order to exhibit the combination !94". In Fou-
rier space we get the sum of (1/4)w5

[2,2] plus

Fcm!1 ")"w3[1,1])Fmc!1 "#
1
2 w4

[1,2])Fcc!0 "# !99a"

#
1
2 F

cc!0 ")"w4[2,1])Fmc!1 "#
1
2 w5

[2,2])Fcc!0 "# !99b"

#
1
2"w4[2,1])Fmc!1 "#

1
2 w5

[2,2])Fcc!0 "##!sym. term",

!99c"

where !sym. term" denotes the symmetric term
(1/2)&Fcm(1))w4

[1,2]#(1/2)Fcc(0))w5
[2,2]' . At first order in

density, only loops with p!1 contribute. Since
Fcc(0)(k,* ,*!) and Fcm(1)(k,!r ,!) &or Fmc(1)(k,!,!r)] only
differ by an extra factor (i50

1ds4*!(s)•k, the definition
!87" and the property !94" imply that only the term !98" does
contribute to the 1/r5 tail Spp

(5)[0,0] at the first order in density
) .
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At order )5/2 the same cancellation mechanism implies
that the 1/r5 tail Spp

(5)[0,0] comes only from

1
4 w5

[2,2])
1
2$ dr&Fcc!r"'2?D

!0 "#sym. term. !100"

This cancellation mechanism seems to be specific to the first
order in density. It still partially operates at order )5/2, but
from order )3 property !94" cannot be applied when the ex-
pansion of )(!) is used at orders higher than ) or when
)* ,2(X2) occurs.

3. Particle-particle correlation at the first order in density

In the case of the particle-particle correlation, the D*+ /r5
tail is given by Eq. !83" where, at the first order in
) , Spp

(5)(r,<a ,<b) is reduced to (1/4)w5
[2,2] , according to Eq.

!98", with pa!pb!1. The Fourier transform of the D*+
-2./r5

tail at the first order )2 reads

$
0

1
ds1$

0

1
ds2&%!s1"s2""1'F*+

pp !k,s1 ,s2", !101"

where

F*+
pp !k,s1 ,s2"3")*)+(e*e+4*

24+
2

$' 14$ D* ,B0!!1"$ D+ ,B0!!2"

$&k•!1!s1"'2&k•!2!s2"'2
42

k2 ( . !102"

In Eq. !102" we have added the index * in the notation of the
measure DB0(!) in order to recall the dependence of the
measure upon the species when B0$0. Integrations over !1
and !2 lead to the appearance of covariances of Brownian
bridges in the presence of B0 . According to Eq. !96" and
covxx

* !covyy
* ,

&k'8&k'@cov8@
* !s ,s!;B0"!k2covxx

* !s ,s!;B0!0"

"&k'z
2%C*!s ,s!;B0",

!103"

where

%C*!s ,s!;B0"3covxx
* !s ,s!;B0""covzz

* !s ,s!;B0"

!covxx
* !s ,s!;B0""covxx

* !s ,s!;B0!0".

!104"

So the nonanalytic term in -•••. in Eq. !102" is equal to

42
&k'z

4

k2
1
4 %C*!s1 ,s1"%C+!s2 ,s2". !105"

We notice that 42&k'z
4/k2 is the Fourier transform of

Azzzz% 1r &!24
P4!cos7"

r5 !106"

and, according to the value of the de Broglie thermal wave-
length 4*!!(#2/m*, we get Eq. !8" where

A!uC* ,uC+"36$
0

1
ds1$

0

1
ds2&%!s1"s2""1'

$%C*!s1 ,s1"%C+!s2 ,s2". !107"

According to Eqs. !83", !100", and !60" D*+
-5/2./r5 may be

seen as arising from the convolution

)*,
*2

&"(V**2
eff!5 "!-1/2.'*SD ,*2+

cl

#)+,
*1

SD ,**1
cl *&"(V*1+

eff!5 "!-1/2.' , !108"

with

V*1*2
eff!5 "(r)!-1/2.!,

*!
V*1*!
eff!5 "!r") -0.)*!$ dx

1
2 &FD ,*!*2

cc !x"'2.

!109"

Now, we turn to the explicit values of the D*+ /r5 tail at
the first two orders in density. D*+

-n. with n!2,5/2 may be
written in the concise forms

D*+
-n.!"(3#4P4!cos7")*)+e*e+D *+

-n"2. , !110"

with

D *+
-0.!

1
m*m+

A!uC* ,uC+" !111"

and

D *+
-1/2.!

2(2

1D

1
m*

" e+"

42(,
+!

)+!e+!
3

1D
2

#
$,

*2
)*2

e*2
3

m*2

A!uC*2,uC*"#sym. term.

!112"

In Eq. !112" the symmetric term is obtained by exchanging
the roles of * and + . Comparison of Eqs. !111" and !112"
shows that, according to Eq. !110",

D*+
-5/2.!"

2(2

1D
' )+e+" 42(,+!

)+!e+!
3

1D
2 "e+#,

*2
e*2
2 D**2

-2.

#)*e*" 42(,+!
)+!e+!

3

1D
2 "e*#,

*2
e*2
2 D+*2

-2. ( .
!113"

The analytical expression of A(uC* ,uC+) is determined
by dynamics of independent charges in a magnetic field. The
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covariance that characterizes this dynamics has been explic-
itly derived in Appendix A of Paper II. The values of interest
are

covxx
* !s ,s;B0"!

1
uC*sinhuC*

sinh!suC*"sinh!&1"s'uC*"

!114"

and

$
0

1
ds covxx

* !s ,s "!
1

2uC*
L!uC*", !115"

where L(uC*)!cothuC*"(1/uC*) is the Langevin function.
By using the definition !104" and Eq. !115" we get

%C*3$
0

1
ds %C*!s ,s "!

1
2uC*

L [3]!uC*", !116"

with L [3](uC*)3L(uC*)"uC*/3 defined in Sec. II B of Pa-
per II. The value of A(uC* ,uC+) is given in Eq. !9". In the
case of particles with the same uC*’s, a straightforward limit
of Eq. !9" leads to

A!uC* ,uC*"!
3
2' 1

2uC*
2 &cothuC*'2#

5

2uC*
3 cothuC*#

1
45

"
7

6uC*
2 "

3

uC*
4 ( . !117"

4. Induced charge density

The D!/r5 tail of the ratio ,+e+)+
ind,L(r)/%q for the lin-

early induced charge arises from diagrams which are differ-
ent from those involved in the D* /r5 tail of the particle-
charge correlation for finite charges of the plasma. D!/r5 is
given by Eq. !23" where Gh(k,<a) is replaced by the Fourier
transform SGh

(4)(k,<a) of its 1/r7 tail SGh
(7)(r,<a),

D!

r5
!F"1""

42(

k2
$ d<a)!<a"pae*aSGh

!4 "!k,<a"# !r".
!118"

In fact, according to Sec. VIII C of Paper I, SGh
(7)(r,<a) arises

only from the part of h equal to Fcm)*hnn*&?D**
#)Fmc*)Fmc' . In other words, SGh

(4)(k,<a) is the nonana-
lytic term of order !k!4 in

$ d<1)!<1"$ d<2Fcm!k,<a ,<1"

$hnn!k,<1 ,<2"G -?D**#)Fmc*)Fmc.!k,<2". !119"

A straightforward calculation leads to

G -?D**#)Fmc*)Fmc.!k,<2"

!
)!<2"

12
e*2p2k

2"1#$
0

p2d=
p2
ik•X2!="##O! !k!4".

!120"

Henceforth, since Fcm(k,<a ,<1)!O(!k!) and according to
parity arguments,

SGh
!4 "!k,<a"!k2$ d<1)!<1"$ d<2

)!<2"

12
e*2p2

$Fcm!1 "!k,<a ,<1"' Shnn!1 "[1,0]!k,<1 ,<2"

#Shnn
!0 "[1,1]!k,<1 ,<2"$

0

p2d=2
p2

ik•X2!=2"( .
!121"

The Fourier transform of D!/r5 tail is given by Eqs. !118"
and !121".
At the first two orders ) loop and ) loop

3/2 , we insert Eqs. !28"
in !121". We use Eqs. !88" and !89" for contributions of order
) loop and Eqs. !91" and !92" for terms of order ) loop

3/2 . At order
) loop , D!/r5 is the inverse Fourier transform of

"
42(
12 $ d<1)!<1"e*1p1

$$ d<2)!<2"e*2p2$0
p1d=1
p1

& ik•X1!=1"'

$' 12 w4[1,2]!k,<1 ,<2"
#w3!k,<1 ,<2"$

0

p2d=2
p2

ik•X2!=2"( . !122"

At next order ) loop
3/2 , it is given by Eq. !122" where -•••. is

replaced only by the value !92" of Shnn
(1)[1,0](k,<1 ,<2)! loop-1/2. .

As a consequence, only loops with p!1 are involved at
orders ) and )3/2.
According to the cancellation mechanism !94", the tail

!122" of the induced charge density, which is derived from
the linear response theory in the loop formalism &9', vanishes
at order ) ,

D!-2.!0, !123"

and appears only at higher orders in density. This result can
be retrieved from Eq. !75": though the part -)&Fcc

#Fcm')*hnn*)Fmc.(r,<a ,<b) in ?D**hnn*)Fmc is linear
in e* , this linear term does not contribute at order )2 to
,+e+)*+

(2)T(r) because of the cancellation mechanism !94" at
low density.
The latter result is in agreement with the value D*

-2.

!,+e+D*+
-2. for the coefficient of the 1/r5 tail of the particle-

charge correlation at the first order )2. Indeed, the infinitesi-
mal induced charge is generically given by the linear term in
e* in the particle-charge correlation ,+e+)*+

(2)T(r)/)* , as re-
called in Eq. !75". Thus

D!! lim
e*→0

1
e*

lim
)*→0

,
+
e+D*+

)*
. !124"
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Indeed, the coefficient of the 1/r5 tail of ,+e+)*+
(2)T(r) starts

at order )2 and involves the charge e* through A(uC* ,uC+)
at this order. When uC*!((#B0/2m*c)e* tends to zero at
uC+ fixed,

A!uC* ,uC+" /
uC*→0

uC*
2 1

4uC+
5 ""cothuC+#

1
uC+

#
uC+
3

"
uC+
3

45 #
2uC+

5

945 # . !125"

Thus D*
-2. is nonlinear in e* when e* tends to zero, and D!

vanishes at order ) . According to the relations !75" and
D+
-2.!,+e+D*+

-2. , together with Eqs. !110" and !125", the
nonlinearly induced charge at order ) is

,
+
e+)+

ind!r;q "!B0
-1.!"(3#4

q
mq

",
+
)+

e+
2

m+
A!uCq ,uC+"#

$
P4!cos7"

r5 . !126"

It is cubic in q/mq when q/mq vanishes.
We now turn to the tail of the linearly induced charge

density at next order )3/2. Since only loops with p!1 con-
tribute at this order, the cancellation mechanism !94" at first
order in density operates and only the part
(1/2)w4

[1,2]*)&Fcc'2/2 appears in Shnn
(1)[1,0](k,<1 ,<2)!-1/2.

given in Eq. !92". According to Eqs. !121" and !87", the
Fourier transform of D!-3/2./r5 comes from

"
2(2

1D

42(,
+!

)+!e+!
3

1D
2 ,

+
e+,

*2
e*2
2 $

0

1
ds1$

0

1
ds2

$&%!s1"s2""1'F+*2
ind,L!k,s1 ,s2", !127"

where F+*2
ind,L is defined as F+*2

pp given in Eq. !102" with the
-•••. replaced by

' 12$01ds$ D+ ,B0!!1"$ D*2 ,B0!!2"&k•!1!s "'&k•!1!s1"'

$&k•!2!s2"'2
42

k2 ( . !128"

The nonanalytic term in Eq. !128" is similar to the nonana-
lytic expression !105" with 250

1ds%C+(s ,s1) in place of
%C*(s1 ,s1). After integration over s the factor 2 is compen-
sated by the factor 1/2 arising from Eq. !97" and comparison
of Eq. !127" with Eq. !113" shows that the identity !124" is
indeed satisfied at order )3/2. The explicit value of D!-3/2. is
then derived from Eq. !113" with the result

D!-3/2.!"422(3
,
+!

)+!e+!
3

1D
4 ,

*!+
e+e*!

2 D+*!
-2. . !129"

C. Weak or strong magnetic field

In the limit of a weak field B0 , A(uC* ,uC+) behaves as
(1/3150)uC*

2 uC+
2 and D*+ is proportional to #8B0

4 . More
precisely,

)*+
!2 "T!r"!B0 /

r→0
")*)+

1
50 400(

7#8

$% e*m*
& 3% e+m+

& 3% B0c & 4 P4!cos7"r5 .

!130"

In terms of dimensionless parameters

D*+

)*)+
Ca5:% 4*a & 2% 4+a & 2!(8B*B0"2!(8B+B0"2.

!131"

In the strong field limit, A(uC* ,uC+) tends to 1/30, and D*+
becomes independent from B0 ,

)*+
!2 "T!r"!B0 /

r→0
")*)+

1
30(

3#4
e*
m*

e+
m+

$" 1"60
c2

(2#2B0
2% m*

2

e*
2 #

m+
2

e+
2 & #O% 1B04& #

$
P4!cos7"

r5 . !132"

We notice that the limits where e* tends to zero or where B0
goes to infinity do not commute, since uC goes to zero in the
first case and to infinity in the second case.

VII. ONE-COMPONENT PLASMA

In order to get correlations for the OCP with moving
charges e" from expressions calculated for a two-component
plasma !TCP", we first insert the local neutrality relation in
order to replace every product e#)# by "e")" . In a sec-
ond step, we use the same procedure as in Sec. VI A of Paper
II: m# goes to infinity, then e# vanishes while )# becomes
infinite. Moreover, we rather consider the following objects
which remain finite even if one density goes to infinity: the
Ursell function h*+!)*+

(2)T(r)/)*)+ ,

,
+
e+)+h*+!"e")",

+
sgn!e+"h*+ !133"

and

,
* ,+

e*e+)*)+h*+!!e")""
2,
*+
sgn!e*"sgn!e+"h*+ ,

!134"

where sgn(e*) denotes the sign of e* . In the limit of the
OCP, only h"" is expected to survive and the left-hand side
of Eqs. !133" and !134" should be reduced to e")"h"" and
(e")")2h"" , respectively.
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A. In the absence of B0
When B0!0, for a two-component plasma, according to

Eqs. !69", !13", and !14",

h*+!r "!B0!0 /
r→0

(4#4

240 % e#e"

e##!e"! & 2" e#

m#
#

!e"!
m"

#2 1r6 ,
!135"

,
+
e+)+h*+!r "!B0!0 /

r→0
"
(3#4

322
e#!e"!

!e##!e"!"2

$" e#

m#
"

!e"!
m"

#" e#

m#
#

!e"!
m"

#2 1r8 ,
!136"

,
*+

e*e+)*+
!2 "T!r "!B0!0 /

r→0

7(2#4

1622
1

r10
% 1
e##!e"! & 2

$" e#
2

m#
"
e"
2

m"
# 2. !137"

In the limit of the OCP taken as recalled above, the 1/r6
tail of )*+

(2)T/)*)+ and the 1/r8 tail of ,+e+)*+
(2)T/)* , derived

from Eqs. !135" and !136", respectively, vanish whatever the
values of * or + , as it should. Indeed, only h"" is expected
to survive and h"" , which is in fact a charge-charge corre-
lation, decays as fast as 1/r10, according to # expansions
&11,12' or perturbative results in the coupling constant &13'.
Besides, ,* ,+e*e+)*+

(2)T tends to e"
2 ) OCP

(2)T and, according to
Eq. !137",

e"
2 )OCP

!2 "T!r "!B0!0 /
r→0

7
1622 (

2#4
e"
4

m"
2

1

r10
. !138"

B. In the presence of B0
In this section, we compare our low-density result with

the algebraic tail derived from the low-density expansion of
the exact sum rule !16". The singular term of order !k!2 in the
Fourier transform of SOCP(r)!B0!)"%(r)#) OCP

(2)T (r) is de-
noted by SOCPsing

(2) (k)!B0.
First, we calculate the low-density limit of

SOCPsing
(2) (k)!B0, which is derived from our low-density path
integral formalism. The )2 term, SOCPsing

(2) (k)!B0
-2. , in the low-

density expansion of the nonanalytic term of order
!k!2, SOCPsing

(2) (k)!B0, is given by the Fourier transform of the
DOCP
-2. /r5 tail calculated at the first order in density. The low-

density DOCP
-2. /r5 tail of the OCP is derived from the result for

a two-component plasma, as in the absence of B0 . Accord-
ing to Eq. !8", the &D*+

-2./)*)+'/r5 tail of h*+ for a TCP is
proportional to &e*e+ /m*m+'A(uC* ,uC+). In the limiting
process, m# goes to infinity then e# vanishes, so that uC#

tends to zero; thus, according to Eq. !125", the tails of h##

and h#" vanish while h OCP!h"" . According to Eq. !106"
and &k'z

4/k2!!k!2(cos7k)4, the Fourier transform of the
DOCP
-2. /r5 tail !8" reads

42(
e"
2 SOCPsing

!2 " !k"!B0
-2.

k2
!"

1
4! A OCP!uC"!(#9p"

4!cos7k"4,

!139"

with uC!(#9c/2!(#e"B0/2m"c and the plasma fre-
quency 9p!!42e"

2 )"m",

A OCP!uC"!
1
30#

3

4uC
2 !cothuC"

2#
15

4uC
3 cothuC

"
7

4uC
2 "

9

2uC
4 . !140"

Second, we exhibit the nonanalytic contribution in the )2
term in SOCP

(2) (k)!B0 which is given by the low-density limit of
the exact sum rule !16". The latter expression is expanded up
to order )2 at uC fixed. In other words, the expansion is
performed with respect to the dimensionless parameter
9p
2/9c

2!42)"m"c2/B0
2 which appears in Eq. !17". We ob-

tain the structure

42(
e"
2 SOCP

!2 " !k"

k2
!1#)&a -1.!uC"#b -1.!uC"!cos7k"2'

#)2&a -2.!uC"#b -2.!uC"!cos7k"2

#c -2.!uC"!cos7k"4'#o!)2", !141"

where a -n., b -n., and c -n. are functions of the single variable
uC and o()2) denotes a term of order greater than )2. The
term of order ) in 42(e2SOCP

(2) (k), though anisotropic, is
analytical, as it should be, while the term of order )2 con-
tains a nonanalytic term, )2c -2.(uC)(cos7k)4!k!2. The latter
one does coincide with our low-density result !139".

VIII. CONCLUSION

A. Compared qualitative results

1. Sign of the interaction

When B0!0, in the case of a two-component plasma of
charges e# and e" , with masses m# and m" , the effective
interaction associated with the 1/r6 tail of the particle-
particle correlation is attractive at the first two orders in den-
sity, whatever the signs of charges. &Indeed, the neutrality
relation e")"!"e#)# implies that the coefficients A*+

-n. at
order )n, with n!2,5/2, are positive according to Eqs. !69"
and !70".'
The peculiar identity !70" between all A*+

-n./)*)+ with n
!2,5/2 is due to a classical contribution in the screening of
every quantum charge by the surrounding plasma. It is no
longer satisfied at higher orders in density )n with nB3,
because then quantum dynamical and statistical effects are
involved and destroy the symmetry between various species
of particles, as shown in Sec. VD.
In the presence of B0 , the sign of P4(cos7) varies when 7

ranges from 0 to 2 , so that the effective force is either at-
tractive or repulsive according to the relative orientation 7 of
r and B0 as well as according to the relative signs of charges.
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For instance, when 7!0 P4(cos7)!1, the force is attractive
!repulsive" between charges with opposite !same" signs;
when 7!2/3, P4(cos7)'0 and previous results are reversed.

2. Dependence upon thermodynamic parameters

First, we consider the variation of the coefficients of al-
gebraic tails with respect to the temperature T and the den-
sity ) . Up to a numerical multiplicative factor that involves
masses, the dimensionless coefficient !A*+! is proportional to

!A*+!C:2% 4a & 4, !142"

with notations of Sec. II C. (4 is a generic notation for the de
Broglie thermal wave length." !D*+!, which has the dimen-
sion of an inverse length, has a similar dependence,

!D*+!C:% 4a & 4 1a . !143"

Henceforth, !A*+! and !D*+! have the same sense of varia-
tion with ) and T . They both decrease as the density is
lowered or as the temperature becomes higher. The relative
corrections may be expressed in terms of dimensionless pa-
rameters which are indeed small in the regime :)1 and
(4/a))1.
Second, we address the dependence upon the intensity of

B0 . When B0 is weak, D*+ is proportional to #8B0
4 ,

whereas, in the strong field limit, it becomes independent
from B0 and is only of order #4. The coefficient A*+ of the
1/r6 tail when B0!0 &2' has the same dependence upon # as
D*+ in the strong field limit. An interpretation is that, in
some sense, the 1/r5 tail that appears only in the presence of
B0 is more quantum than the 1/r6 tail, because statistical
effects of B0 are purely quantum !see also Sec. VIII D".
However, when the intensity of B0 increases sufficiently, a
new effect appears: a strong field B0 enforces a localization
that drives the system into a semiclassical regime !see Sec.
VI B of Paper II", and the 1/r5 tail becomes ‘‘less quantum’’
as regards its order in # .

B. Algebraic screening

Algebraic screening at large distances is compatible with
the sum rules enforced by both internal and perfect external
screening which must be satisfied in any classical as well as
in any quantum regime. As recalled in Sec. II B of Paper I
internal screening means that

$ dr,
*
e*S*+!r"!0 !144"

and

$ drr,
*
e*S*+!r"!0. !145"

On the other hand, perfect external screening refers to the
fact that the total charge induced in the plasma in the vicinity
of an infinitesimal external charge %q is exactly equal to
"%q .

1. Consequence of classical internal screening

When B0!0, internal screening of monopole-monopole
and monopole-multipole interactions plays a role in the cas-
cade of power laws as mentioned in the Introduction. !See
also Sec. IV B of Ref. &10'." From a technical point of view,
at finite density, the screening of the total charge of a loop
surrounded by its Debye polarization cloud !corresponding
to the bond Fcc) combines with diffraction effects described
by a monopole-dipole Debye interaction !contained in the
bond Fcm) and this interplay leads to cancellations of some
tails when particle-charge or charge-charge correlations are
considered.
At the first two orders in density, it happens that only the

Debye approximation S*+ ,D
cl of the classical structure factor

is involved in the mechanism responsible for this cascade.
Indeed, at the first two orders in density, the exact expression
for A*+

-n./r6, with n!2,5/2, is equal to the tail of the convo-
lution !2". The Debye-Hückel structure factor by itself satis-
fies both the charge and dipole sum rules !144" and !145",
because the k expansion of ,+e+SD ,*+

cl (k) starts at order !k!2
when !k! goes to zero. Henceforth, Eq. !2" leads to the cas-
cade of power laws in the low-density limit—,+e+A*+!0
and ,*e*B* , as it should—while B*

-n"1./r8 and C -n"2./r10,
with n!2,5/2, coincide with the tail of the convolution !2"
with adequate summation over charges at corresponding or-
ders in density.
We notice that the tail of the convolution !2" may also be

interpreted as the tail of

,
*1 ,*2

S**1
cl,reg*&"(V*1*2

eff!6 "!-0.'*S*2+
cl,reg , !146"

where S*+
cl,reg is the structure factor of the corresponding clas-

sical multicomponent plasma with proper short-distance
regularization. Indeed, a quantum multicomponent plasma is
stable against macroscopic collapse &14,15' only if all its
negative or/and positive charges obey Fermi statistics. On
the contrary, a multicomponent plasma with Maxwell-
Boltzmann statistics !and classical or quantum dynamics" has
a well-behaved thermodynamic limit only if the Coulomb
interaction is regularized at short distances by addition of a
short-ranged repulsive potential vSR(r). !Quantum dynamics
alone only prevents the collapse of a finite number of point
charges with opposite signs."
The link between Eqs. !2" and !146" is the following. The

classical structure factor S*+
cl,reg may be represented by Mayer

diagrams and

S*+
cl,reg!SD ,*+

cl # ,
*1 ,*2

SD ,**1
cl *h*1*2

nncl,reg*SD ,*2+
cl , !147"

where h*1*2
nncl,reg is defined in Sec. VIII C of Paper I. By virtue

of rotational invariance of all interactions 5drrS*+
cl,reg(r)!0

at any density. Besides, a remarkable fact is that, at the first
two orders in density !but not at higher orders"
5drS*+

cl,reg(r)!-n. and 5drr2S*+
cl,reg(r)!-n"1., with n!1,3/2, are

determined only by the Debye potential and are independent
from vSR(r). Indeed, according to a scaling analysis similar
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to that devised in Sec. IVA of Paper II, Eq. !147" implies
that the zero and second moments of S*+

cl,reg involve only
SD ,*+
cl for n!1 and

,
*1 ,*2

SD ,**1
cl *

1
2 &FD ,*1*2

cc '2*SD ,*2+
cl !148"

for n!3/2. Thus the tails of Eq. !146" with or without charge
summations at the first two orders do coincide with those
given in Eqs. !2", !5", and !62".
We notice that S*+

cl,reg satisfies both the charge and dipole
sum rules !144" and !145" as well as the quantum structure
factor S*+ , independently of the choice of the short-ranged
potential vSR(r). Henceforth, the interpretation of the
A*+
-n./r6 tail, with n!2,5/2, by Eq. !146" is still coherent with
the cascade of inverse power laws.

2. Perfect external screening

We stress again that the basic rule of perfect screening of
an external infinitesimal charge %q is not destroyed by alge-
braic quantum screening: the integral of the induced charge
in the bulk is exactly opposite to %q . According to Sec.
VB 3 of Ref. &4', at quantum as well as at classical levels,
both the static charge-charge correlation C(r)
!,* ,+e*e+S*+(r) and the response function (50

1dsCT(r,s)
obey the charge and dipole !internal" sum rules !144" and
!145" satisfied by ,*e*S*+(r)/)+ !which describes the
charge e+ surrounded by its polarization cloud". CT(r,s) is
the time-ordered charge-charge correlation function in
imaginary time, and the quantum linear response reads

,
+
e+)+

ind,L„k;%q!k"…
%q!k" !"

42

k2
($

0

1
dsCT!k,s ". !149"

Thus the perfect external screening provides a sum rule that
determines the Fourier transform of the response function up
to order !k!2, whenever B0 is switched on or not,

$
0

1
dsCT!k,s " /

!k!→0

1
42( k

2. !150"

We stress that in the quantum case 50
1dsCT(r,s) is different

from the charge-charge correlation C(r), and there is no sum
rule analogous to Eq. !150" for C(r). However, the classical
version of Eq. !150", the so-called Stillinger-Lovett sum rule,
determines the second moment of Ccl,reg(r)
!,* ,+e*e+S*+

cl,reg(r),

Ccl,reg!k" /
!k!→0

1
42( k

2. !151"

Moreover, SD ,*+
cl also satisfies the classical external sum

rule. Indeed, the diagrammatic relation !147" and the fact
that ,+e+SD ,*+

cl (k) starts as !k!2 when !k! goes to zero allow
SD ,*+
cl itself to saturate Eq. !151". More precisely, the Debye
charge-charge correlation ,* ,+e*e+SD ,*+

cl (k) does obey Eq.
!151" because the Debye polarization cloud ?D ,*+

cl is such
that

,
+
e+SD ,*+

cl !k" /
!k!→0

e*)*
1D
2 k2. !152"

A consequence of Eq. !152" is that, when B0!0, since 1D
2

is of order ) , the orders in density of the leading coefficients
A*+ , B* , and C in the zero-density limit also undergo a
cascade. A*+ , B* , and C start at order )2, ) , and )0, re-
spectively. As a consequence, the coefficient of the charge-
charge correlation does not vanish in the zero-density limit.
This reflects the fact that results obtained in the limit of an
infinitely dilute plasma do not coincide with calculations per-
formed for particles in the vacuum, where no screening ef-
fect takes place.
When B0$0, there is no cascade of power laws and the

low-density limits of tails D* /r5 and D/r5 of the particle-
charge and charge-charge correlations are just given by the
D*+ /r5 tail of the particle-particle correlation with adequate
summation ,+e+ and ,*e* , as it should. This property
holds at higher orders in density, because the diagrammatic
structures of the various 1/r5 tails merely involve fewer and
fewer diagrams as charges are summed over, according to
Sec. VIII B of Paper I. The coefficients of all these 1/r5 tails
start at order )2. The 1/r5 tail at order )2 does disappear
after integration over angles. !This was shown at any finite
density by the use of general analyticity arguments in Fourier
space given in Sec. VI C of Paper I." The latter result is
compatible with Eq. !150".
For the OCP, as in the case of multicomponent plasmas,

the quantum response function does satisfy the above perfect
screening sum rule !150" !see page 1122 of Ref. &4'". More-
over, in this system, the extra exact sum rule !16" determines
the coefficient of the term of order !k!2 in the charge-charge
correlation COCP(k)!e2S OCP(k) itself, because the motion
of the center of mass happens to move independently in the
harmonic force created by the background. We notice that
there exists another constraint in the absence of B0 !see page
166 of Ref. &6'": the mechanical balance enforces the value
of the !k!2 term in ,+e+)+

ind,L„k;%q(k)…!B0!0 /%q(k), and
subsequently, the value of the !k!4 term in 50

1dsCOCP!B0!0 ,
by virtue of Eq. !149". The latter terms are analytic, which is
in agreement with the fact that the charge density
,+e+)+

ind,L(r;%q) induced by a point charge %q decays faster
than 1/r5 when B0!0, in fact as 1/r8 &13'.

C. Comparison with # expansions

In the case of a multicomponent plasma, # expansions
correspond to MB statistics and they are allowed only if the
Coulomb potential is regularized at the origin !in order to
avoid the macroscopic collapse of the multicomponent
plasma, whatever the latter is in a classical or in a quantum
dynamical regime". For instance, point particles may be re-
placed by spheres described by a repulsive hard- or soft-core
potential vSR(r) !see Sec. VIII C of Paper I". In fact, # ex-
pansions for correlations exist in the literature only in the
case B0!0 &12'. !However, some attempts to investigate the
case B0$0 are in progress &16'."
When B0!0, at the first order in # , namely, #4, the 1/r6

tail comes from the convolution !146". Indeed, the semiclas-
sical expansions take the form &11,12'
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)*+
!2 "T!r "!)*+

!2 "T!r "!cl##2R*+
!2 "!r "##4R*+

!4 "!r "#O!#6".
!153"

The classical contribution and the first quantum correction
#2R*+

(2) decay faster than any inverse power law whereas the
corrections of orders higher than #2 decrease as 1/r6. More
precisely, the tail of the semiclassical correlation #4R*+

(4)(r)
at order #4 comes in fact from Eq. !146" as the exact low-
density tails A*+

-2./r6 and A*+
-5/2./r6. Henceforth, the cascade of

power laws in the semiclassical limit &12' is induced by the
same mechanism as in the low-density limit of the fully
quantum regime !see Sec. VIII B 1".
Moreover, as argued in Sec. VI B of Paper II, there exists

a regime of physical parameters where both semiclassical
and low-density expansions may be performed. Since the
effective potential V*+

eff(6)!-0. is the only quantum term in Eq.
!146" and is exactly proportional to #4, the first two terms
A*+
-2./r6 and A*+

-5/2./r6 in the low-density expansion of the ex-
act A*+ /r6 tail of the correlation coincide with the first two
terms #4T*+

(4)!-2./r6 and #4T*+
(4)!-5/2./r6 in the low-density ex-

pansion of the #4T*+
(4)/r6 tail of the semiclassical correlation

at order #4.
In the case of the OCP, the low-density limit !138" coin-

cides with the first term in the Wigner-Kirkwood expansion
of the coefficient of the 1/r10 tail &11–13,17', namely, the
term of order #4. We recall that this expansion is legitimate
for the OCP, because the latter system has a well-behaved
thermodynamic limit even in the Maxwell-Boltzmann ap-
proximation. As in the case of multicomponent plasmas, #
and ) expansions may be performed simultaneously in a
low-degeneracy regime with weakly quantum dynamics and
weak Coulomb coupling !see Sec. VI B of Paper II". We
notice that this coincidence between the )2 term in the low-
density expansion and the #4 term in the semiclassical ex-
pansion turn out both for the coefficient of the 1/r10 tail of
the correlation as well as for the free-energy expression.
Since the system handled in the semiclassical derivation is a
OCP from the beginning of calculations, the agreement be-
tween formulas obtained from different descriptions of the
OCP is another argument for the validity of the procedure
used to obtain results for the OCP from expressions derived
for a TCP.

D. Intrinsic quantum nature of tails induced only by B0

1. Comparison with a simple model

A deeper insight into the structures of the 1/r6 tail !2" and
the 1/r5 tail !10" of )*+

(2)T(r) with or without B0 may be
obtained from the comparison with the simple model of two
quantum charges embedded in a classical plasma. This
model has been discussed in Sec. V of Paper I. The effective
interaction U12

eff(r) between the two quantum charges in the
model decays algebraically at large distances r . According to
Sec. VB of Paper I,

U12
eff!r "!B0!0 /

r→0
V̄*1*2
eff!6 "!r "!-0., !154"

where V*1*2
eff(6)!-0. is given by Eq. !5" with the measure D̄(!i)

in place of D(!i). D̄(!i) involves the electrostatic free en-

ergy Fi ,elect
(1) (!i) for the immersion of a single closed curve

4 i!i into the classical gas. In the same way,

U12
eff!r"!B0 /

r→0
V̄*1*2
eff!5 "!r"!-0., !155"

where V̄*1*2
eff(5)!-0. is given by Eq. !11" with the measure

DB0(!i) in place of DB0(!i).
In a weak-coupling regime for the classical plasma,

namely, at sufficiently low density or high temperature,
Fi ,elect
(1) (!i) tends to its Debye expression &12'

Fi ,D!!i"!
ei
2

2 $0
1
ds$

0

1
ds!

exp&"1D4 i!!i!s ""!i!s!"!'"1

4 i!!i!s ""!i!s!"!
.

!156"

In the zero-coupling limit, 1D vanishes. Then Fi ,D(!i) tends
to the value "1Dei

2/2, which is independent from the loop
shape !i , so that

DB0!!i" /
1D→0

DB0!!i". !157"

!This result would also be obtained by considering a semi-
classical limit for the two quantum charges, in which case 4 i
goes to zero."
When B0!0, comparison of Eqs. !154" and !157" with

Eq. !2" shows that the 1/r6 leading tail of "(U12
eff(r)!B0!0 in

the weak-coupling limit for the classical plasma does not
coincide with the exact low-density &A*1*2 /)*1)*2'/r

6 tail
of the Ursell function h*1*2(r)!B0!0 in the fully quantum
many-body problem. Indeed, A*1*2 /r

6 contains extra contri-

butions with respect to ")*1)*2(V*1*2
eff(6)(r)!-0. arising from

bonds Fcc; these contributions make A*+
-2./)*)+ independent

from species * or + , according to Eq. !70". However, when
B0$0, the large-distance behavior !155" of "(U12

eff(r)!B0 in
the same regime !157" happens to coincide with the
&D*1*2

/)*1)*2'/r
5 tail of the exact quantum Ursell function

h*1*2(r)!B0 at low density, as a result of several cancella-
tions in screening contributions.
The interpretation is the following. At the first order in

density, there are indirect interactions between the two
charges e* and e+ , because the latter ones interact through
Debye screening !which gives contributions of order )0)
with other charges of the quantum medium and these charges
have an algebraic interaction between each other. At first
orders in density the involved Debye interaction is either
purely classical !for any value of B0) or of diffraction type
!only when B0$0). In technical words, classical Debye in-
teractions correspond to Fcc bonds and diffraction Debye
contributions to Fcm bonds, more precisely to the part of Fcm

which is a monopole-dipole Debye interaction. When B0
!0, the quantum interaction is some kind of squared dipole-
dipole potential possibly screened by one or two Fcc bonds.
When B0$0, the interaction is either a dipole-dipole inter-
action W3 screened by two Fcm bonds, or a dipole-
quadrupole interaction W4 screened by one Fcm bond and
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possibly by a Fcc bond, or a quadrupole-quadrupole bond
W5 , which is possibly screened by one or two Fcc bonds.
The indirect interactions cannot be taken into account in

the simple model where all particles of the medium are clas-
sical. Besides, generically they do not cancel each other in a
true quantum plasma, and it is indeed the case even in the
low-density limit when B0!0. This can be seen in another
way by inspection of the intermediate formula !66". In a limit
procedure where only particles e* and e+ located at 0 and r
remain quantum, a purely quantum interaction involving
&W3'

2 survives only between them, so that only %* ,*! and
%+ ,+! do contribute in Eq. !66"; then we retrieve the result of
the model in the weak-coupling limit. &We notice as a curi-
osity that for a symmetric two-component plasma, where
e#!"e" and m#!m" , we find 1e/m

2 !0 so that, according
to Eq. !1", the expression of the model happens to coincide
with the quantum many-body result at low density, though
the charges that are involved in screening are indeed quan-
tum.'
When B0$0, it turns out that, as a result of a cancellation

mechanism which takes place only when there is no ex-
change effect, two given quantum charges interact directly
by a quantum interaction W5 at order )2 and, at order
)5/2, W5 is merely screened by a squared Debye interaction
possibly convoluted with a single Debye term. The two
quantum charges are not affected by the direct interactions
W3 , W4 , and W5 involving charges of the medium at the
first order in density. Thus there is no indirect quantum in-
teraction arising only from B0 at order )2 and the low-
density result for the true quantum many-body problem turns
out to coincide with the simple result for two quantum
charges in a classical bath.
An interpretation of the above cancellation is that, at the

first order in density, which coincides with the low-density
limit of the first order in # , only semiclassical effects appear
and the effective interaction arising from purely quantum
dynamics and statistics in the presence of B0 cannot be con-
veyed by quantum charges of the medium which are only
semiclassically screened from the two given quantum par-
ticles.

2. Linear and nonlinear effects

Now, we turn to the large-distance behavior of the in-
duced charge density. The order in density at which the lead-
ing tail of ,+e+)+

ind,L(r;%q) starts is determined by the low-
est order in )+ for which the coefficient of the decay of
,+e+)*+

(2)T(r) is linear in e* . Indeed, as already mentioned
in Paper I, at finite density and at any point r, the induced
charge density is related to the particle-charge correlation
through Eq. !75". We stress that Eq. !75" is valid even for a
finite charge e* and is not restricted to linear effects. At
finite density, the induced charge density given by the linear
response theory decays with the same inverse power law as
the particle-charge correlation, as also argued in Sec. VIII C
of Paper I.
When B0!0, at first order in density, according to Eq.

!2", two particles with charges e* and e+ have both direct
and indirect squared dipolar interactions with each other. The
indirect interaction is conveyed by quantum charges e* i of
the medium which interact with the considered particles e*

and e+ by the Debye potential, which is linear in the charge,
while the quantum interaction is quadratic in each charge
e* i. As a consequence, the B*

-1./r8 tail of the particle-charge
correlation ,+e+)*+

(2)T(r)!B0!0 at first order in density does
involve linear terms in e* . Thus the B/r8 decay of the lin-
early induced charge density ,+e+)+

ind,L(r;%q)!B0!0 indeed
starts at order )0, according to Eq. !75".
However, when B0$0, at first order in density, quantum

particles interact only through a direct effective quadrupole-
quadrupole potential V*+

eff(5)!-0. &see Eq. !11"'. V*+
eff(5)!-0.

arises from derivatives of the Coulomb interaction, which is
proportional to e*e+ , and from quadrupolar moments, each
of which is controlled by the magnetic coupling constant
uC*!((#/2m*c)$e*B0 . In the limit of an infinitesimal e*
at B0 fixed, the quadrupolar moment becomes quadratic in
e* . Thus the effective direct quadrupolar interaction is cubic
in e* when e* goes to zero, and so is the D*

-2./r5 tail of the
particle-charge correlation ,+e+)*+

(2)T(r)!B0 at the first order
)2 in the same limit. As a consequence, according to Eq.
!75", the D!/r5 tail of the induced charge density
,+e+)+

ind,L(r;%q)!B0 vanishes at first order ) , D
!-1.!0.

However, screening of Debye type is no longer completely
canceled at next order in ) &see Eq. !108"'. Subsequently, a
linear contribution in e* for infinitesimal e* shows up in
D*
-5/2. and the D!/r5 tail of the induced charge given by the

linear response theory starts at order )3/2 according to Eq.
!129".

E. Classical time-displaced correlations

In the presence as well as in the absence of B0 , the clas-
sical time-displaced correlations have algebraic leading be-
haviors with the same exponents as the corresponding quan-
tum static correlations. The origin of these algebraic decays
is the mass inertia which prevents any polarization cloud
from following instantaneously the motion of the charge
which it surrrounds, so that the average classical polarization
cloud around any set of given particles does not have the
symmetry properties !absence of multipolar moments" that
would ensure the perfect screening &4', namely, the exponen-
tial clustering of particle distributions.
When B0!0, as shown in Ref. &12', the classical time-

displaced particle correlation decays at least as 1/r6 in a mul-
ticomponent plasma !according to an analysis of hierarchy
equations". In the very special case of the OCP, where the
particle-particle correlation coincides with the charge-charge
correlation, the falloff of the time-displaced classical corre-
lation is even faster: it decays as C(t)/r10, according to the
behavior of the t8 term in a small-time expansion &11'.
In the presence of B0 , only the case of the OCP has been

studied, to our knowledge. The charge-charge correlation de-
cays as D(t)/r5. Indeed, the first-order term in the small-k
expansion of the Fourier transform e2S OCP(k,t)!B0 starts at
order !k!2 by a term given by formula !2.20" in Ref. &1'. This
exact result may be obtained from the microscopic
Bogoliubov-Born-Green-Kirkwood-Yvon !BBGKY" hierar-
chy as well as from linear response and macroscopic electro-
dynamics. This term has the same structure as in the quan-
tum sum rule !16" with cos(9%t) in place of
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(#9%

2 coth% (#9%

2 & . !158"

Thus the term of order !k!2 in e2S OCP,B0(k,t),
e2S OCP,B0

(2) (k,t) oscillates with time with well-defined fre-
quencies which themselves oscillate with the angle between
k and B0 as in Eq. !17". If this exact result is expanded in
powers of t , the nonanalytic term in e2S OCP,B0!0

(2) (k,t) ap-
pears only in the t8 term. We recall that, in the case B!0,
the 1/r10 tail of e2S OCP derived from a direct t expansion of
the correlation also appears only from order t8 &11'.
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APPENDIX A

In this appendix we investigate the structure of the 1/r6
tail of hnn before loop expansions when B0!0. We intro-
duce the notation f n"[q ,q!](< ,<!) for a function which is of
parity ("1)q and ("1)q! under inversion of X and X!, re-
spectively, and which is the sum of graphs where < is a
non-Coulomb-root point while <! is any kind of root point.
According to Ref. &10' and Sec. VII of Paper I, the 1/r6

tail Shnn
(6)[0,0](r,<1 ,<2) of hnn which is involved in Eq. !36"

comes either from the term &W3'
2/2 in the asymptotic behav-

ior of one bond FR and has the structure

$ d<1!$ d<2!% $ dxG 2
n"[0,0]!x;<1 ,<1!" &

$
1
2 &W3!r,<1! ,<2!"'2% $ dyG 2

"n[0,0]!y;<2! ,<2" & , !A1"

or it comes from the product of the leading 1/r3 asymptotic
behaviors SC

(3) of two convolutions, each of which involves
at least one bond FR . According to the general analysis of
Appendix A in Paper I, the 1/r3 tail before integration over
loop shapes is odd under inversion of each loop shape,
SC
(3)(r,<1 ,<2)!SC

(3)[1,1](r,<1 ,<2). These two functions SC
(3)

link either exactly three points and Shnn
(6)[0,0](r,<1 ,<2) is of

the form

$ d<1!$ d<2!$ d<2"% $ dxG 2
n"[0,0]!x;<1 ,<1!" &

$SC
!3 "[1,1]!r,<1! ,<2!"SC

!3 "[1,1]!r,<1! ,<2""

$% $ dy$ dy!G 3
""n[1,1,0]!y,y!;<2! ,<2" ,<2" & !A2"

or they link exactly four points, with the result

$ d<1!$ d<1"$ d<2!$ d<2"

$% $ dx$ dx!G 3
n""[0,1,1]!x,x!;<1 ,<1! ,<1"" &

$SC
!3 "[1,1]!r,<1! ,<2!"SC

!3 "[1,1]!r,<1" ,<2""

$% $ dy$ dy!G 3
""n[1,1,0]!y,y!;<2! ,<2" ,<2" & . !A3"

Equations !A1"–!A3" are the three allowed structures for
Shnn
(6)[0,0](r,<a ,<b).
For the sake of pedagogy, we give examples of diagrams

for each kind of structures of 1/r6 tails. For instance, some
contributions to Shnn

(6)[0,0](r,<1 ,<2) of the form !A1" come
from the following diagrams in hnn. The contribution from
FR"W is &W3'

2/2 and then G 2
n"[0,0](x;<1 ,<1!)

!%(x)%<1 ,<1!. The contribution to Shnn
(6)[0,0](r,<1 ,<2) from

the diagram > equal to FR*)FR is given by the 1/r6 tail of
the diagram >̃ equal to &FR"W'*)&FR"W' . This tail is the
sum of two terms,

$ d<2!
1
2 &W3!r,<1 ,<2!"'2% $ dy)!<2!"&FR"W'!y,<2! ,<2" &

!A4"

and the symmetric term obtained by exchanging the roles of
root points 1 and 2. This tail corresponds to a
G 2
n"[0,0](x,<1 ,<1!) which is identical to the previous one,

while G 2
"n(y,<2! ,<2)!)(<2!)&FR"W'(y,<2! ,<2). Accord-

ing to Eq. !31", the contribution to 5dyG 2
"n from W reduces

to that from W3 . According to Eq. !34",
5dyG 2

"n[0,0](y;<2! ,<2)!)(<2!)5dyFR(y;<2! ,<2).
A contribution to Shnn

(6)[0,0](r,<1 ,<2) of the form !A2"
arises from the diagram > that reads FR&FR*)FR' . It is equal
to those among the 1/r6 tails of diagrams W&W*)(FR
"W)' and W&(FR"W)*)W' that are even in X1 and X2 .
The tail of the former diagram may be written as

$ d<2"W3!r,<1 ,<2"W3!r,<1 ,<2""

$% $ dy)!<2""&FR"W3'!y,<2" ,<2" & , !A5"

where we have used property !31".
An Shnn

(6)[0,0](r,<1 ,<2) tail of the form !A3"—together with
contributions of the form !A2"—originates from the diagram
&FR*)FR'&FR*)FR' . More precisely, the tail with structure
!A3" is given by the diagram >̃ equal to

&!FR"W "*)W'&W*)!FR"W "' .

It reads
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$ d<1!$ d<2!% $ dx)!<1!"&FR"W3'!x,<1 ,<1!" &
$W3!r,<1! ,<2"W3!r,<1 ,<2!"

$% $ dy)!<2!"&FR"W3'!y,<2! ,<2" & . !A6"

Equation !A6" corresponds to

G 3
n""[0,1,1]!x,x!;<1 ,<1! ,<1""

!%!x!"%<1 ,<1")!<1!"&FR"W3'!x,<1 ,<1!"

while G 3
""n[1,1,0](y,y!;<2! ,<2" ,<2) has a similar expression.

APPENDIX B

In this appendix we turn to the derivation of the loop-
density expansions of the 1/r6 tail of hnn. We use the struc-
tures of this tail with two, three, or four intermediate points
given in Appendix A. Loop-density expansions are per-
formed according to the principles of Sec. IVA.
As already sketched in Sec. IVA, diagrams in hnn that

contribute to the coefficient of Shnn
(6) at a given order in ) loop

are readily determined as follows. Diagrams >̃ that appear in
functions G2 and G3 are replaced by diagrams >̃T built with
bonds Fcc, Fcm, Fmc, &Fcc'2/2, W , and FRT"W!FR
"&Fcc'2/2"W . The analysis in loop density performed for
analogous bonds in Sec. IVA of Paper II is used again with
the following results.
5dxG 2

n"[0,0](x;<1 ,<1!) starts at order ) loop
0 , with

G 2
n"[0,0]! loop

-0. !x;<1 ,<1!"!%!x"%<1 ,<1! !B1"

whereas 5dx5dx!G 3
n""[0,1,1](x,x!;<1 ,<1! ,<1") starts only at

order ) loop , with

G 3
n""[0,1,1]! loop

-1. !x,x!;<1 ,<1! ,<1""

!%!x!"%<1 ,<1")!<1!"FRT!x,<1 ,<1!". !B2"

In the following, the notation G! loop
-n. is to be understood as the

contribution of G of order ) loop
n after integration over position

variables. We notice, though this formula is not used in the
present paper, that

G 3
n""[0,1,1]! loop

-3/2.!x,x!;<1 ,<1! ,<1""!
1
2 )!<1!")!<1""-•••.,

!B3"

with

-•••.!Fcm!1,1!"Fcm!1,1""Fcc!1!,1""

#Fcm!1,1!"Fcc!1,1""Fcm!1!,1""

#Fcc!1,1!"Fcm!1,1""Fmc!1!,1""

#Fcc!1,1!"Fcc!1,1""FRT!1!,1"". !B4"

In Eq. !B4" the contributions from W and FRT"W have been
summed and 1/2 is the symmetry factor of diagrams. !The
first three diagrams are such that one and only one m is
associated with 1! as well as with 1".)
Moreover, contributions to 5dxG 2

n"[0,0](x;<1 ,<1!) at or-
ders ) loop

1/2 and ) loop arise from diagrams with the structure
G 2
nn[0,0]*?D . Indeed, the ) loop

1/2 term corresponds to

G 2
n"[0,0]! loop

-1/2.!
1
2 &F

cc'2)*?D. !B5"

We notice that the contribution from diagram Fcm(x,<1 ,<1!)
to 5dxG2(x,<1 ,<1!) at any order ) loop

n , with nD1/2, vanishes
according to Eq. !30". Thus the convolution of an algebraic
tail with Fcm increases the exponent of the falloff after inte-
gration over orientation of x. The term of order ) in
5dxG 2

n"[0,0](x;<1 ,<1!) is given by a G 2
nn[0,0]! loop

-1. *?D with

G 2
nn[0,0]! loop

-1. 3FRT#
1
2 &F

cc'2*)
1
2 &F

cc'2

#
1
2 &F

cc'2*)Fcc*)
1
2 &F

cc'2

#Fcc'Fcc*)
1
2 &F

cc'2#
1
2 &F

cc'2*)Fcc

#Fcc*)
1
2 &F

cc'2*)Fcc( #bridge5 . !B6"

In this writing we have summed W and FRT"W while
Bridge5 denotes the value of a bridge diagram with five
bonds Fcc and two root points,

bridge5!r1"r1! ,<1 ,<1!"

3
1
2$ dP)!<"$ dP!)!<!"Fcc!L1 ,P"

$Fcc!L1 ,P!"Fcc!P,P!"Fcc!P,L1!"Fcc!P!,L1!".

!B7"

Bridge5 is analogous to the bridge diagram Ibridge6 with six
bonds Fcc and one root point, which is introduced in Sec.
VD of Paper II for the calculation of the free energy from
the diagrammatic representation of the ratio )/)*

id! ,MB . Dia-
grams at next order in ) loop are too numerous to be presented
here.
As a conclusion, the structures !A1", !A2", and !A3" of

the tail Shnn
(6) with two, three, or four intermediate points start

at orders ) loop
0 , ) loop , and ) loop

2 , respectively. Therefore the
1/r6 tail of the particle-particle correlation starts at order )2.
Indeed, in its contribution to the particle-particle correlation,
hnn is convoluted by dressings that start at order ) loop

0 , and
the root points of h are multiplied by weights ) loop . Thus, up
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to order ) loop
5/2 , A*a*b /r

6 is given by Eq. !44" where Shnn
(6)[0,0]

has the structure with two intermediate points !A1". Then the
results of Sec. VB are derived from Eqs. !B1" and !B5".

APPENDIX C

In this appendix we explicitly check identities !81" and
!82" at the first order in density. The D* /r5 tail of the
particle-charge correlation in the presence of B0 reads

D*

r5
!$ d<a)!<a"%e*a,*

$$ d<b)!<b"pbe*bSpc
!5 "[0,0]!r,<a ,<b", !C1"

where, according to Sec. VIII,B of Paper I,
Spc
(5)[0,0](r,<a ,<b) is the 1/r5 tail of ?D**hnn*)Fmc which is
even under inversion of each root point. According to Eq.
!28", the small-k expansion of Fcm starts at order !k! so that
Spc
(2)[0,0](k,<a ,<b) may be decomposed as the sum of two
contributions,

$ d<1$ d<2)!<2"Fcm!1 "!k,<a ,<1"

$Shnn
!0 "[1,1]Fcm!1 "$!k,<2 ,<b" !C2a"

#$ d<1$ d<2)!<2"?D
!0 "!k,<1 ;<a"Shnn

!1 "[0,1]

$Fcm!1 "!k,<2 ,<b". !C2b"

We have not included the third term

$ d<1$ d<2)!<2"?D
!0 "!k,<1 ;<a"

$Shnn
!0 "[0,0]Fmc!2 "!k,<2 ,<b"!0. !C3"

It vanishes for the same reason as Eq. !84".
Since )Fcm(1) and ?D

(0) are exactly of order ) loop
0 , Spc

(2)[0,0]

starts at order ) loop
0 where it involves Eqs. !88" and !89". At

the first order )0 in particle density the same compensation
mechanism as in the case of Spp

(5)[0,0] operates for Spc
(5)[0,0] .

Indeed, similarly to Eq. !99", the effective contribution from
?D**hnn*)Fmc to the tail Spc

(5) at the lowest order in ) loop
may be reorganized in Fourier space as

"Fcm!1 ")w3
[1,1]#

1
2 F

cc!0 ")w4
[2,1]#Fmc!1 " !C4a"

#
1
2 w4

[2,1])Fmc!1 ". !C4b"

According to Eq. !94", only Eq. !C4b" contributes to the
inverse Fourier transform

Spc
!5 "[0,0]!r,!a ,!b"!-0.

!F "1"12,*1 $ D*1 ,B0!!1"w4
[2,1]!k,!a ,!1 ;*a ,*1"

$)*1F
mc!1 "-"1.!k,!1 ;*1 ,*b"#!r". !C5"

Subsequently, the 1/r5 tail of the particle-charge correlation,
given by Eqs. !C1" and !C5", has the same structure as Eq.
!101" with F*+

pp (k,s1 ,s2) replaced by ,+e+F*+
pc (k,s1 ,s2),

where F*+
pc (k,s1 ,s2) has an expression similar to Eq. !102"

with the term in braces equal to

1
2$0

1
ds2!$ D* ,B0!!1"$ D+ ,B0!!2"&k•!1!s1"'2&k•!2!s2"'

$&k•!2!s2!"'
42

k2
. !C6"

The nonanalytic term in Eq. !C6" has the same structure in k
as Eq. !105" with the coefficient %C*(s1 ,s1)%C+(s2 ,s2) re-
placed by 2%C*(s1 ,s1)50

1ds2!%C+(s2 ,s2!). The factor 2 is
compensated by the factor 1/2 arising from Eq. !97", and the
D* /r5 tail of ,+e+)*+

(2)T(r) is equal to ,+e+ times the ex-
pression !110", namely, we get Eq. !81".
The origin of the D/r5 tail of the charge-charge correla-

tion is reduced to

D
r5 !$ d<a)!<a"pae*a$ d<b)!<b"

$pbe*bScc
!5 "[0,0]!r,<a ,<b", !C7"

where Scc
(5)[0,0](r,<a ,<b) is the 1/r5 tail of Fcm)*hnn*)Fmc.

More precisely,

Scc
!2 "[0,0]!k,<a ,<b"!Fcm!1 "!k,<a ,<1"Shnn

!0 "[1,1]!k,<1 ,<2"

$Fmc!1 "!k,<2 ,<b". !C8"

Since )Fcm(1) is exactly of order ) loop
0 , by inserting Eqs.

!88" and !28" into Eq. !C8", we obtain that at the lowest
order in particle density

F "D -2.

r5 # !k"!,
*1

)*1e*1,*2
)*2e*2$ D*1 ,B0!!1"

$$ D*2 ,B0!!2"$0
1
ds$

0

1
ds!&k•4*1!1!s "'

$&k•4*1!2!s!"'W3!k,!1 ,!2 ;*1 ,*2". !C9"

Equation !C9" has the same structure as Eq. !101" with
F*+
pp (k,s1 ,s2) replaced by ,* ,+e*e+F*+

cc (k,s1 ,s2) where
F*+
cc (k,s1 ,s2) is given by an expression similar to Eq. !102"
with the term in braces replaced by
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$
0

1
ds1!$

0

1
ds2!$ D* ,B0!!1"$ D+ ,B0!!2"&k•!1!s1"'

$&k•!1!s1!"'&k•!2!s2"'&k•!2!s2!"'
42

k2
. !C10"

The nonanalytic term in Eq. !C10" has the structure !105"
with %C*(s1 ,s1)%C+(s2 ,s2) replaced by
450

1ds1!%C*(s1 ,s1!)50
1ds2!%C+(s2 ,s2!). According to Eq.

!97", the factor 4 is compensated by a factor 1/4 and we
obtain Eq. !82".
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