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Abstract. The structure of equilibrium density profiles in an electrolyte in the vicinity of
an interface with an insulating or conductive medium is of crucial importance in chemical
physics and colloidal science. The Coulomb interaction is responsible for screening effects,
and in dilute solutions the latter give rise to universal leading corrections to nonideality,
which distinguish electrolyte from nonelectrolyte solutions. An example is provided by
the excess surface tension for an air–water interface, which is determined by the excess
particle density, and which was first calculated by Onsager and Samaras. Because of the
discrepancy between the dielectric constants on both sides of the interface, every charge in
the electrolyte interacts with an electrostatic image, and the Boltzmann factor associated
with the corresponding self-energy has an essential singularity over the length scale l from
the wall. Besides Coulomb interactions, short-range repulsions must be taken into account
in order to prevent the collapse between charges with opposite signs or between each charge
and its image when the solvent dielectric constant is lower than that of the continuous
medium on the other side of the interface. For a dilute and weakly-coupled electrolyte,
l is negligible with respect to the bulk Debye screening length ξD. In the framework of
the grand-canonical ensemble, systematic partial resummations in Mayer diagrammatics
allow one to exhibit that, in this regime, the exact density profiles at leading order are
the same as if they were calculated in a partially-linearized mean-field theory, where the
screened pair interaction obeys an inhomogeneous Debye equation. In the latter equation
the effective screening length depends on the distance x from the interface: it varies very
fast over the length l and tends to its bulk value over a few ξDs. The equation can be solved
iteratively at any distance x, and the exact density profiles are calculated analytically up
to first order in the coupling parameter l/ξD. They show the interplay between three
effects: the geometric repulsion from the interface associated with the deformation of
screening clouds, the polarization effects described by the images on the other side of the
interface, and the interaction between each charge and the potential drop created by the
electric layer which appears as soon as the fluid has not a charge-symmetric composition.
Moreover, the expressions allow us to go beyond Onsager–Samaras theory: the surface
tension is calculated for charge-asymmetric electrolytes and for any value of the ratio
between the dielectric constants on both sides of the interface. Similar diagrammatic
techniques also allow one to investigate the charge renormalization in the dipolar effective
pair interaction along the interface with an insulating medium.
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1. Introduction

The study of electrolyte solutions has been an important part of chemical physics
throughout its history, in electrochemistry as well as in colloid chemistry. The
long-range Coulomb interaction causes special screening mechanisms, and, in dilute
solutions, the latter give rise to universal leading corrections to nonideality, which
distinguish electrolyte from nonelectrolyte solutions. The limiting laws, such as
that for the excess pressure in the bulk, are universal in the sense that they depend
only on the valence type of the salt and on the macroscopic characterization of the
solvent.

In the theory of surface properties of dilute electrolyte solutions, an example of
these laws appears in the case of the excess surface tension. In the first experi-
ments on aqueous liquid–vapor interfaces, the measured surface tensions of elec-
trolyte solutions were larger than those of pure solvents, which signaled a negative
adsorption of ions, according to the Gibbs adsorption equation. Since the salt con-
centration in the vapor phase is exceedingly small (far from the critical point of
the liquid–vapor transition), the air can be mimicked by an impenetrable wall. In
1924, Wagner [1] produced a phenomenological theory in the spirit of the linearized
Poisson–Boltzmann theory introduced by Gouy [2] and Debye and Hückel [3]; he
argued that the ion depletion mainly stemmed from the repulsion of all ion species
from the interface, due to the electrostatic interaction with the images, which arises
from the discrepancy between the dielectric constants on both sides of the interface.
Wagner considered only the case of symmetric Z:Z electrolytes and he assumed,
as a first approximation, that the ratio between the dielectric constants of air and
water could be set to zero, i.e., Dair/Dwater = 0. However, even in his mean-field
theory, the screened interaction between two ions obeys an inhomogeneous Debye
equation, where the screening length ξ depends on the distance x from the wall
through the density profiles. The latter vary very fast in the vicinity of the wall,
because the self-image interaction diverges in the vicinity of the interface as 1/x,
and its Boltzmann factor cannot be treated perturbatively. Wagner was not able
to obtain an analytical expression for the density profiles, and he only calculated
the surface tension by numerical integrations.

In 1934, Onsager and Samaras [4] simplified Wagner’s phenomenological theory
and first calculated the analytical expression of the density profiles. They just
avoided the technical difficulty in the resolution of the problem, namely the depen-
dence of the screening length ξ upon the distance x from the wall in the generalized
Debye equation. They replaced ξ(x) by the value it takes for distances larger than
the Debye bulk screening length, and they argued that the corresponding error
in the excess surface tension was indeed a higher-order correction at low densities.
They found a positive leading correction proportional to ρ[− ln ρ+Cst], independent
of the short-range interactions.
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In the present paper, we consider electrolytes which are not necessarily charge-
symmetric and for any value of the ratio between the dielectric constants on both
sides of the interface. We give the exact analytical expression for the density profiles
in a high-dilution scaling regime [5,6], and we control the structure of the corrections
to the leading terms. Moreover, the dependence upon the closest approach distance
to the wall b is controlled in various scaling limits. This enables us to get an
extension of the Onsager–Samaras formulas for the density profiles and the surface
tension, and to determine their a priori domain of validity.

The paper is organized as follows: The model for the electrolyte and the interface
is is introduced in § 2.. A few basic aspects of screening in the bulk are summarized
in § 3.. The resolution method and the structure of the exact analytical profiles are
presented in § 4.. The interplay between the steric deformation of screening clouds
and polarization effects is analysed in § 5.. Effects in competition in the density
profiles and their relation to screening mechanisms are discussed in § 6.. Finally, in
§ 7., the surface tension is written for the first time for a generic electrolyte and an
interface with an electrostatic response which may be either repulsive or attractive.

2. Model for the electrolyte and the wall

The impenetrable wall in the region x < 0 is only characterized by its dielectric
constant DW, whereas the electrolyte is described by the usual primitive model [7]
in the framework of classical statistical mechanics. Every charged particle of the
species α is represented as a point charge which sits at the center of a hard sphere
with diameter σα. The net bare solvated charge is written as eα ≡ Zαe, where e is
the absolute value of the electron charge and Zα may be positive or negative. The
solvent is modelled as a continuous medium with a uniform dielectric constant DS.
Moreover, for the sake of simplicity, the excluded-volume sphere of every particle is
assumed to be made of a material with the same dielectric constant as that of the
solvent. Therefore, the Coulomb potential eαv(r, r′) created at any point r′ by a
charge eα located at the center r of a hard-sphere the obeys the Poisson equation,

∆r′v(r, r′) = − 4π

DS

δ(r− r′), (1)

with the appropriate electrostatic boundary conditions.

2.1 Polarization

In the bulk, the solution is

vB(r, r′) =
1

DS|r− r′| . (2)

In the vicinity of the interface, since there is a medium with a dielectric constant
DW on the left side of the plane x = 0, the solution of the Poisson equation (1) for
x > 0 and x′ > 0 reads

v(r, r′) =
1

DS

[
1

|r− r′| −∆el
1

|r? − r′|
]
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with

∆el ≡ DW −DS

DW + DS

. (3)

In (3), r? is the point symmetric to r with respect to the plane x = 0 and ∆el

measures the difference between the dielectric constants on both sides of the inter-
face. A charge in the solvent induces a polarization charge density inside the other
medium in the wall. In the present plane geometry, by virtue of (3), the Coulomb
potential eαv(r, r′) that a charge eα at r creates at point r′ can be seen as the sum
of the bulk potential eαvB(r, r′) and the bulk potential which would be created at
r′ by a charge −∆eleα at r? inside the wall, if the latter had the same dielectric
constant as the solvent [8].

2.2 Strong inhomogeneity due to the self-image interaction

When DW 6= DS, the total electrostatic potential energy of the system involves
several kinds of contributions which can be rewritten in terms of the bulk Coulomb
interaction: each charge interacts through the bulk Coulomb potential not only with
the other charges in the electrolyte and their images, but also with its own image.
The latter self-image interaction corresponds to an external potential proportional
to e2

α, or it can be viewed as a self-energy,

e2
αVself(x) ≡ e2

α

2
[
v − vB

]
(r, r′)

∣∣∣∣
r=r′

= −∆el
e2
α

2DS

1
2x

. (4)

If charges did not interact with each other but only with their self images, then the
density profiles would be ρbare

self,α(x) = ρB
α exp

[−βe2
αVself(x)

]
.

As a consequence, if DW < 1, the wall is electrostatically repulsive, and ρbare
self,α

vanishes with an essential singularity as x goes to zero. If DW > 1, the wall is
electrostatically attractive and the divergence of the self-image interaction in the
vicinity of the wall makes ρbare

self,α(x) explode when x goes to zero. Therefore, in order
to prevent the collapse onto the wall, the closest approach distance of each particle
to the wall cannot be set to zero in various integrals. The latter distance may be
determined by the ions’ excluded-volume spheres or by a monolayer of adsorbed
molecules on the interface, for instance water molecules in the case of an aqueous–
mercury interface [9]. For the sake of simplicity, it is chosen to have the same value b
for all species, as it is indeed the case in the second mechanism responsible for it. In
order to trace the excluded-volume effect at contact with the interface, we consider
a finite b even for ∆el ≤ 1, but in the latter case one is allowed to take the limit
where b becomes negligible with respect to all other length scales and to set b = 0.

3. Screening in the bulk

3.1 Neutrality sum rules

In the bulk, translational invariance implies that, at equilibrium, the bulk densities
ρB

α are uniform and the macroscopic electrostatic field vanishes [10]. Therefore the
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ns bulk densities obey the local neutrality relation

ns∑
α=1

eαρB
α = 0. (5)

Another basic screening rule in the bulk is that the set made by a charge and its
screening cloud is neutral [10],

∫
dr

∑
γ

eγρB
γh(eα, r0; eγ , r) = −eα. (6)

h(eα, r0; eγ , r) denotes the probability of finding a charge eγ at point r given that
a charge eα sits at position r0 minus 1. We stress that there are other screening
sum rules about h(eα, r0; eγ , r) and various correlations [10]. None of them involves
explicitly the short-range repulsion which must be introduced in order to avoid
the collapse of the classical fluid because of the attraction between charges with
opposite signs.

3.2 Debye approximation for point charges

In the Debye approximation, which is a linearized Poisson–Boltzmann theory, and in
the limit where the radii of the excluded-volume spheres vanish, the bulk correlation
between a charge eα and a charge eγ in its screening cloud reads

hD(eα, r0; eγ , r) = −βeαeγφD(r0, r). (7)

By the definition of φD, δqδq′φ is the immersion free energy between two infinites-
imal external point charges δq and δq′ calculated in the framework of the linear-
response theory as if the radii of the excluded-volume spheres of the fluid charges
were equal to zero. φD is the solution of the Debye equation with electrostatic
boundary conditions,

[∆r − κ2
D]φD(r− r0) = − 4π

DS

δ(r− r0) with κD ≡
√√√√4πβ

DS

ns∑
α=1

ρB
αe2

α,

(8)

at the inverse temperature β = 1/(kBT ), where kB is the Boltzmann constant and
T is the absolute temperature. The Debye interaction φD reads

φD(r− r0) =
e−κD|r−r0|

DS|r− r0| . (9)

In fact, the Debye approximation already fulfills the internal-screening rule (6).
The reason is that the Debye correlation becomes exact in some high-dilution scaling
regimes [11].
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3.3 High-dilution ‘Debye’ scaling regimes and universal laws

If the solution is diluted, the Coulomb coupling between charges of any species sep-
arated by the mean interparticle distance a is weak: the condition of low densities,
(σ/a)3 ¿ 1, where σ is the mean ion diameter, implies that the coupling para-
meter Γ ≡ βe2/(DSa) is such that Γ3 ¿ 1, if the temperature is high enough for
βe2/(DSσ) to be of unit order or far smaller than 1. Then, for a generic quantity,
a double-expansion in the parameters σ/a and Γ can be performed systematically
from the exact resummed Mayer diagrammatics first introduced for bulk corre-
lations by Meeron [12], and which is valid for any peculiar form of an additive
short-range repulsive interaction. The expansion of the integral of the correlation
starts by a term of order Γ3/2 and contributions of the form (see [13]),

(σ

a

)3

,
(σ

a

)2

Γ,
σ

a
Γ2, Γ3, Γ3 ln

[(σ

a

)2

Γ
]

, and Γ3f

(
βe2

DSσ

)
, (10)

where βe2/(DSσ) = Γ/(σ/a) and f(u) is of order u when u goes to zero. In fact,
the term of order Γ3/2 comes from the point-charge Debye screened interaction (9)
to the correlation.

Therefore, in various integrals, the Debye approximation (7) for the correlation
h(eα, r0; eγ , r) gives the exact leading correction to the ideal contribution in scaling
regimes of temperature and density [13], where

(σ

a

)3

¿ ε ≡ 1
2
κDβ

e2

DS

¿ 1, (11)

with ε ∝ Γ3/2. The scaling regimes correspond to two different kinds of expansions
in the density and temperature parameters. In regime (1), the density vanishes
at fixed temperature; then βe2/(DSσ) is also fixed, i.e., (σ/a)3 ∝ ε2, and all con-
tributions in (10) are of order ε2 or ε2 ln ε. In regime (2), the density vanishes
while the temperature goes to infinity, but not too fast in order to ensure that
(σ/a)3 ¿ ε; then βe2/(DSσ) also vanishes, i.e., ε2 ¿ (σ/a)3, and in (10) the con-
tributions different from the (σ/a)3 term are in fact of higher order, (σ/a)3 times a
function of βe2/(DSσ), which vanishes when βe2/(DSσ) goes to zero. In the follow-
ing, expansions performed in the regimes where inequality (11) holds will be called
ε-expansions.

As a consequence, the universal corrections to nonideality governed by screening
effects in very dilute electrolytic solutions are described by the Debye theory in
scaling regimes (11). For instance, the excess pressure in the bulk is given by the
limit law,

βPB −
ns∑
α

ρB
α = − κ3

D

24π
+O(ρε2), (12)

where κ3
D is a term of order ρε, and O(ρε2) denotes both terms of order ρε2 (times a

possible ln ε) and other terms of the form (10) which are negligible with respect to ε
in high-dilution regimes (11). All these terms have been calculated in a systematic
approach by Haga [14,14a]. We notice that the steric factor exp(κDσ)/[1 + κDσ],
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which multiplied φD (9) in the original Debye-Hückel screened interaction, yields
corrections to the excess pressure only from relative order ε × (κDσ) [11]. Since
ε× (κDσ) ∝ Γ2(σ/a), it is only one among the contributions (10). In regime (1) it
is of order ε2, and in regime (2) it is negligible with respect to the (σ/a)3 correction.

4. Density profiles near the wall

4.1 Onsager–Samaras theory

Onsager and Samaras consider an interface in the approximation ∆el = −1 and a
symmetric Z:Z electrolyte, where charges are Ze and −Ze. Then, ρB

+ = ρB
− = ρB,

by virtue of the bulk local neutrality (5). In their heuristic approach, they solve
the Debye equation (8) with a constant κD for all x > 0 and with the electrostatic
boundary conditions for ∆el = −1. The solution φD(r0 − r) + φD(r?

0 − r) yields a
phenomenological screened self-energy, and they write

ρ+(x) = ρ−(x) = ρB exp
[
−β

Z2e2

2DS

e−2κDx

2x

]
for ∆el = −1. (13)

In other words, they assume that the effect of pair Coulomb interactions upon
the bare density profiles ρbare

self,α(x) (see (4)) is just to multiply the bare Coulomb
interaction e2

αVself(x) of each charge with its image by the bulk Debye screening
factor exp(−2κDx) for two charges separated by a distance 2x.

From the expression for the density profiles, Onsager and Samaras calculate
the universal contribution to the difference ∆γ between the surface tension of the
electrolyte solution and that of the pure solvent. They find if ∆el = −1 and κDb = 0,

β∆γ
(0)
OS =

κ2
D

16π

[
− ln

(
βZ2e2κD

2DS

)
− 2C +

3
2

]
, (14)

where C is the Euler constant, C = 0.577215 . . .. ∆γ
(0)
OS in (14) is positive, since

Z2ε ¿ 1.
In fact, though they set b equal to zero in the lower bound of the integral of the

density profile in the calculation of the excess surface tension, as if the ion diameter
were negligible, Onsager and Samaras introduce the effect of the ion diameter σ in
the bulk-screened self-image interaction, as it was described in the original Debye–
Hückel theory (see the end of § 3.3), and they calculate the corresponding steric
corrections to ∆γ

(0)
OS. These corrections start at relative order (κDσ)2 ∝ Γ(σ/a)2,

whereas other contributions from the interplay between the excluded-volume effects
and Coulomb interactions (see (11)) also arise at the same order in regime (1) and
even at lower order (σ/a)3 in regime (2).

4.2 Systematic method

In our method, we consider Mayer diagrams for the fugacity expansions of the
densities: the generalized fugacity at point x involves the Boltzmann factor of the
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self-image energy and that of the short-range repulsion from the wall, while the
Mayer bond takes the hard-core repulsive pair interaction into account. Exact
systematic partial resummations are performed in two steps [6]. The first step
describes the screening of the electrostatic self-energy: it introduces a screened
fugacity (with a screened self-energy V sc

self,1(x) in it) associated with a screened
potential φ1(x, x′,y) (where y is the projection of r − r′ onto the plane of the
interface). φ1 obeys a Debye equation (see (8)) with an effective screening length
κ−1

1 which depends on the distance x from the wall,

[∆r − κ2
1(x)]φ1(r′, r) = − 4π

DS

δ(r− r′) (15)

with

κ2
1(x) ≡ 4πβ

DS

ns∑
α=1

e2
αzα exp

[−βe2
αVself(x)

]
. (16)

After a second step, which exhibits the screening of pair interactions, there appear
another screened fugacity and another screened potential φ2, which obeys eq. (15)
with another κ2(x), which involves the screened fugacity at step 1, V sc

self,1(x). The
latter decays exponentially at large distances, but still varies as 1/x in the vicinity
of the wall.

The main difficulty is then to handle equations such as (15), where κ2
i (x) (i = 1 or

2) varies drastically over the length scale βe2/DS: in the case of an electrostatically
repulsive wall (∆el < 0), κ2

i (x) vanishes with an essential singularity, whereas in the
case of an electrostatically attractive wall (∆el > 1), it diverges when x goes to zero.
In ref. [6] a formal series representation was devised for the solution φi(x, x′,y) of
a generic inhomogeneous Debye equation (15) with any function κ2

i (x) that tends
to a non-zero value when x goes to +∞. It enables one to perform a systematic
expansion in powers of the ratio of the length scale over which κi(x) varies in the
vicinity of the wall and its limit value far away from the wall. At every order the
expansion is valid for any distance x. It can be viewed as the result of an iterative
method for the resolution of the equation. In the present case, the length-scale ratio
is just that between the range of the self-image interaction and the bulk screening
Debye length, namely the parameter ε (up to a numerical factor).

The expansions are performed in the parameters ε, (σ/a)3 in the two regimes
which fulfill (11). Moreover, in these regimes κDb ¿ 1 (see ref. [13]), and expansions
in powers of κDb must also be done. Indeed, if bulk densities vanish at fixed
temperature,

(σ

a

)3

∝ ε2 and κDb ∝ ε (regime (1)). (17)

If bulk densities vanish while the temperature goes to infinity, but not too fast in
order to ensure that (σ/a)3 ¿ ε, then

ε2 ¿
(σ

a

)3

¿ ε ¿ κDb ¿ 1 (regime (2)). (18)

In regime (1) double-expansions of functions of ε and κDb are performed at fixed
ε/(κDb), whereas the corresponding expansions in regime (2) are derived from those
in regime (1) by taking the limit ε/(κDb) = 0 at fixed κDb.
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4.3 Exact analytical density profiles in the high-dilution scaling regimes

Eventually, the exact density profiles up to order ε (see definition at the end of § 3.3
prove to be the same ones as if the first equation of the exact BGY (Born–Green–
Yvon) hierarchy had been solved in the partially-linearized mean-field scheme de-
vised in ref. [5]. For the sake of pedagogy, we write the first BGY equation (see e.g.
ref. [10]) as

− 1
β

d ln ρα(x)
dx

=
d (eαΦ(x))

dx
+

d
(
e2
αVself(x)

)

dx

+ eα

∫
dr′

(∑
γ

eγργ(x′)h(eα, r; eγ , r′)

)
∂v(r′, r)

∂x
,

(19)

where Φ(x) is the electrostatic potential created by the charge density profile∑
α eαρα(x). By virtue of (3), the second line in (19) involves the bulk forces

between, on one hand, a charge eα, and, on the other hand, its image, the charges
in the screening cloud inside the electrolyte and their images inside the wall.

In the high-dilution limit (11), the exact solution for ρα(x) is the same as if
h(eα, r; eγ , r′) were replaced in (19) by

h(0)(eα, r; eγ , r′) = −βeαeγφ(0)(r, r′), (20)

where φ(0) is the solution of the inhomogeneous Debye equation (15) with κ(x)
replaced by the step function κ(0)(x) in which the density profiles, which vanish
for x < b, are replaced by their bulk value at all distances x > b from the wall.
Then the second line in (19) is replaced by d

[
e2
αV sc

self(x)
]
/dx, where the screened

self-interaction is equal to

V sc
self(x) ≡ 1

2
[φ(0) − φD](r, r′)|r=r′ , (21)

while Φ(x) in the first line of (19) becomes

Φ(x) =
∫ +∞

b

dx′
∫

dyφ(0)(x, x′,y)
∑

γ

eγρB
γ exp

[−βe2
γV sc

self(x
′)

]
∣∣∣∣∣

(1)

,

(22)

where |(1) means that the integral must be calculated at first order in ε with κDb
and βe2/DSb fixed, in the scaling regime (11).

If the electrolyte is charge-symmetric, Φ(x) vanishes, as it should be, since the
system is completely symmetric. (All charge species have the same approach dis-
tance to the wall and the radii of their excluded-volume sphere do not arise at this
order.) If the electrolyte is charge-asymmetric, then there appears a charge density
profile originating from the differences in the self-energies, and this profile creates
the electrostatic potential drop Φ(x) through the screened interaction φ(0).
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In the screened self-energy V sc
self(x), the screening of the bare self-image interac-

tion is produced both from the charges in the screening cloud inside the electrolyte
and from their images inside the wall. The screened self-interaction (21) can be
split into two contributions, one which diverges as x goes to zero and another one
that is regular,

V sc
self(x) = V B sc

im (x) +
κD

2DS

L̄(κDx;κDb,∆el). (23)

The bulk-screened self-image interaction V sc
self(x) is what the screened self-energy

would be if screening were the same as in the bulk,

V B sc
im (x) ≡ − ∆el

2DS

e−2κDx

2x
. (24)

Both L̄ and Φ are regular functions, so that exponentials where they are arguments
may be linearized, with the final result,

ρα(x) = ρB
αθ(x− b) exp

[
+∆el

βe2
α

2DS

e−2κDx

2x

]

×
{

1− βe2
α

2DS

κDL̄(κDx;κDb,∆el)− βeαΦ(x) +O(ε2)
}

, (25)

where θ is the Heaviside function (θ(u) = 0 if u < 0, and θ(u) = 1 if
u > 0), and O(ε2) has the same meaning as in (12). The expression (25) in-
volves three kinds of contributions: the bare self-image interaction with a bulk
Debye-screening exponential factor, V B sc

im (x), which has the same expression as
in the Onsager–Samaras heuristic expression, except that here ∆el 6= −1; the
other part of the screened self-energy, which involves L̄ and describes the dis-
crepancy with the bulk perfect spherical screening, arising from combined steric
and polarization effects, as discussed in the next section; the electrostatic potential
drop Φ(x).

In regimes (1) and (2), κDb ¿ 1 (see (17) and (18)). The explicit expressions of
L̄ is [5],

L̄(κDx; κDb,∆el) = (1−∆2
el)

∫ ∞

1

dt
e−2tκDx

(
t +

√
t2 − 1

)2 −∆el

+ O(κDb).

(26)

It is valid for −1 ≤ ∆el ≤ 1 [15]. L̄ decays exponentially over the length scale
ξD/2 at large distances from the wall. The expression of Φ(x) in the case ∆el < 1
has been given in ref. [5] and rewritten in ref. [13]. In regime (1), βe2/(2DSb)
is fixed, and βeαΦ(x) is proportional to ε times a linear combination of func-
tions of κDx, where one coefficient involves ln(κDb) plus a function of βe2/(2DSb)
(which tends to a constant in regime (2) where βe2/(2DSb) vanishes). If ∆el ≤ 0,
we can take the limit κDb = 0 (so that ∆elβe2/(2DSb) goes to −∞), and then
Φ(x) becomes independent of b. Moreover, Φ(x) has been calculated for ∆el = 1
in ref. [15]. In the latter case, βeαΦ(x) at order ε proves to be independent
of b.
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The density profiles result from the competition between several effects:

– The polarization effects due to the difference between the dielectric constants,
which are attractive or repulsive according to the sign of DW−DS.

– The steric deformation of screening clouds created by the impenetrability
of the wall. If DW = DS, L̄ contains no other effect and is positive at all
distances: the geometric repulsion from the impenetrable wall hinders the
stabilizing effect of Coulomb interactions.

– The interaction between each charge and the electrostatic potential drop cre-
ated by the charge density profile that arises from the differences between the
full screened self-energies when the electrolyte is charge-asymmetric.

5. Steric deformation of screening clouds and polarization effects

5.1 Exact effective pair interaction along the wall

The effective pair interaction wαγ(r, r′) is defined by the relation h(eα, r; eγ , r′) =
exp[−βwαγ(r, r′)]− 1. In the bulk there is ‘perfect screening’: at relative distances
larger than the microscopic characteristic lengths, the effective pair interaction
between two charges in the electrolyte decays exponentially, and this is linked to a
spherical symmetry of the set formed by a charge and its screening cloud [10].

In the generic case where both DS and DW are finite (∆el 6= ±1), wαγ(x, x′,y)
decays as 1/y3 at large relative distances y along the wall, which corresponds to a
breakdown of the spherical symmetry of the set formed by a charge, its screening
cloud, and their images inside the wall. In other words, the deformation of a
screening cloud inside the electrolyte created by the impenetrability of the wall
(steric effect) is not compensated by the imperfect polarization of the dielectric
wall described by the image and the image screening cloud inside the wall, so that
the ‘perfect’ exponential screening in the bulk rotationally-invariant situation is
destroyed.

If all species have the same closest approach distance to the wall, it can be shown
that the coefficient of the 1/y3 tail is factorized into two effective dipoles Dα(x)
and Dγ(x′) [16]

h(eα, r; eγ , r′) ∼
y→∞

−β
Dα(x)Dγ(x′)

DSy3
. (27)

In the dilute regime, Dα(x) decays exponentially over the same screening length
as in the bulk [13]. At distances from the wall larger than a few screening lengths,
Dα(x) takes the same functional form as the high-dilution limit D

(0)
α (x), where

D(0)
α (x) = −eα

√
2DW

DS

e−κD(x−b)

κD

. (28)

In dilute solutions, many-body effects reduce to the introduction of effective charges
ZW eff

α and of a screening length κ−1 in place of the bare solvated charge Zα and
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the Debye length κ−1
D . At relative order ε [13], they involve both screened interac-

tions via one or two intermediate charges in wαα′ , and the three effects which are
exhibited in the density profile (25) and which modify the expression of φ at first
order in ε.

In the special cases DS/DW = 0 or DS/DW = +∞ (∆el = ±1), the wall is an ideal
conductor or an ideal ‘anticonductor’, respectively. If ∆el = 1, the set made by a
charge, its screening cloud inside the electrolyte, and their images have spherical
symmetry, and the exponential screening of the bulk is restored in wαγ(r, r′) at
large distances in all directions. If ∆el = −1, wαγ(r, r′) also falls off exponentially,
though only the even multipole moments of the considered set vanish [10]. This
can be checked at leading order in the special regime (11), where w

(0)
αγ (r, r′) =

−βeαeγφ(0)(r, r′): if ∆el = ±1

φ(0)(r, r′) ∼
yÀb

φD(r− r′)−∆ele2κDbφD(r? − r′), (29)

where the Debye bulk screened interaction given in (9) decays exponentially.

5.2 Screened self-energy

In the case where ∆el = ±1 and κDb = 0, V sc
self(x) is reduced to the bulk-screened

self-image interaction V B sc
im (x), as in formula (13) for ∆el = −1. If ∆el = ±1 and

κDb = 0,

L̄(κDx) = 0 and V sc
self(x) = V B sc

im (x). (30)

The interpretation of (30) is that the ‘perfect screening’ at large distances when
the wall is ideally conductive (∆el = 1) or ideally ‘anticonductive’ (∆el = −1) also
arises at short distances when no steric effect prevents it (κDb = 0).

Moreover, the large-x tail of the complete screened self-energy V sc
self(x) (21), with

both steric and polarization effects, reads

e2
α

DS

V sc
self(x) ∼

x→+∞
e2
α

DS

e−2κD(x−b)

4x
(31)

It is independent of DW, unlike the bare image-interaction Vself(x) which involves
a multiplicative factor −∆el, as already noticed in ref. [17]. (In fact, it is equal to
V sc

self(x; κDb=0, ∆el =−1).) In other words, Coulomb screening prevents any depen-
dence of V sc

self(x) upon the medium on the other side of the interface at distances
larger than ξ from the wall. We point out again that this effect is purely repulsive,
whatever the ratio DW/DS may be, namely whether the wall is electrostatically
attractive or repulsive.

6. Screening in the density profiles

6.1 Charge symmetric electrolyte and screened self-energy

In a symmetric Z:Z electrolyte where the excluded-volume spheres have the same
radii, by symmetry, the charge density profile is flat,

∑
α eαρα(x) = 0 at any
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dilution and coupling strength in the fluid phase. Then, the electrostatic potential
drop Φ(x) also vanishes in the absence of any external charges, by virtue of Poisson
equation, ∆Φ(x) = −(4π/DS)

∑
α eαρα(x). As a consequence, both species +Ze

and −Ze have the same density profile, ρsym
+ (x) = ρsym

− (x), and the latter is reduced
to the Boltzmann factor of the full screened self-energy,

ρsym
α (x) = ρsc

self,α(x) ≡ ρB
α exp

[−βe2
αV sc

self(x)
]
. (32)

If ∆el = 0, V sc
self(x) is reduced to the contribution from L̄, and the density profile is

only determined by the steric repulsion from the wall [18]. If ∆el 6= 0, the behavior
in the very vicinity of the wall is ruled by the bare self-image interaction Vself(x). At
distances x larger than |∆el|βe2/DS, the repulsive effect of the (steric/polarization)
deformation of screening clouds and their images dominates, even in the case of
an electrostatically attractive wall, as exhibited by the universal large-distance tail
(31).

6.2 Charge asymmetric electrolyte and electrostatic potential drop

When species have different charges, there appears a contribution in the charge-
density profile from the part ρsc

self,α(x) of the density profiles with only the contribu-
tion from the screened self-energy (see (32)). The structure of the ‘double’ layer of
the charge density profile

∑
α eαρα(x) in the electrolyte depends on its composition

{eα, ρB
α}α=1,...,ns

. In a three-component electrolyte more charge layers can appear
[5]. ρsc

self,α(x) is significant not only up to the scale |∆el|βe2/DS of the charge-
image interaction, but also up to the scale ξD, because of the steric/polarization
deformation of screening clouds described by L̄.

The electrostatic potential drop Φ(x) (22), which is created at leading order
in ε by

∑
α eαρsc

self,α(x) through the screened interaction φ(0), decays only as
Φas exp[−κDx], whereas ρsc

self,α(x) falls off exponentially over the range 1/(2κD).
Therefore, Φ(x) dominates the large-distance behavior of each density profile ρα(x).
Unlike the coefficient of the tail of the screened self-energy (31), the coefficient Φas

(as well as Φ(x = b)) depends not only on the parameters characterizing the inter-
face, ∆el and b, but also on the composition of the fluid.

At large distances from the interface, the bulk local neutrality (5) cancels the
contribution from the electrostatic potential drop in the total particle density∑

α ρα(x), and the latter density behaves as −β
∑

α e2
αV sc

self(x). On the contrary, the
charge density profile at large distances is controlled by the tail of the electrostatic
potential,

∑
α

eαρα(x) ∼
x→+∞

−κ2
D

4π
Φas

e−κDx

4x
. (33)

6.3 Global charge and global neutrality

The global charge carried by the fluid per unit area, Q ≡ ∫ +∞
b

∑
α eαρα(x), can

be split, at leading order in ε, into two contributions: σself corresponding to
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∑
α eαρsc

self,α(x), and σΦ arising from ρB
α [−βeαΦ(x)]. At leading order σself and

σΦ are both proportional to β
∑

α e3
αρα. If DW is finite, they cancel each other in

order to ensure the global neutrality Q = 0, which is the analog of the bulk charge
neutrality (5) in the vicinity of an insulating boundary. If DW = +∞, Q is opposite
to the influence charge induced by the electrolyte inside the conductive wall at fixed
potential [15].

We notice that a similar quantum effect proportional to the Planck constant h̄
arises in the particle–hole gas in a semi-conductur in the vicinity of an interface.
Indeed, the wave-functions vanish Gaussianly fast close to the wall over distances
equal to the de Broglie thermal wavelengths, which are different when particles and
holes have different masses [19].

6.4 Kinetic pressure on the wall and contact theorem

The contact theorem [20] gives the difference between the bulk thermodynamical
pressure PB and the kinetic pressure on the wall,

∑ns

α ρB
α(x = b)/β. The densities

at contact ρB
α(x = b)s involve the closest approach distance b and the wall dielectric

constant DW. Compensations between the kinetic pressure and various interaction
contributions ensure that the bulk pressure is independent of the parameters b and
DW, namely from the specific forms of the interactions between particles and the
wall, whether the latter interactions are purely geometric repulsions or Coulombic
couplings.

7. Surface tension

By virtue of Gibbs adsorption equation, the difference between the surface ten-
sions with or without the electrolyte is related to the excess particle density of the
electrolyte,

∆γ = −
∫ 1

0

dλ

∫ +∞

b

dx

ns∑
α=1

[ρα(x; λ)− ρB
α(λ)]

dµα

dλ
, (34)

where ρB
α(λ = 0) = 0, ρB

α(λ = 1) = ρB
α and

∑
α eαρB

α(λ) = 0 for all λs. The
excess particle density

∑
α [ρα(x)− ρB

α] is of order ρε and so, in order to get ∆γ at
leading order in ε, we have to consider dµα only at leading order, namely dµ

(0)
α =

dρB
α/(ρB

αβ). Because of the bulk neutrality (5), the potential drop Φ(x) in expression
(25) of the density profiles does not contribute to the excess surface tension ∆γ at
leading order in ε, and the latter is determined only by the part ρsc

self,α(x) (see (32))
of the density profile.

In regimes (1) and (2), both ε and κDb are small. In a double expansion in ε and
κDb with βe2/DSb ∝ ε/(κDb) kept fixed, we get that β∆γ = β∆γ(0) + κ2

DO(ε, κDb),
where O(ε, κDb) denotes terms that are either of order ε or of order κDb, and

β∆γ(0)(ε, κDb) =
κ2

D

16π
[Bim (ε, κDb;∆el) + BL̄(∆el)] . (35)
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Bim is created by the bulk-screened self-image interaction in the Debye limit
V B sc

im (x),

Bim (ε, κDb;∆el)

= ∆el
4π

κ2
D

ns∑
α

ρB
αZ2

α

βe2

DS

[
ln(2κDb) + g

(
|∆el|Z

2
αβe2

4DSb

)
+ C − 1

2

]
,

(36)

with βe2/(2DSb) = ε/(κDb) and

g(u) ≡ eu − 1
u

− 1−
∫ u

0

dt
et − 1

t
. (37)

BL̄(∆el), which originates from L̄(κDx;κDb = 0,∆el) in the density profile, de-
scribes the deformation with respect to spherical symmetry arising from steric and
polarization effects,

BL̄(∆el) = (1−∆el)
[
ln 2 +

1−∆el

2∆el
ln(1−∆el)

]
. (38)

We notice that BL̄(∆el =±1) = 0, because L̄(κDx; κDb=0,∆el =±1) = 0 (see (30)):
if κDb = 0 the compensation of the steric deformation of screening clouds by the
polarization inside the ideal conductor/‘anticonductor’ wall (∆el = ±1) operates at
all distances (not only at large distances y).

In regime (2) (see (18)), βe2/(2DSb) tends to zero, because (βe2/2DS) ¿ b ¿
ξD whatever the sign of ∆el is. In this regime, ε vanishes faster than κDb, and
βe2/(2DSb) ∝ ε/(κDb) must tend to zero at fixed κDb in (36). As a result, ∆γ(0) is
some kind of limit law where the closest approach distance b appears only through
the parameter κDb,

β∆γ(0)(ε = 0, κDb) =
κ2

D

16π

[
∆el

(
ln(2κDb) + C − 1

2

)
+ BL̄(∆el)

]
. (39)

In regime (1) (see (17)), βe2/(2DSb) is finite. For an electrostatically attrac-
tive wall (∆el > 0), we cannot consider the limit b ¿ (βe2/2DS) ¿ ξD, where
∆elβe2/(2DSb) tends to +∞: there is an irreducible dependence on b. On the con-
trary, for an electrostatically repulsive wall (∆el < 0), we can take the previous
limit, where ∆elβe2/(DSb) goes to −∞. In this limit, κDb vanishes faster than ε,
and we must set κDb = 0 at fixed ε in (36). We get that, if ∆el ≤ 0,

β∆γ(0)(ε, κDb = 0) =
κ2

D

16π

{
−|∆el|

[
ln

(
|∆el|βe2κD

2DS

)
+ 2C − 3

2

]

−|∆el|
∑

α ρB
αZ2

α ln Z2
α∑

γ ρB
γZ2

γ

+ BL̄(∆el)

}
. (40)

In the case of a 1:1 electrolyte, the valence term with Z2
α ln Z2

α vanishes, and (40)
yields the expression derived by Dean and Horgan [21].
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Equation (40) is a universal law independent of the closest approach distance to
the wall, but which still involves the parameter ∆el, because the density profiles
at all distances from the wall contribute to ∆γ(0). When ∆el = −1 and κDb = 0,
the density profile is reduced to the contribution from e2

αV B sc
im (x), which happens

to coincide with the large-distance (31) tail of V sc
self(x). This is the reason why the

Onsager and Samaras formula (14) is retrieved for a Z:Z electrolyte, when ∆el is
set to −1 in (40).

8. Conclusion

As a conclusion we stress that the exact analytical density profiles have been ob-
tained at any distance x from the interface. Therefore, they enable us to get the
exact expression for the surface tension, which is an extension of Onsager and
Samaras formula to other situations:

– an electrolyte with a charge asymmetry, which results into the creation of a
charge double layer and a corresponding electrostatic potential drop Φ(x),

– a finite value of the ratio between the wall dielectric constant DW and that of
the solvent, DS, so that polarization does not compensate the steric deforma-
tion of screening clouds near the interface and there is only dipolar screening
along the wall,

– a ratio DW/DS bigger than one, and even the limit DW/DS = +∞, where
the insulating medium is replaced by an ideal conductor. Then, the range
b of the short-distance repulsion from the wall, which prevents the collapse
of all charges onto the electrostatically attractive wall, irreducibly arises in
the structure of the leading correction in density to the ideal-solution surface
tension.

The same diagrammatic techniques enable one to calculate the density profiles
in an electrolyte between two plates separated by a finite distance, and which may
be either insulating or ideally conductive, with a possible external surface charge.
Therefore, several other screening effects can be studied in this confined geometry;
for instance, the screening in an electrolyte between two metallic electrodes sub-
jected to a potential drop [22]. The limit law for the surface tension, as well as
the force between the two plates separated by the electrolyte, could be derived for
generic values of the ratios between the dielectric constants of the two plates and
that of the solvent.
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