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Abstract. A diathermal wall between two heat baths at different temperatures
can be mimicked by a layer of independent spin pairs with some internal energy
and where each spin σa is flipped by thermostat a (a = 1, 2). The transition rates
are determined from the modified detailed balance. Generalized heat capacities,
excess heats, the housekeeping entropy flow and the thermal conductivity in
the steady state are calculated. The joint probability distribution of the heat
cumulated exchanges at any time is computed explicitly. We obtain the large
deviation function of heat transfer via a variety of approaches. In particular, by
a saddle-point method performed accurately, we obtain the explicit expressions
not only of the large deviation function, but also of the amplitude prefactor, in
the long-time probability density for the heat current. The following physical
properties are discussed: the effects of typical time scales of the mesoscopic
dynamics which do not appear in equilibrium statistical averages and the limit
of strict energy dissipation towards a thermostat when its temperature goes to
zero.
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1. Introduction

1.1. Issues at stake

Though a rather specialized topic within non-equilibrium physics, the problem of heat
transfer is in itself a vast subject, and one of foremost theoretical and practical interest.
Heat exchanges between two bodies at different inverse temperatures β1 and β2 can be
settled either by a piece of material with macroscopic width (or length in the case of
electric wires) or by a thin interface with a microscopic width. In the first case the heat
flow from one body to the other is described by the phenomenological Fourier law, and
a microscopic description from an out-of-equilibrium statistical mechanics approach is a
wide research field beyond the scope of the present paper. Here we rather address the
thermal contact situation, where heat flows through a diathermal interface between two
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bodies, which may be either an immaterial interface between two solids or a diathermal
wall between two fluids.

A theoretical, microscopic understanding of non-equilibrium phenomena is still lacking
today. However, when compared with the most general non-equilibrium physics world,
certain specific settings have some advantages and this is the case for thermal contact:
when only quantities conserved by microscopic dynamics (energy for a thermal contact)
are exchanged between two bodies, then the corresponding cumulative transfers obey some
universal symmetry relations. There are a number of relevant viewpoints on these issues.
A few of which are the following.

• In the framework of Hamiltonian dynamics of finite systems but within an
approximation where interfacial interaction energies can be neglected [1], it can be
shown that, if a body 1 at initial inverse temperature β1 is put in contact with a body
2 at initial inverse temperature β2 during some finite time t, then the (fluctuating)
heat amount Q2(t) coming out of body 2 and going into body 1 (Q2 being positive
if heat indeed goes out of body 2) obeys a detailed fluctuation relation at finite time
(transient regime): the probability that the latter heat amount measured during t is
equal to Q2, P (Q2; t), is related to the probability of observing the opposite value by
P (Q2; t)/P (−Q2; t) = exp[(β1 − β2)Q2].

• In the case where bodies 1 and 2 are thermal baths (so that their temperatures are
well defined and time independent), and at the mesoscopic level where the energy
E of the interface is taken into account, the fluctuating cumulative current Q2(t)/t
associated with the heat amount Q2(t) received by the interface from thermal bath
2 during some time interval t still obeys a fluctuation relation in the long-time limit
(stationary regime), as shown in the context of a Markovian stochastic evolution
where the transition rates obey the modified detailed balance recalled in (2.3) [2, 3].
Indeed, in the case of an interface with a non-negligible internal energy E , by virtue of
energy conservation Q1(t) +Q2(t) = E(t)−E(t = 0) does not vanish, but if the values
taken by E are bounded, limt→+∞Q2(t)/t = −limt→+∞Q1(t)/t, and then the current
J (t) ≡ Q2(t)/t has a large deviation function fQ2(J ), whose definition is recalled in
section 6, and which obeys the fluctuation relation

fQ2(J ) = fQ2(−J ) + (β1 − β2)J . (1.1)

The latter equation is an example of the various fluctuation relations that can be
derived for Markov jump processes in continuous time (see review in [4]) in the
framework of the so-called ‘stochastic thermodynamics’ of small systems (see for
instance an extended review in [5] and a recent brief introduction in [6]).

Though relation (1.1) is universal in the considered class of models, the expression
of fQ2 depends on the characteristics of the model for the thermal contact, namely the
internal energy of the interface and the choice of the transition rates of its stochastic
evolution under heat exchanges.

In the absence of any theoretical framework which would play the role of Gibbs’
statistical ensemble theory for equilibrium states and allow one to predict the influence
of the dynamics, one has searched for solvable models which could give some hints about
properties of fluctuating cumulative currents finer than the symmetries described by
the fluctuation relations and which might nevertheless be rather generic. Models where
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the contact system between two thermal baths has a stochastic dynamics have been
introduced: the system may be an Ising spin lattice (see for instance [7]–[10]) or a particle
with Langevin stochastic dynamics [11, 12]. In the latter case the heat exchanges are
described as the work performed by a force including a friction as well as a random
noise component. The latter interpretation of heat has been proposed and investigated
by Sekimoto [13] for ratchet models, and has been used again in the interpretation of the
Hatano–Sasa identity [14] as well as in the investigation of heat fluctuations in Brownian
transducers [15].

Generic properties are to be obeyed by those among the thermal contact models that
have the following features: the system has a finite number of possible configurations,
the heat exchanges are described as changes in the populations of energy levels, and the
configurations evolve under a stochastic master equation with transition rates bound to
obey the modified detailed balance (2.3). This is the case for the long-time fluctuation
relation (1.1) and for the following finite-time detailed fluctuation relation, valid for a
protocol where a piece of material with non-negligible internal energy, initially at inverse
temperature β0, is put as a diathermal interface between two thermal baths at inverse
temperatures β1 and β2 at time t = 0: the joint probability for measuring the heat amounts
Q1 and Q2 during a finite time t satisfies the relation P (Q1,Q2; t)/P (−Q1,−Q2; t) =
exp[(β0 − β1)Q1 + (β0 − β2)Q2] [16].

In the present paper, within the latter class of models, we consider a very simple one:

• The interface consists of two layers.

• Each layer consists in a number of independent identical microscopic systems, which
we call spins, because we assume that they have only two states. Without loss of
generality these states can be labeled ±1, so that we are dealing with (classical Ising)
spins.

Of course, in a more realistic thermal contact, some interactions between spins in the
same layer, reflecting the (two-dimensional) geometry of the interface, would be present.
But there is no obvious reason to believe that these interactions would qualitatively change
the physics of heat transfer.

• Each spin in a layer is coupled to a single spin in the other layer, building what we
call a spin pair, and this coupling makes it possible to transfer energy through the
interface, hence the name ‘diathermal wall’.

• Locality makes it physically natural to assume that heat bath 1 (resp. 2) can only flip
a dynamical variable (spin) in layer 1 (resp. 2).

Within our simplistic model, the law of large numbers allows one to quantify how
fluctuations of the heat flow are suppressed when the size of the interface goes from
microscopic to mesoscopic and macroscopic. We shall not embark on this study in the
present paper, and we shall use independence to concentrate on the heat exchanges at the
level of a single spin pair, i.e. a pointlike thermal contact: we deal with a single spin pair
(σ1, σ2), with spin σ1 in layer 1 coupled to spin σ2 in layer 2.

• The energy E(σ1, σ2) changes when a contact dynamical variable is flipped and,
assuming an energy-conserving dynamics, this means that some energy comes from,
or is given to, the heat bath responsible for the flip.
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In general, the energy E(σ1, σ2) for the contact dynamical variables could take four
distinct values, but we just concentrate on the case E(σ1, σ2) = 1

2
(1 − σ1σ2)∆e, where

∆e > 0 is the energy gap. In the language of spins, this means the absence of external
magnetic fields. More abstractly, it implies a twofold symmetry. As the toy model has
only four states, solving it can be reduced in some sense to the diagonalization of a 4× 4
matrix, and the twofold symmetry of the energy functional allows to reduce this task to
the diagonalization of a pair of 2× 2 matrices.

An interest of our specific solvable model is that it plays the role of a pedagogical
example where the general statements are made very explicit. As already mentioned,
though the fluctuation relations entail a constraint upon large deviation functions, they
do not allow one to determine them. The analytical calculation of the large deviation
functions may provide a deeper understanding in the information that they contain. We
shall see that, within the model, the computation of large deviation functions for the
energy variations in the baths can be remarkably simple or tricky, depending on the kind
of techniques one uses.

Moreover, in the absence of principles for out-of-equilibrium statistical mechanics, the
formulae obtained for the solvable model can give a flavor of some physical effects. For
instance, the time scales of the microscopic dynamics, which do not appear in equilibrium
averages, play a role in the properties of non-equilibrium stationary states. Moreover,
the model can be considered in the limit where the temperature of the cold thermostat
vanishes; then the strict dissipation of energy towards the zero-temperature bath gives
rise to specific phenomena.

1.2. Contents of the paper

The results of the explicit analytical calculations for the solvable model where the system
is reduced to two spins are the following.

In the case where the spin system involves only two spins, the transition rates are
determined by the modified detailed balance (2.3) up to the typical inverse times νa
of spin flips by each thermal bath a, characterized by its temperature Ta. For an Ising
interaction between the two spins, the transition rates for the energy exchanges with one
bath take a form similar to that introduced by Glauber [17] in his investigation of the
time-dependent statistics of the Ising chain in contact with a single thermal bath. Most
of the time, our results will hold whatever the values of T1 and T2 are. However, it is
sometimes convenient to know in which direction heat flows from one reservoir to the
other on the average, and then we shall always assume that T1 ≤ T2. By symmetry, this
induces no loss of generality anyway: the results for T1 ≥ T2 can be retrieved by permuting
T1 with T2 and ν1 with ν2.

The non-equilibrium stationary state (NESS) of the model happens to have a
very specific property (section 3.1): since the transition rates are invariant under the
simultaneous flips of both spins, the configuration probability distribution in the NESS
coincides with an equilibrium canonical distribution at some inverse temperature β?.

The linear and nonlinear static responses are explicitly calculated (sections 3.2 and
3.3). The expressions for the generalized heat capacities involve not only the temperatures
of the energy reservoirs a = 1, 2 but also the typical inverse time scales νa of the heat
exchange dynamics with each reservoir. The νa are also called kinetic parameters in the
following. In the vicinity of equilibrium the mean heat current is proportional to the
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difference T2− T1 between the bath temperatures; then a linear thermal conductivity can
be defined. When the system is far from equilibrium the mean heat current is a bounded
function of the thermostat temperatures (saturation phenomenon); one can introduce a
nonlinear thermal conductivity which vanishes in the limit where the relative temperature
difference goes to infinity. The expression of the housekeeping entropy flow is given, and
the excess mean heats, which are defined in terms of the measurable averages of the
cumulative heats [18], are explicitly calculated, for the static response protocol, from the
average heat amounts received by the system from each bath during a finite time t, and
which are determined in section 4.3.

The joint probability distribution for received cumulative heats Q1 and Q2 is
determined at any finite time and for any initial distribution probability through a
generating function method (see section 4). Other distribution probabilities are then
derived from its expression (4.40), and the explicit results are summarized in section 4.2.
The results are given in terms of two integrals in the complex plane. The system obeys
the finite-time symmetry (4.68) enforced by the modified detailed balance for the ratio of
the probabilities to measure some given heat amounts Q1 and Q2 or their opposite values
when the system is initially prepared in an equilibrium state. But it also satisfies another
finite-time symmetry specific to the model for the ratio of the same probabilities when
the system has any initial distribution probability. The latter fluctuation relation (4.72) is
more subtle, as it involves the initial probability distribution for the product of the spins
(or equivalently for the energy of the spin pair).

The cumulants for the cumulative heat Q2 are studied in section 5 from the
characteristic function of the probability density for Q2. The relation between the
characteristic function of a probability density Π(Q; t) with the generating function for the
probability function P (Q; t) when the variable Q can take only discrete values is recalled
in section 5.1.1. The explicit formulæ for the first four cumulants per unit time in the
infinite-time limit are given in (5.15). Even at equilibrium the cumulants are not those of
a Gaussian.

The large deviation function for the cumulative heat current Q2/t is calculated
by three different methods (section 6): from the Gärtner–Ellis theorem (section 6.1),
from a saddle-point method (section 6.2) and from Laplace’s method on a discrete sum
(section 6.3). The second and third methods rely explicitly on the discrete nature of heat
exchanges in the model and on an ad hoc definition of large deviation functions discussed
in [16]; but they allow one to compute subdominant contributions as well. The first
method is straightforward, one just has to check that the general applicability hypotheses
(recalled in detail below) are fulfilled, which is easy in our case. The third method is also
simple because it deals with a sum of non-negative terms, so no compensation is possible.
The saddle-point method, however, is remarkably tricky in our case, for reasons that we
shall detail below. The expressions in terms of various parameter sets are given in (6.10)
and (6.16). In order to readily obtain the large deviation function in the case where the
temperature of the colder bath vanishes, its expressions for positive and negative currents
are explicitly distinguished in (6.13) and (6.14).

The limit where the kinetic parameter of one thermostat becomes infinitely large with
respect to the kinetic parameter of the other thermostat is studied in section 7. In this
limit the stationary distribution of the spins is the equilibrium canonical probability at
the temperature of the ‘fast’ heat bath, while the typical inverse time scale in the mean
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instantaneous heat current is the kinetic parameter νslow of the ‘slow’ heat bath. The
probability distribution for the heat amount received from the slow thermostat, Qslow, at
any finite time t is that of an asymmetric random walk with the inverse time scale νslow.
As a consequence the probability distribution for Qslow obeys a fluctuation relation at any
finite time (see (7.20)). The probability distributions of σ1σ2 and Qslow are independent of
each other, and this mean-field property is interpreted as a kinetic effect in the considered
limit. The very simple forms of the infinite-time cumulants per unit time are given. The
long-time distribution of the cumulative heat current is exhibited: it vanishes exponentially
fast over a time scale given by the inverse of the large deviation function (7.32), with an
amplitude which is explicitly calculated.

In the limit where the temperature of the colder thermostat vanishes (section 8)
the microreversibility is broken, but the system still reaches a stationary state where all
configurations have a non-vanishing weight, because the Markov matrix is still irreducible.
The large deviation function is expressed in (8.9). In the limit where the kinetic parameter
of one thermostat becomes infinitely large with respect to the kinetic parameter of the
other thermostat, the probability distribution for the heat amount±Qslow, with sign− (+)
if the slow thermostat is the cold (hot) one, becomes a Poisson process at any finite time
t, because the zero-temperature thermostat can only absorb energy (strict dissipation
towards the zero-temperature bath). Again, the very simple forms of the infinite-time
cumulants per unit time are given, as well as the large deviation function (8.21).

2. Model

The physical system we deal with in this paper is a toy model of thermal contact, consisting
of two heat baths, generically at different temperatures, put indirectly in contact via a
small subsystem made of two interacting Ising spins σ1 and σ2. Each spin σa, a = 1, 2 is
in contact with a single bath denoted by a. We aim at a statistical description, where the
details of what happens in the heat baths is not observed, but only the evolution of the
two spins, i.e. of the configuration C ≡ (σ1, σ2). We assume that this evolution is described
by a Markov process (in continuous time) with transition rate (C ′|W|C) from configuration
C to configuration C ′.

As the system is out-of-equilibrium, the form of W is not a direct consequence of known
physical laws, and it is unclear whether a nature-given preferred choice exists. So we start
with a purely technical and down-to-earth description of our choice for the transition
rates, which we shall use for all later explicit computations. The general principles and
steps that guided us to the modified detailed balance that the transition rates must obey
have been given in [16]. The main ideas are the following.

2.1. Constraints upon transition rates arising from microscopic discrete ergodic
energy-conserving dynamics

As usual, we view a heat bath as an ideal limit of some large but finite system. So the
system we describe is obtained via a limiting procedure from a large system made of two
large parts and a small part, which is reduced to the two Ising spins σ1 and σ2, each one
directly in contact with one of the large parts.

We expect that in this limit many details become irrelevant, so we assume for the sake
of the argument that the degrees of freedom in the large parts are discrete.
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As in classical statistical mechanics, we take the viewpoint that the statistical
description of σ1, σ2 is an effective mesoscopic description arising from a deterministic,
energy-conserving dynamics for the whole system. With discrete variables, there is no
general definition of time-reversal invariance, but we impose that the dynamics is ergodic.

We also want the dynamics to reflect the fact that the two large parts interact only
indirectly: there is an interaction energy E(σ1, σ2) between the two spins and the spin
σa is flipped thanks to energy exchanges with the large part a (a = 1, 2). Defining the
operator Fa as the operator flipping the spin σa while leaving the other spin unchanged
(e.g F1(σ1, σ2) = (−σ1, σ2)), in this process the energy of the large part a is changed from
Ea to E ′a according to the energy conservation law

E ′a − Ea =

{
− [E(C ′)− E(C)] if C ′ = FaC
0 otherwise,

(2.1)

while the energy of the other large part is unchanged.
As shown in [16], when the large parts are described at a statistical level and in a

transient regime where the large parts are described in the thermodynamic limit, the
transition rate (C ′|W|C) from configuration C to configuration C ′ obeys three constraints:
first the graph associated with the transition rates is connected; second there is microscopic
reversibility for any couple of configurations (C, C ′),

(C ′|W|C) 6= 0 ⇔ (C|W|C ′) 6= 0; (2.2)

third the ratio of transition rates obeys the so-called modified detailed balance (MDB),

for C ′ = FaC
(C ′|W|C)
(C|W|C ′)

= e−βa[E(C′)−E(C)]. (2.3)

We remind the reader that the latter relation is also referred to in the literature as the
‘generalized detailed balance’.

2.2. Determination of transition rates

The transition rates are non-zero only if the initial and final configurations C and C ′ differ
only by the flip of one spin: (C ′|W|C) = 0 unless either C ′ = F1C or C ′ = F2C. Since σa
can take only the two values +1 and −1, the transition rate where σa is flipped takes the
generic form

(FaC|W|C) =
νa(σb)

2
[1− σaΓa(σb)] . (2.4)

The four parameters νa,Γa, a = 1, 2, are a priori arbitrary, except that the ν are > 0 and
the Γ are of absolute value ≤ 1.

Taking for simplicity an interaction energy between the spins

E(σ1, σ2) =
1− σ1σ2

2
∆e, (2.5)

where ∆e > 0 is the energy gap between the two energy levels, one gets from the modified
detailed balance in the form (2.3) that

for C ′ = FaC
(C ′|W|C)
(C|W|C ′)

= e−σ1σ2βa∆e, (2.6)
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a condition similar to the one obtained by Glauber [17] in the equilibrium case. As
e2x = (1 + tanhx)/(1− tanhx), the generic form (2.4) of (FaC|W|C) has to satisfy

(FaC|W|C) =
νa(σb)

2
[1− σ1σ2γa] (2.7)

with

γa ≡ tanh

(
βa

∆e

2

)
. (2.8)

If β1 and β2 are finite, 0 ≤ γ1 < 1 and 0 ≤ γ2 < 1, and the microscopic reversibility
condition (2.2) is also satisfied. Without loss of generality we could, and will sometimes,
assume that T1 ≤ T2. Then γ1 ≥ γ2.

For the sake of simplicity, in the following we assume that νa depends only on
the properties of the thermostat and not on the value of σb. (This choice enforces the
equality between the transition rate from (σ1, σ2) and that from (−σ1,−σ2), which are
two configurations with the same energy.) Apart from simplicity, we have no convincing
argument that this should be THE nature-given preferred choice. Anyway, we write

(FaC|W|C) =
νa
2

[1− σ1σ2γa] . (2.9)

This ends the argument explaining our choice of transition rates and gives a physical
interpretation of the parameters: γa is formed with the energy scale in the two-spin system
and the temperature of bath a, while νa describes a rate at which bath a attempts to flip
spin σa.

We notice that, though the transition rate expressions have been derived from
hypotheses implying the microscopic reversibility (2.2), these expressions still make sense if
β2 < β1 = +∞. (The limit β1→+∞, where microscopic reversibility is broken, is discussed
in section 8.)

Moreover, even if β1 = +∞, the Markov matrix M defined by

(C ′|M|C) =

(C ′|W|C) if C ′ 6= C
−
∑
C′′

(C ′′|W|C) if C ′ = C (2.10)

is irreducible; namely any configuration C ′ can be reached by a succession of jumps with
non-zero transition rates from any configuration C.

3. Non-equilibrium stationary state (NESS) as a canonical distribution with an
effective temperature

3.1. Stationary state distribution

The master equation which rules the evolution of the probability P (C; t) can be written
in terms of the Markov matrix M defined in (2.10) as

dP (C; t)
dt

=
∑
C′

(C|M|C ′)P (C ′; t). (3.1)
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In the basis where the probability P (σ1, σ2; t) is represented by the column vector

|P (t)) =


P (++; t)

P (−−; t)

P (+−; t)

P (−+; t)

 (3.2)

the matrix M takes the form

M =
ν1 + ν2

2


−1 + γ? 0 ν2(1 + γ2) ν1(1 + γ1)

0 −1 + γ? ν1(1 + γ1) ν2(1 + γ2)

ν2(1− γ2) ν1(1− γ1) −1− γ? 0

ν1(1− γ1) ν2(1− γ2) 0 −1− γ?

 . (3.3)

In the latter equation we have introduced the dimensionless inverse time scales

νa =
νa

ν1 + ν2

for a = {1, 2}, (3.4)

and we have set

γ? = ν1γ1 + ν2γ2. (3.5)

The Markov matrix M is irreducible (even if γ1 = 1, namely T1 → 0): for any pair of
configurations C and C ′, there exists a succession of spin flips, with non-zero transition
rates, which allows one to make the system evolve from C to C ′. Henceforth, according to
the Perron–Frobenius theorem there exists a single stationary state distribution Pst(C),
and it is non-zero for every configuration C.

Moreover, since the system is made of two discrete variables which can take only the
values ±1 and since the transition rates are invariant under the simultaneous flips σ1 →
−σ1 and σ2 → −σ2, the stationary distribution Pst(σ1, σ2) takes the form Pst(σ1, σ2) =
a+ dσ1σ2. Indeed, the generic form of P (σ1, σ2) reads P (σ1, σ2) = a+ bσ1 + cσ2 + dσ1σ2.
On the other hand, the invariance of the transition rates under the simultaneous flips
σ1 → −σ1 and σ2 → −σ2 entails that if a + bσ1 + cσ2 + dσ1σ2 is a stationary solution,
a−bσ1−cσ2 +dσ1σ2 is also a stationary solution. But, since M is irreducible, there is only
one stationary solution, so that b = c = 0. By solving explicitly the master equation (3.1)
and using the normalization of a probability distribution, the stationary solution proves
to be

Pst(σ1, σ2) = 1
4
[1 + γ?σ1σ2] (3.6)

where γ? is defined in (3.5).
The stationary distribution of the model has the following remarkable property:

it coincides with some equilibrium distribution. More precisely, the stationary state
distribution is equal to the canonical state distribution at the effective inverse temperature
β?

Pst(σ1, σ2) = P β?
can(σ1, σ2), (3.7)

where β? is determined by the relation

γ? = tanh

(
β?

∆e

2

)
, (3.8)
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and

P β
can(C) =

e−βE(C)

Z(β)
, (3.9)

where Z(β) is the canonical partition function at the inverse temperature β, Z(β) =∑
Ce
−βE(C). We notice that the canonical form for the state distribution implies that β?

obeys the canonical ensemble relation, which is equivalent to the definition of the inverse
temperature in the microcanonical ensemble, namely

β? =
∂SSG [Pst]

∂〈E〉st
, (3.10)

where 〈E〉st ≡
∑
CE(C)Pst(C) is the stationary mean value of the energy and SSG [Pst]

is the value of the dimensionless Shannon–Gibbs entropy in the stationary state. The
dimensionless Shannon–Gibbs entropy (where the Boltzmann constant is set equal to 1)
is defined from the configuration probability distribution P (C; t) as

SSG [P (t)] ≡ −
∑
C
P (C; t) lnP (C; t). (3.11)

Its evolution has been recalled in [16].

3.2. Linear static response to a variation of some external parameter

In the present section we consider the static linear response of some observable O to a
change of some external parameter, namely the inverse temperature βa or the typical
inverse time scale νa of bath a, with a = 1, 2.

In the protocols for the study of static linear response, the system is prepared in some
stationary state at time t0 = 0− and the external parameters are instantaneously changed
by infinitesimal amounts at time t = 0. Then, in the infinite-time limit, the system reaches
another stationary state corresponding to the new values of the external parameters.

3.2.1. Relation with static correlations for a ‘canonical’ NESS. Since the non-equilibrium
stationary distribution given by (3.6) involves only one parameter, namely β?, the
linear response coefficient ∂〈O〉st/∂gext for the mean value of an observable O in the
stationary distribution when some external parameter gext is varied is proportional to
∂〈O〉st/∂β?, namely ∂〈O〉st/∂gext = (∂β?/∂gext) × (∂〈O〉st/∂β?). Moreover, by virtue of
(3.7), the stationary distribution is the canonical distribution at the inverse temperature
β?. Henceforth the coefficient ∂〈O〉st/∂β? is merely opposite to the correlation between O
and the energy E according to the canonical equilibrium identity

∂〈O〉β?can

∂β?
= −

[
〈OE〉β?can − 〈O〉β?can〈E〉β?can

]
, (3.12)

where 〈O〉β?can denotes an average with respect to the canonical distribution P β?
can. As a

result, the relation valid for responses to the variation of any external parameter in the
non-equilibrium stationary state reads

∂〈O〉st
∂gext

= − ∂β?
∂gext

[〈OE〉st − 〈O〉st〈E〉st] . (3.13)
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3.2.2. Dependence of the mean energy upon the time scales of the microscopic dynamics.
The main difference between the response of the mean energy in non-equilibrium and
equilibrium states arises for the response to a variation of the time scales of the microscopic
dynamics which rules the heat exchanges with the baths. When β1 = β2 the equilibrium
mean energy 〈E〉eq = 〈E〉β1

can depends only on the thermodynamic temperature common
to both baths. In contrast, in the non-equilibrium case the stationary mean energy
〈E〉st also depends on both inverse time scales ν1 and ν2. Indeed, since the stationary
probability corresponds to the effective canonical distribution (3.7), the stationary mean
energy reads

〈E〉st = (1− γ?)
∆e

2
= (1− ν1γ1 − ν2γ2)

∆e

2
. (3.14)

Changing νa means changing the physical connection between thermal bath a and the
spin system. The linear response of the stationary energy associated with a variation of
the inverse time scale νa is determined by the coefficient

∂〈E〉st
∂νa

= − νb
(ν1 + ν2)2

γa
∆e

2
for {a, b} = {1, 2}. (3.15)

3.2.3. Stationary mean energy and generalized heat capacities. The heat capacity Ceq is
a measurable quantity defined as the ratio

Ceq(T ) =
〈δQ〉
dT

, (3.16)

where 〈δQ〉 is the mean heat amount received by the system in transformations which
involve only heat transfers and make the system go from an equilibrium state at
temperature T to another equilibrium state at temperature T + dT , while all other
thermodynamic parameters which determine the equilibrium state are kept constant.
(〈δQ〉 = limt→+∞〈Q〉t in the protocol mentioned at the beginning of section 3.2.)
According to the energy conservation, 〈δQ〉 = 〈E〉T+dT

eq − 〈E〉Teq and the heat capacity
is related to a partial derivative of the equilibrium mean energy,

Ceq(T ) =
∂〈E〉eq

∂T
= −β2∂〈E〉eq

∂β
. (3.17)

When the system is in a stationary non-equilibrium state induced by thermal
contact with two heat reservoirs at respective temperatures T1 and T2, we can introduce
measurable heat capacities by similar definitions. When the temperature T1 of thermal
bath 1 is changed by dT1, while the temperature T2 of thermal bath 2 is kept fixed, and
when the system evolves from a stationary state to another one only by heat transfers,

then the generalized heat capacity C
[1]
st is defined as

C
[1]
st (T1, T2) =

〈δ (Q1 +Q2)〉
dT1

. (3.18)
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According to conservation energy, δ〈Q1+Q2〉= 〈E〉T1+dT1,T2
st −〈E〉T1,T2

st and the heat capacity
is related to a partial derivative of the stationary mean energy

C
[1]
st (T1, T2) =

∂〈E〉T1,T2
st

∂T1

∣∣∣∣
T2

. (3.19)

In the present model the expression (3.14) of the stationary mean energy takes the
very specific form

〈E〉st = ν1〈E〉T1
eq + ν2〈E〉T2

eq . (3.20)

Indeed the relation ν1 + ν2 = 1 and the expression of the equilibrium mean energy at the
inverse temperature β,

〈E〉Teq = (1− γ)
∆e

2
whenβ1 = β2 = β, (3.21)

allow one to rewrite the mean energy expression (3.14) in the non-equilibrium stationary
state in the form (3.20). By virtue of the specific decomposition (3.20) of the mean energy,

the heat capacities C
[a]
st (T1, T2) read

C
[a]
st (T1, T2) = νaCeq(Ta) with a = {1, 2}, (3.22)

where, according to the relation (3.17) and the expression (3.21) of 〈E〉Teq,

Ceq(Ta) =

[
1− tanh2

(
βa∆e

2

)](
βa∆e

2

)2

. (3.23)

More generally, when the temperatures T1 and T2 of both thermostats are varied
independently

〈E〉T1+dT1,T2+dT2
st − 〈E〉T1,T2

st = C
[1]
st (T1, T2)dT1 + C

[2]
st (T1, T2) dT2. (3.24)

If T1 and T2 are increased by the same infinitesimal quantity dT the corresponding heat

capacity, defined as Cst(T1, T2) ≡ δ〈Q1 + Q2〉/dT , is equal to the sum C
[1]
st (T1, T2) +

C
[2]
st (T1, T2). For the present model Cst(T1, T2) = ν1Ceq(T1) +ν2Ceq(T2). In the limit where

T1 = T2 = T , by virtue of the relation ν1+ν2 = 1, we retrieve the equilibrium heat capacity
Ceq(T ), as it should be.

3.2.4. Stationary heat current and linear thermal conductivity. The instantaneous heat
current ja(C) received from heat bath a when the system jumps out of the configuration
C has been defined in [16] as

ja(C) ≡ jδqa(C) ≡
∑
C′

(C ′|W|C) δqa(C ′ ← C), (3.25)

where δqa(C ′← C) is the heat received from thermal bath a when the system evolves from
configuration C to configuration C ′ = FaC, where Fa is the flip caused by thermal bath a,
namely {

δqa(C ′ ← C) = [E(C ′)− E(C)] if C ′ = FaC
δqa(C ′ ← C) = 0 otherwise.

(3.26)
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In the present model j2(σ1, σ2) = [E(σ1,−σ2)− E(σ1, σ2)] (σ1,−σ2|W|σ1, σ2) = ν2

[σ1σ2 − γ2] (∆e/2).
In the stationary state the mean energy is constant, so that the mean currents received

from both baths cancel, 〈j1〉st +〈j2〉st = 0. For the stationary state probability distribution
(3.6), one has 〈σ1σ2〉st = γ? = ν1γ1 + ν2γ2 and

〈j2〉st = ν1ν2 (γ1 − γ2)
(ν1 + ν2)∆e

2
, (3.27)

where γ1 − γ2 may be rewritten as

γ1 − γ2 = tanh

(
(β1 − β2)∆e

2

)[
1− tanh

(
β1∆e

2

)
tanh

(
β2∆e

2

)]
. (3.28)

When T1 ≤ T2, 〈j2〉st ≥ 0, as it should: the mean heat current flows from the hot bath
to the cold bath. Note that 〈j2〉st is a bounded function of T1 and T2. Thus, in the
generic case 〈j2〉st is not proportional to the bath temperatures difference T2 − T1.
As for any system, the linear dependence upon T2 − T1 (or β1 − β2) appears in the
limit where (β1 − β2)∆e � 1. In the high-temperature regime, where both β1∆e � 1
and β2∆e � 1, the condition (β1 − β2)∆e � 1 is satisfied and 〈j2〉st is proportional to
T2 − T1.

When β1 = β2 the system is at equilibrium and 〈j2〉eq = 0. Moreover, as shown in [16],
the partial derivatives of the current obey the generic symmetry

∂〈j2〉st
∂β1

∣∣∣∣
β2

(β1 = β, β2 = β) = −∂〈j2〉st
∂β2

∣∣∣∣
β1

(β1 = β, β2 = β). (3.29)

This property can also be checked from the expression (3.27) of 〈j2〉st. It entails that

〈j2〉st ∼
(T1,T2)→(T,T )

(T2 − T1)
∂〈j2〉st
∂T2

∣∣∣∣
T1

(T, T ). (3.30)

In other words, when T1 and T2 independently tend to the same value T , at first order in
the independent variables T1 − T and T2 − T the ratio 〈j2〉st/(T2 − T1) depends on T but
is independent of the ways T1 − T and T2 − T vanish.

As a consequence, for a non-equilibrium stationary state near equilibrium, namely
when the temperature difference between the thermostats is such that (β1 − β2) ∆e� 1,
one can define the thermal conductivity as

κth ≡ lim
(T1,T2)→(T,T )

〈j2〉st
T2 − T1

=
∂〈j2〉st
∂T2

∣∣∣∣
T1

(T, T ). (3.31)

From (3.27) we get the expression for the thermal conductivity,

κth =
ν1ν2

ν1 + ν2

[
1− tanh2

(
β∆e

2

)](
β∆e

2

)2

. (3.32)

We remind the reader that the thermal conductivity, which is a positive transport
coefficient, is related to the kinetic coefficient (also called Onsager coefficient) introduced
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in phenomenological irreversible thermodynamics as

L ≡ lim
F→0

〈j2〉st
F

, (3.33)

where, as recalled in [16], the thermodynamic force F can be defined from the stationary
entropy production rate, which is opposite to the exchange entropy flow, dintS

SG/dt|st =
−dexchS/dt|st, through the relation

dintS
SG

dt

∣∣∣∣
st

= −dexchS

dt

∣∣∣∣
st

= F〈j2〉st (3.34)

when there is only one independent mean instantaneous current. In the case of the thermal
contact F = β1−β2. Therefore the relation between the kinetic coefficient and the thermal
conductivity defined in (3.31) reads

L =
κth

β2
. (3.35)

Now we compare the results about the linear static response in non-equilibrium
stationary states which are either in the vicinity of equilibrium or far away from
equilibrium. When the system is far from equilibrium, namely when (β1 − β2) ∆e � 1,
(3.27) leads to

∂〈j2〉st
∂β2

∣∣∣∣
β1

= − ν1ν2

ν1 + ν2

[
1− tanh

(
β2∆e

2

)2
](

∆e

2

)2

(3.36)

∂〈j2〉st
∂β1

∣∣∣∣
β2

=
ν1ν2

ν1 + ν2

[
1− tanh

(
β1∆e

2

)2
](

∆e

2

)2

. (3.37)

The linear response coefficients ∂〈j2〉st/∂T2|T1 and ∂〈j2〉st/∂T1|T2 are no longer opposite to
each other. As a consequence, when T1 and T2 are varied independently, the corresponding

variation of the stationary mean instantaneous current 〈j2〉[β1,β2]
st at first order reads

〈j2〉
[β′1,β

′
2]

st − 〈j2〉[β1,β2]
st ∼

(T ′1,T
′
2)→(T1,T2)

(T ′1 − T1)
∂〈j2〉[β1,β2]

st

∂T1

∣∣∣∣
T2

+ (T ′2 − T2)
∂〈j2〉[β1,β2]

st

∂T2

∣∣∣∣
T1

.

(3.38)

The latter variation depends not only on T1, T2 and the variation of the temperature
difference (T ′1− T ′2)− (T1− T2) but also on the way in which T ′1 and T ′2 are varied around
the given values T1 and T2.

3.3. Nonlinear static response in the NESS

3.3.1. Nonlinear thermal conductivity. When the system is far from equilibrium, instead

of introducing the linear response 〈j2〉
[β′1,β

′
2]

st − 〈j2〉[β1,β2]
st with (β′1 − β1)∆e � 1 and

(β′2 − β2)∆e � 1 (and the associated linear response coefficients ∂〈j2〉[β1,β2]
st /∂βa), one

may rather consider a nonlinear thermal conductivity, defined as

κnlin
th =

〈j2〉[β1,β2]
st

T2 − T1

. (3.39)
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From (3.27)

κnlin
th =

1

T1T2

ν1ν2

ν1 + ν2

tanh ((β1 − β2)∆e/2)

(β1 − β2)∆e/2

×
[
1− tanh

(
β1∆e

2

)
tanh

(
β2∆e

2

)](
∆e

2

)2

. (3.40)

According to the expression (3.27), 〈j2〉st is a bounded function of T1 and T2, so that κnlin
th

vanishes when T2 − T1 becomes very large with respect to either T1 or T2.
We also notice that when both thermostats are at very high temperature, namely

when β1∆e � 1 and β2∆e � 1, 〈j2〉st is proportional to β1 − β2, with a coefficient

independent of the temperatures. As a consequence, the partial derivatives ∂〈j2〉[β1,β2]
st /∂β1

and ∂〈j2〉[β1,β2]
st /∂β2 are opposite to each other, as in the symmetry property (3.29) in the

very vicinity of the equilibrium limit. Then the difference (3.38) is proportional to the
difference (β′1 − β1)− (β′2 − β2),

〈j2〉
[β′1,β

′
2]

st − 〈j2〉[β1,β2]
st ∼

(β′1,β
′
2)→(β1,β2)

β1∆e→0, β2∆e→0

[(β′1 − β1)− (β′2 − β2)]
∂〈j2〉st
∂β1

∣∣∣∣
β2

. (3.41)

Besides, the thermal conductivity (3.40) behaves as

κnlin
th ∼

β1∆e→0
β2∆e→0

1

T1T2

ν1ν2

ν1 + ν2

(
∆e

2

)2

. (3.42)

3.3.2. Housekeeping entropy flow and mean excess heats. In the long-time limit, whatever
the initial configuration probability P0 may be, the system reaches a stationary state
where the Markovian stochastic dynamics enforces that the cumulated heats received
from each thermostat, namely the random variables Q1(t) and Q2(t), have averages
〈Q1(t)〉P0 and 〈Q2(t)〉P0 which both grow linearly in time with opposite coefficients,

−〈Q1(t)〉P0 ∼t→+∞
〈Q2(t)〉P0 ∼t→+∞

t〈j2〉[β1,β2]
st . Then

lim
t→+∞

β1〈Q1(t)〉P0 + β2〈Q2(t)〉P0

t
= −(β1 − β2)〈j2〉[β1,β2]

st =
dexchS

dt

∣∣∣∣
st

, (3.43)

where the stationary exchange entropy flow appears by virtue of (3.34). Meanwhile the
sum Q1(t)+Q2(t) remains bounded at any time and its average tends to the heat amount
corresponding to the mean energy difference between the final and initial stationary states,

lim
t→+∞

〈Q1(t) +Q2(t)〉P0 = 〈E〉[β1,β2]
st − 〈E〉P0 . (3.44)

In the phenomenological framework of steady state thermodynamics [19], when work
is supplied to the system, the total heat given to the system is usually expressed as
the sum of an ‘excess’ heat Qexc associated with the energy exchange during transitions
between two different steady states and a ‘housekeeping’ heat Qhk associated with the
energy supplied to maintain the system in the NESS reached in the long-time limit. These
two heat amounts have been discussed for a system in contact with only one thermal
bath and submitted to a time-dependent external force which is described by Langevin
dynamics [20, 14, 21].
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By analogy, with the standard sign convention, we may introduce a ‘housekeeping’
entropy flow supplied to the system, which can be measured as the asymptotic behavior

σhk[Pst] ≡ − lim
t→+∞

β1〈Q1(t)〉P0 + β2〈Q2(t)〉P0

t
, (3.45)

and which, by virtue of (3.43), coincides with the opposite of the stationary exchange
entropy flow, namely with the stationary entropy production rate (see (3.34))

σhk[Pst] = −dexchS

dt

∣∣∣∣
st

=
dintS

dt

∣∣∣∣
st

. (3.46)

From the explicit expression (3.27) of the mean instantaneous heat current we obtain the
expression for the housekeeping entropy flow (3.45)

σhk[Pst] =
ν1ν2

ν1 + ν2

(γ1 − γ2) (β1 − β2)
∆e

2
. (3.47)

When the system is prepared in a stationary state by thermal contact with heat

reservoirs at the inverse temperatures β0
1 and β0

2 respectively, then 〈E〉P0 = 〈E〉[β
0
1 ,β

0
2 ]

st

and the difference in (3.44) becomes equal to 〈E〉[β1,β2]
st − 〈E〉[β

0
1 ,β

0
2 ]

st . With the standard

convention, the ‘excess’ heats given to the system Qexc,a|[β1,β2]

[β0
1 ,β

0
2 ]

with a = 1, 2 can be

measured as

Qexc,a

∣∣∣[β1,β2]

[β0
1 ,β

0
2 ]
≡ − lim

t→+∞

[
〈Qa(t)〉

P
[β0

1 ,β
0
2]

st

− t〈ja〉[β1,β2]
st

]
. (3.48)

Then, by virtue of the stationary condition 〈j1〉st = −〈j2〉st, the equality (3.44) becomes

−Qexc,1

∣∣∣[β1,β2]

[β0
1 ,β

0
2 ]
−Qexc,2

∣∣∣[β1,β2]

[β0
1 ,β

0
2 ]

= 〈E〉[β1,β2]
st − 〈E〉[β

0
1 ,β

0
2 ]

st . (3.49)

The excess heats Qexc,a|[β1,β2]

[β0
1 ,β

0
2 ]

defined in (3.48) are explicitly calculated in subsection (4.3)

from the expressions of the average heat amounts 〈Qa(t)〉P0 at any finite time t (for any
initial distribution P0 of the two-spin configuration) with the results given in (4.52).

In the linear response regime, where the relative differences (T1 − T 0
1 )/T 0

1 and
(T2 − T 0

2 )/T 0
2 are infinitesimal, by virtue of the definition (3.19) of the generalized heat

capacities C
[a]
st (T1, T2), with a = 1, 2,

−Qexc,1

∣∣∣∣[T1+dT1,T2+dT2]

[T1,T2]

−Qexc,2

∣∣∣∣[T1+dT1,T2+dT2]

[T1,T2]

→ C
[1]
st (T1, T2) dT1 + C

[2]
st (T1, T2) dT2. (3.50)

We notice that the notion of heat capacity has been studied in the case of non-equilibrium
steady states where the system is submitted to a non-conservative force and is in contact
with a single thermostat [22].

4. Joint probability distribution for heat cumulated exchanges at finite time in the
model

Instead of studying the evolution of the probability distribution P (C; t) of the spin
configuration C = (σ1, σ2), we address directly the evolution of the joint probability
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distribution P (C ′|Q1,Q2, t|C) for the cumulated heats Q1 and Q2 received from the
thermal baths 1 and 2 during a time t when the system is in configuration C = (σ1, σ2)
at time t0 = 0 and in configuration C ′ = (σ′1, σ

′
2) at time t. In order to obtain results

which hold as generally as possible, the initial probability distribution for configurations
is not assumed to have the same symmetry under simultaneous spin flips as the stationary
distribution.

Since the two-spin system has only two energy levels separated by the energy gap ∆e,
the cumulated heats Qa are integer multiples of ∆e and we set

Q1 = −n1∆e and Q2 = n2∆e. (4.1)

The minus sign in the definition of Q1 is introduced for the sake of conveniency, because
the mean instantaneous heat currents 〈j1〉st and 〈j2〉st in the stationary state are opposite
to each other. In other words, n1∆e is the amount of heat dissipated towards heat
bath 1, while n2∆e is the amount of heat received from heat bath 2. With these
notations P (Cf |Q1,Q2, t|C0) can be written as a matrix element of some evolution operator
U(n1, n2; t) as

P (C ′|Q1,Q2, t|C) = (σ′1, σ
′
2|U(n1, n2; t)|σ1, σ2) . (4.2)

4.1. Explicit calculations

4.1.1. Constraint from energy conservation. According to the expression (2.5) for the
interaction energy between the two spins, the energy difference between the final and the
initial configurations reads

E(σ′1, σ
′
2)− E(σ1, σ2) =

σ1σ2 − σ′1σ′2
2

∆e, (4.3)

and it can take only three values 0, +∆e and −∆e. On the other hand, according to (4.1),
Q1 +Q2 = (n2 − n1)∆e, namely

Q1 +Q2 = ∆n×∆e where ∆n ≡ n2 − n1. (4.4)

Energy conservation entails that the energy variation of the two-spin system is equal to the
sum of the heat amounts received from the thermostats: E(σ′1, σ

′
2)−E(σ1, σ2) = Q1 +Q2.

As a consequence, the correspondence between the total amount of received heat and the
couple of initial and final states reads

∆n = 0 ⇔ σ′1σ
′
2 = σ1σ2

(∆n)2 = 1 ⇔ σ1σ2 = ∆n and σ′1σ
′
2 = −∆n.

(4.5)

Therefore it is convenient to introduce the decomposition

U(n1, n2; t) =
∑

∆n=0,+1,−1

δn2,n1+∆nU(n1, n1 + ∆n; t). (4.6)

In the basis {(+,+), (−,−), (+,−), (−+)}, already used in (3.2), the correspondence (4.5)
enforces that U(n1, n2; t) can be decomposed into three 4× 4 matrices

U = U[∆n=0] + U[∆n=+1] + U[∆n=−1] (4.7)
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with

U[∆n=0] =

(
A O
O D

)
U[∆n=1] =

(
O O
C O

)
U[∆n=−1] =

(
O B
O O

)
. (4.8)

The subscript involving ∆n indicates the unique value of ∆n which is involved in a history

where the initial and final states are (σ1, σ2) and (σ′1, σ
′
2) respectively. O =

(
0 0
0 0

)
and A,

B, C and D are 2× 2 matrices.

4.1.2. Generating function method. The evolution equation for U(n1, n2; t) is easily
derived by considering the probability

P (σ1, σ2, n1, n2; t) =
∑
σ′1,σ

′
2

(σ1, σ2|U(n1, n2; t)|σ′1, σ′2)P (σ′1, σ
′
2; t = 0). (4.9)

P (σ1, σ2, n1, n2; t) is the probability that the system is in configuration (σ1, σ2) at time t
and has received the heat amounts Q1 = −n1∆e and Q2 = n2∆e during the time interval
[0, t] when the initial probability distribution for the spins is P (σ′1, σ

′
2; t = 0). The evolution

equation for P (σ1, σ2, n1, n2; t) is a generalization of the master equation (3.1) which
governs the evolution of P (σ1, σ2; t). By taking into account the explicit expression (2.9)
for the transition rates we get

2

ν1 + ν2

dP (σ1, σ2, n1, n2; t)

dt
= − [1− σ1σ2(ν1γ1 + ν2γ2)]P (σ1, σ2, n1, n2; t)

+ ν1 [1 + σ1σ2γ1]P (−σ1, σ2, n1 − σ1σ2, n2; t)

+ ν2 [1 + σ1σ2γ2]P (σ1,−σ2, n1, n2 + σ1σ2; t) (4.10)

where the dimensionless inverse time scales νa are defined in (3.4).
The operator on the right-hand side of the evolution equation (4.10) is

partially diagonalized by considering the generating function P (σ1, σ2, z1, z2; t) =∑+∞
n1=−∞

∑+∞
n2=−∞z

n1
1 zn2

2 P (σ1, σ2, n1, n2; t), which is absolutely convergent for z1 and z2

of modulus 1. Considering the latter generating function is equivalent to introducing

Û(z1, z2; t) ≡
+∞∑

n1=−∞

+∞∑
n2=−∞

zn1
1 zn2

2 U(n1, n2; t). (4.11)

Since P (σ1, σ2, n1, n2; t = 0) = δn1,0δn2,0P (σ1, σ2; t = 0), we infer that Û(z1, z2; t = 0) = I4,
where I4 denotes the identity 4 × 4 matrix. The inversion formula which allows one to
retrieve U(n1, n2; t) is

U(n1, n2; t) =

∮
|z1|=1

dz1

2πi

∮
|z2|=1

dz2

2πi

Û(z1, z2; t)

zn1+1
1 zn2+1

2

. (4.12)

The decomposition (4.6) of U(n1, n2; t) leads to a similar decomposition for Û(z1, z2; t)

Û(z1, z2; t) =
∑

∆n=0,+1,−1

Û[∆n](z1, z2; t). (4.13)

The decomposition (4.7) of U(n1, n2; t) into three 4×4 matrices (enforced by the constraint

(4.5) due to energy conservation) is also valid for Û(z1, z2; t). Moreover Û[∆n](z1, z2; t) has
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necessarily the following dependence upon z2 and z1z2: Û[∆n](z1, z2; t) = z∆n
2 V̂[∆n](z1z2; t).

Therefore, by using the change of variable z1 −→ z = z1z2 in (4.12) one gets

U(n1, n1 + ∆n; t) =

∮
|z|=1

dz

2πi

Û[∆n](z1 = z, z2 = 1; t)

zn1+1
. (4.14)

4.1.3. Diagonalization. The evolution of Û(z1, z2; τ) with the dimensionless time variable

τ =
ν1 + ν2

2
t (4.15)

reads

dÛ(z1, z2; τ)

dτ
= A(z1, z2)Û(z1, z2; τ), (4.16)

where, from the evolution equation (4.10),

A(z1, z2) = −I4 +


γ? 0 b2 b1

0 γ? b1 b2

c2 c1 −γ? 0

c1 c2 0 −γ?

 (4.17)

with the following notations: b1 = ν1(1+γ1)z1, b2 = ν2(1+γ2)(1/z2), c1 = ν1(1−γ1)(1/z1)
and c2 = ν2(1− γ2)z2.

Since the transition rates are invariant under the simultaneous changes of both spin
signs, it is convenient to consider the transformed matrix

A′(z1, z2) = P−1A(z1, z2)P (4.18)

with

P−1 =


1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1

 . (4.19)

The matrix A′(z1, z2) corresponds to two sets of decoupled equations,

A′(z1, z2) = −I4 +

(
B+ O
O B−

)
(4.20)

where Bε =
(

γ? εb1 + b2
εc1 + c2 −γ?

)
for ε = ±. As Bε is traceless, B2

ε(z1, z2) is proportional to I2.

Explicitly

B2
ε(z1, z2) = ∆ε(z1z2)I2 (4.21)

with

∆ε(z) = 1− 2A+ ε

[
(A+B)z + (A−B)

1

z

]
(4.22)
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where

A = ν1ν2 (1− γ1γ2) and B = ν1ν2 (γ1 − γ2) . (4.23)

We notice that A ≥ |B|. As a consequence,

eτA′(z1,z2) = e−τ ×
(

eτB+(z1,z2) O
O eτB−(z1,z2)

)
(4.24)

where

eτBε(z1,z2) = cosh(τ
√

∆ε(z1z2))I2 +
sinh(τ

√
∆ε(z1z2))√

∆ε(z1z2)
Bε(z1, z2). (4.25)

Moreover the eigenvalues of the matrix 1
2
(ν1 + ν2)A(z1, z2) are, with the notations ε = ±

and η = ±,

µ(ε,η)(z) =
ν1 + ν2

2

[
−1 + η

√
∆ε(z)

]
. (4.26)

4.1.4. Results for the generating function. From (4.18) we can calculate Û(z1, z2; τ) =

eτA(z1,z2) = PeτA′(z1,z2)P−1. From the explicit expressions (4.24) and (4.25) we get the

matrices Û[∆n](z1, z2; τ) defined in (4.13). The 16 matrix elements can be written in the
compact form

(σ1, σ2|Û[∆n=0](z1, z2; τ)|σ1, σ2) = C+(z1z2; τ) + σ1σ2γ?S
+(z1z2; τ)

(−σ1,−σ2|Û[∆n=0](z1, z2; τ)|σ1, σ2) = C−(z1z2; τ) + σ1σ2γ?S
−(z1z2; τ)

(−σ1, σ2|Û[∆n](z1, z2; τ)|σ1, σ2) =
∆n=±1

δσ1σ2,∆n z
∆n
2 F+

∆n(z1z2; τ)

(σ1,−σ2|Û[∆n](z1, z2; τ)|σ1, σ2) =
∆n=±1

δσ1σ2,∆n z
∆n
2 F−∆n(z1z2; τ)

(4.27)

with

C±(z; τ) = e−τ 1
2

[
cosh(τ

√
∆+(z))± cosh(τ

√
∆−(z))

]
(4.28)

S±(z; τ) = e−τ
1

2

[
sinh(τ

√
∆+(z))√

∆+(z)
± sinh(τ

√
∆−(z))√

∆−(z)

]
(4.29)

and

F±∆n(z; τ) =
1

z∆n
ν1 (1−∆nγ1)S±(z; τ) + ν2 (1−∆n γ2)S∓(z; τ). (4.30)

4.1.5. Results for the joint probability. U(n1, n1 + ∆n; t) is derived from Û[∆n](z1, z2; t)
through the unit circle integral in (4.14). In fact, because of the parity property of the cosh
and sinh functions, the functions C±(z; τ) and S±(z; τ) are functions not of

√
∆ε(z) but

only of ∆ε(z). According to the definition (4.22) of ∆ε(z), the only singular points of ∆ε(z)
are z = 0 and +∞, and the same is true for the integrands in

∮
|z|=1(dz/2πi)z−(m+1)C±(z; τ)
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and
∮
|z|=1(dz/2πi)z−(m+1)S±(z; τ). Changing z into −z we get that∮

|z|=1

dz

2πi

1

zm+1
cosh

(
τ
√

∆−(z)

)
= (−1)m

∮
|z|=1

dz

2πi

1

zm+1
cosh

(
τ
√

∆+(z)

)
. (4.31)

As a consequence∮
|z|=1

dz

2πi

1

zm+1
C±(z; τ) =

1± (−1)m

2
e−τcm(τ) (4.32)

and ∮
|z|=1

dz

2πi

1

zm+1
S±(z; τ) =

1± (−1)m

2
e−τsm(τ), (4.33)

where

cm(τ) ≡
∮
|z|=1

dz

2πi

1

zm+1
cosh

(
τ
√

∆+(z)

)
(4.34)

and

sm(τ) ≡
∮
|z|=1

dz

2πi

1

zm+1

sinh(τ
√

∆+(z))√
∆+(z)

. (4.35)

Eventually, the matrix elements of U(n1, n1 + ∆n; t) are derived from the expressions

(4.27) for the matrix elements of Û[∆n](z1, z2; t) with the result

(σ1, σ2|U(n, n; t)|σ1, σ2) = δeven(n)× U (0)(n, σ1σ2; τ)

(−σ1,−σ2|U(n, n; t)|σ1, σ2) = δodd(n)× U (0)(n, σ1σ2; τ)

(−σ1, σ2|U(n, n+ ∆n; t)|σ1, σ2) =
∆n=±1

δσ1σ2,∆n × δodd(n)× U (1)(n,∆n; τ)

(σ1,−σ2|U(n, n+ ∆n; t)|σ1, σ2) =
∆n=±1

δσ1σ2,∆n × δeven(n)× U (1)(n,∆n; τ),

(4.36)

where δeven(n) = 1
2

[1 + (−1)n] and δodd(n) = 1
2

[1− (−1)n] while

U (0)(n, σ1σ2; τ) = e−τ [cn(τ) + γ?σ1σ2sn(τ)]

U (1)(n,∆n; τ) = e−τ [ν2 (1− γ2∆n) sn(τ) + ν1 (1− γ1∆n) sn+∆n(τ)] .
(4.37)

We notice that the parity condition factors 1
2

[1± (−1)n] have a simple interpretation.
During a history such that spin σ1 is in the same state (in flipped states) in the initial and
final configurations, thermal bath 1 has flipped spin σ an even (odd) number of times,
so that the corresponding sum n∆e of the successive amounts ±∆e dissipated towards
thermal bath 1 is necessarily an even (odd) multiple of ∆e.

4.2. Various explicit probabilities

The probability that the system is in configuration (σ1, σ2) at time t when the initial
configuration is distributed according to the law P0 can be calculated, by virtue of the
definition (4.11), as

PP0 (σ1, σ2; t) =
∑

∆n=−1,0,+1

∑
σ′1,σ

′
2

(
σ1, σ2|Û[∆n](z1 = 1, z2 = 1; t)|σ′1, σ′2

)
P0(σ′1, σ

′
2). (4.38)
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The matrix elements of Û[∆n](z1 = 1, z2 = 1; t) are derived from (4.27) where, according
to (4.22), ∆+(z = 1) = 1 while ∆−(z = 1) = 1 − 4A with A = ν1ν2(1 − γ1γ2). Using the
identities P0(σ1, σ2)+P0(−σ1,−σ2) = 1

2
[1+σ1σ2γ0], where γ0 = 〈σ1σ2〉P0 , and P0(σ1, σ2)−

P0(−σ1,−σ2) = 1
2

[σ1〈σ′1〉P0 + σ2〈σ′2〉P0 ], where 〈σ′1〉P0 (resp. 〈σ′2〉P0) is the average value of
the first (resp. second) spin at time 0, a straightforward calculation leads to

PP0 (σ1, σ2; t) = 1
4
[1 + σ1σ2γ?] + 1

4
σ1σ2[γ0 − γ?]e−2τ

+
1

8
[σ1〈σ′1〉P0 + σ2〈σ′2〉P0 ]

[(
1 + σ1σ2

γ?
α

)
e−(1−α)τ

+
(

1− σ1σ2
γ?
α

)
e−(1+α)τ

]
+

1

8
[−σ1〈σ′1〉P0 + σ2〈σ′2〉P0 ]

× 1

α
[ν1 − ν2 + σ1σ2(ν1γ1 − ν2γ2)] [e−(1−α)τ − e−(1+α)τ ], (4.39)

where α ≡
√

1− 4A. When P0 is invariant under the simultaneous reversal of the
spins σ1 and σ2, P0(σ1, σ2) = (1/4) [1 + σ1σ2γ0] and only the terms in the first line of
(4.39) contribute. Then the evolution of PP0 (σ1, σ2; t) towards the stationary distribution
Pst(σ1, σ2) = 1

4
[1 + σ1σ2γ?] involves only one time scale, namely 1/(ν1 + ν2) (recall that

τ = 1
2
(ν1 + ν2)t).

For any initial probability distribution P0 of the spins, the probability
PP0 (σ1, σ2, n1, n2; t) that at time t the system is in configuration (σ1, σ2) and has received
a heat amount Q1 = −n1∆e from bath 1 and Q2 = n2∆e from bath 2 is calculated from
(4.36) with the result

PP0 (σ1, σ2, n, n; t) = U (0)(n, σ1σ2; τ) [δeven(n)P0(σ1, σ2) + δodd(n)P0(−σ1,−σ2)]

PP0 (σ1, σ2, n, n+ ∆n; t) =
∆n=±1

δσ1σ2,−∆nU
(1)(n,∆n; τ) [δeven(n)P0(σ1,−σ2)

+ δodd(n)P0(−σ1, σ2)] .

(4.40)

Various joint probabilities can be derived from these expressions.
The joint probability PP0 (n1, n2; t) that at time t the system has received a heat

amount Q1 = −n1∆e from bath 1 and a heat amount Q2 = n2∆e from bath 2 is

PP0 (n, n; τ) = e−τ [cn(τ) + γ?γ0sn(τ)]

PP0 (n, n+ ∆n; τ) =
∆n=±1

e−τ 1
2
[1 + ∆n γ0]

× [ν2 (1−∆nγ2) sn(τ) + ν1 (1−∆n γ1) sn+∆n(τ)] ,

(4.41)

where γ0 has been defined before (4.39).
The joint probability PP0 (σ1σ2 = ±1, n1; t) that at time t the system is in a

configuration where σ1σ2 is equal to ±1 and has received a heat amount Q1 = −n1∆e
from bath 1 is seen via (4.40) to have the value

PP0 (σ1σ2 = +1, n1; τ) = 1
2
e−τ {(1 + γ0) cn1(τ) + [2γ? + (ν2 − ν1γ1) (1− γ0)] sn1(τ)

+ ν1 (1 + γ1) (1− γ0) sn1−1(τ)} (4.42)

and

PP0 (σ1σ2 = −1, n1; τ) = 1
2
e−τ {(1− γ0) cn1(τ) + [−2γ? + (ν2 + ν1γ1) (1 + γ0)] sn1(τ)

+ ν1 (1− γ1) (1 + γ0) sn1+1(τ)} . (4.43)
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The expressions for PP0 (σ1σ2 = ±1, n2; τ) are obtained from the latter equations by
making the exchanges ν1 ↔ ν2 and γ1 ↔ γ2 and the replacements cn1 → cn2 , sn1 → sn2 ,
and sn1−1 → sn2+1 for σ1σ2 = 1, resp. sn1+1 → sn2−1 for σ1σ2 = −1.

From these expressions we get the probability distribution for only one heat amount
Q1 or Q2

PP0 (n1; τ) = e−τ
{
cn1(τ) + [ν2 + ν1γ1γ0] sn1(τ)

+ 1
2
ν1(1− γ1)(1 + γ0)sn1+1(τ) + 1

2
ν1(1 + γ1)(1− γ0)sn1−1(τ)

}
(4.44)

and similarly

PP0 (n2; τ) = e−τ
{
cn2(τ) + [ν1 + ν2γ2γ0] sn2(τ)

+ 1
2
ν2(1 + γ2)(1− γ0)sn2+1(τ) + 1

2
ν2(1− γ2)(1 + γ0)sn2−1(τ)

}
. (4.45)

From the identities
∑+∞

n=−∞cn(τ) = cosh τ , and
∑+∞

n=−∞sn(τ) = sinh τ , the probability
that the total heat amount received from both thermostats is Q1 + Q2 = (n2 − n1)∆e
reads

PP0 (n2 − n1 = 0; τ) = 1
2

[1 + γ?γ0] + 1
2

[1− γ?γ0] e−2τ

PP0 (n2 − n1 = ∆n; τ) =
∆n=±1

1
4
{1− γ?γ0 + ∆n [γ0 − γ?]}

[
1− e−2τ

]
.

(4.46)

As a consequence

〈[Q1 +Q2]τ 〉P0 = 1
2

[γ0 − γ?]
[
1− e−2τ

]
∆e, (4.47)

and we retrieve property (3.44).
We notice that all formulae are still valid in the limit where T1 vanishes, namely where

β1∆e goes to infinity.

4.3. Excess heats

The excess heats associated with the transition between two different steady states have
been defined in (3.48). For the two-spin system they can be explicitly calculated. Indeed,
when the system is initially prepared in the stationary state with distribution P0 by
contact with two thermostats at the inverse temperatures β0

1 and β0
2 and then is put at

time t = 0 in contact with two heat baths at inverse temperatures β1 and β2, the mean
heat amount received from the thermostat 1 between time t = 0 and time t is given (with
the convention (4.1)) by

〈Q1(t)〉P0 = −∆e
+∞∑

n1=−∞
n1

∑
σ1,σ2

∑
σ′1,σ

′
2

∑
∆n=0,1,−1

(σ′1, σ
′
2|U(n1, n1 + ∆n; t)|σ1, σ2)

× P0(σ1, σ2). (4.48)
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By virtue of the definition (4.11) of the relevant generating function and the decomposition
(4.13), the latter expression can be rewritten as

〈Q1(t)〉P0 = −∆e
∂

∂z1

∑
σ1,σ2

∑
σ′1,σ

′
2

∑
∆n=0,1,−1

(
σ′1, σ

′
2|Û[∆n](z1, z2; t)|σ1, σ2

)

× P0(σ1, σ2)

∣∣∣∣∣∣
z1=z2=1

. (4.49)

From the explicit expressions (4.27) for the matrix elements and (4.22) for ∆+(z), a
straightforward calculation leads to

〈Q1(t)〉P0 = 〈j1〉stt+
[
ν1ν2 (γ1 − γ2)− ν1

(
γ1 − γ0

?

)] ∆e

2
[1− e−(ν1+ν2)t] (4.50)

where 〈j1〉st = −〈j2〉st is given in (3.27) and γ0
? is a function of ν1, ν2, β0

1 and β0
2 written

in (3.5). A similar calculation yields

〈Q2(t)〉P0 = 〈j2〉stt+
[
−ν1ν2 (γ1 − γ2)− ν2

(
γ2 − γ0

?

)] ∆e

2
[1− e−(ν1+ν2)t]. (4.51)

As a result, with the sign convention of definition (3.48), the excess heat given to the
system by heat bath 1 in the present protocol reads

Qexc,1|[β1,β2]

[β0
1 ,β

0
2 ]

= −
[
ν1ν2 (γ1 − γ2)− ν1

(
γ1 − γ0

?

)] ∆e

2
. (4.52)

The excess heat given to the system by heat bath 2, Qexc,2|[β1,β2]

[β0
1 ,β

0
2 ]

, is obtained from the

latter expression by the exchanges ν1 ↔ ν2 and γ1 ↔ γ2. These two excess heats are not
opposite to each other, and comparison with the expressions (3.14) for the mean energies
in the initial and final stationary states shows that the sum of the excess heats coming
from both thermostats indeed satisfy the identity (3.49).

4.4. Symmetry property for reversed heat transfers (when T1 6= 0) specific to the model

4.4.1. Symmetry arising from modified detailed balance. The symmetry properties for
reversed heat transfers when T1 6= 0 are more conveniently exhibited after a change of
variable in the complex plane where the integrals involved in PP0 (Q1,Q2, t) are defined.
The relevant functions cn(τ) and sn(τ) are defined in (4.34) and (4.35), while ∆+(z) is
given in (4.22). The origin z = 0 is a singular point in ∆+(z) and z∆+(z) = (A+B)P (z),
where the second-order polynomial P (z) = (z− z+)(z− z−) vanishes for the two roots z+

and z−. The product of the roots is equal to

z+z− =
A−B
A+B

=
1

ρ2
with ρ ≡ e(β1−β2)∆e/2 (4.53)

and the sum of the roots is equal to −(1− 2A)/(A+B).
When T1 6= 0, z+z− does not vanish and, by using the variable change ζ = z/

√
z−z+,

namely

ζ = zρ, (4.54)
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the unit circle is changed into a circle with radius ρ, while the roots z+ and z− are
changed into ζ− and ζ+, with ζ−ζ+ = 1. Then, for a function such as cosh(

√
∆+(z))

or sinh(τ
√

∆+(z))/
√

∆+(z), each of which is in fact a function of ∆+(z) denoted by
f(∆+(z)), ∮

|z|=1

dz

2πi

1

zn+1
f(∆+(z)) = ρn

∮
|ζ|=ρ

dζ

2πi

1

ζn+1
f(∆̃+(ζ)) (4.55)

with ∆̃+(ζ) ≡ ∆+(ζ/ρ). ∆̃+(ζ) is a symmetric function of ζ and 1/ζ,

∆̃+(ζ) = b+ a
ζ + ζ−1

2
(4.56)

with a = 2
√
A2 −B2 and b = 1− 2A, namely

a = 2ν1ν2

√
(1− γ2

1)(1− γ2
2) (4.57)

b = 1− 2ν1ν2 (1− γ1γ2) . (4.58)

Since the only singular points in the integrand in the right-hand side of (4.55) are ζ = 0
and ∞, the circle |ζ| = ρ can be deformed into the unit circle and we get the identity∮

|z|=1

dz

2πi

1

zn+1
f(∆+(z)) = ρn

∮
|z|=1

dz

2πi

1

zn+1
f(∆̃+(z)). (4.59)

By inserting the latter identity in the definitions (4.34) and (4.35) we get the relations

cn(τ) = ρnc̃n(τ)

sn(τ) = ρns̃n(τ)
(4.60)

where

c̃n(τ) ≡
∮
|z|=1

dz

2πi

1

zn+1
cosh

(
τ

√
∆̃+(z)

)
(4.61)

and

s̃n(τ) ≡
∮
|z|=1

dz

2πi

1

zn+1

sinh(τ
√

∆̃+(z))√
∆̃+(z)

. (4.62)

Since ∆̃+(z) is invariant under the exchange of z and 1/z,

c̃n(τ) = c̃|n|(τ)

s̃n(τ) = s̃|n|(τ).
(4.63)

Therefore the functions involved in the matrix elements (4.36) of U(n1, n2; t) can be
rewritten as

U (0)(n, σ1σ2; τ) = e−τρn
[
c̃|n|(τ) + γ?σ1σ2s̃|n|(τ)

]
U (1)(n,∆n; τ) = e−τρn

[
ν2 (1− γ2∆n) s̃|n|(τ) + ν1 (1− γ1∆n) ρ∆ns̃|n+∆n|(τ)

] (4.64)

where ρ, defined in (4.53), also reads ρ =
√

(1 + γ1)(1− γ2)/(1− γ1)(1 + γ2).
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According to [16], the modified detailed balance implies some time-reversal symmetry
property for histories, which itself entails some relation between the probabilities of
forward and backward evolutions where the given initial and final configurations are
exchanged (and the heat amounts are changed into their opposite values). In the spin
model language, with the definitions (4.1), the symmetry exhibited in [16] for the
probability that the system evolves from an initial configuration C0 = (σ1, σ2) to a final
configuration Cf = (σ′1, σ

′
2) while receiving the heat amount Q1 = −n1∆e and Q2 = n2∆e

reads, for non-vanishing matrix elements,

(σ′1, σ
′
2|U(n1, n2; t)|σ1, σ2)

(σ1, σ2|U(−n1,−n2; t)|σ′1, σ′2)
= e(n1β1−n2β2)∆e. (4.65)

Comparison of the latter relation with the expressions (4.36) implies that

U (0)(n, σ1σ2; τ)

U (0)(−n, σ1σ2; τ)
= e[nβ1−nβ2]∆e (4.66)

and

U (1)(n,∆n; τ)

U (1)(−n,−∆n; τ)
= e[nβ1−(n+∆n)β2]∆e. (4.67)

The latter relations can be checked from the explicit expressions (4.64).
We notice that the relation (4.65) can also be retrieved by noticing that the modified

detailed balance entails that the matrix A(z1, z2), which rules the evolution of Û(z1, z2; τ)
according to (4.16), obeys the symmetry A(z1, z2) = AT(e−β1∆e/z1, e

β2∆e/z2), where AT

denotes the transposed matrix of A. Therefore, after the variable change z1 = ζ1/ρ1

and z2 = ζ2/ρ2 with ρ1 = exp(β1∆e/2) and ρ2 = exp(−β2∆e/2), the matrix A(z1, z2)

becomes the matrix Ã(ζ1, ζ2) ≡ A(z1 = ζ1/ρ1, z2 = ζ2/ρ2), which obeys the symmetry

ÃT(ζ1, ζ2) = Ã(1/ζ1, 1/ζ2). Then the derivation of the symmetry (4.65) is the following.
First we make the variable change z1 = ζ1/ρ1 and z2 = ζ2/ρ2 in the integral representation

(4.12) for U(n1, n2; t). Since Ã(ζ1, ζ2) has no non-analyticity, apart from the 1/ζ1 and 1/ζ2

singular terms, the integrals on the circles with radii equal to ρ1 and ρ2 are equal to the
integrals with the same integrands on the circles with radii equal to 1. If ζ is on the
unit circle, 1/ζ is also on this circle and we can make the variable change ζ1 → 1/ζ1 and

ζ2 → 1/ζ2; then the symmetry of Ã leads to the symmetry (4.65).
As shown in [16], the consequence (4.65) of the modified detailed balance (2.3) entails

that, if the spin system is in an equilibrium state at inverse temperature β0 at time t = 0
where it is put in contact with the two thermostats, then the ratio of the probabilities to
measure some given heat amountsQ1 andQ2 or their opposite values obeys the fluctuation
relation

P
P
β0
can

(Q1,Q2, ; t)

P
P
β0
can

(−Q1,−Q2; t)
= e(β0−β1)Q1+(β0−β2)Q2 . (4.68)

4.4.2. A relation specific to the model. The present model happens to obey a very
specific relation for reversed heat transfers when the initial state of the system has an
arbitrary probability distribution P0. According to (4.36), after summation over the final
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configuration, ∑
σ′1,σ

′
2

(σ′1, σ
′
2|U(n, n; t)|σ1, σ2) = U (0)(n, σ1σ2; τ)∑

σ′1,σ
′
2

(σ′1, σ
′
2|U(n, n+ ∆n; t)|σ1, σ2) =

∆n=±1
U (1)(n,∆n; τ) δσ1σ2,∆n.

(4.69)

Therefore, when the initial configurations are distributed with an arbitrary probability P0

then ∑
σ′1,σ

′
2

(σ′1, σ
′
2|U(n, n; t)|P0) =

∑
σ1,σ2

U (0)(n, σ1σ2; τ)P0 (σ1, σ2) (4.70)

and∑
σ′1,σ

′
2

(σ′1, σ
′
2|U(n, n+ ∆n; t)|P0) =

∆n=±1
U (1)(n,∆n; τ)× P0 (σ1σ2 = ∆n) (4.71)

where P0 (σ1σ2 = ∆n) denotes the probability that the product σ1σ2 is equal to ∆n in the
initial configuration.

Then from the expressions (4.70) and (4.71) for PP0 (Q1,Q2, t) in the cases Q1 = −Q2

and Q1 6= −Q2 respectively, and by virtue of the consequences (4.66) and (4.67) of the
modified detailed balance, we get the property

PP0 (Q1,Q2, ; t)

PP0 (−Q1,−Q2; t)
= e−β1Q1−β2Q2

×
[
δQ1+Q2,0 +

∑
ε=±1

δQ1+Q2,ε∆e
P (σ1σ2 = ε; t = 0)

1− P (σ1σ2 = ε; t = 0)

]
. (4.72)

The appearance of the initial probability for the sign of the spin product seemingly arises
from the fact that, by virtue of energy conservation, the values of this sign in the final
and initial states are related to the sum Q2 +Q1 by the constraint (4.5).

We stress that this relation is very specific to the present model. Its interest lies not
in its precise form, but in that the right-hand side involves the initial distribution: it has
sometimes been speculated that the (experimental) study of the ratio on the left-hand
side for general systems could give some clues about the initial distribution. The above
formula justifies this hope, but shows at the same time that even in the simple case at
hand only partial information can be retrieved, suggesting that for more general systems
even this partial information may be difficult to extract. In the cases where the initial
distribution is equal either to an equilibrium state distribution at the inverse temperature
β0 or to the stationary state distribution which is a canonical distribution at the inverse
temperature β?, the relation allows one to retrieve the generic relation (4.68).

4.5. Decaying property of joint probabilities for large heat exchanges

All quantities of interest involve the coefficients cm(τ) and/or sm(τ), computed via contour
integrals in (4.34) and (4.35). The integrands involve functions which are holomorphic for
z ∈ C∗, the pointed complex plane: the quantity ∆+(z) defined in (4.22) has this property
and the functions cosh(w) and sinh(w)/w are entire even functions, so that the square roots
in the composed functions cosh(τ

√
∆+(z)) and sinh(τ

√
∆+(z))/

√
∆+(z) do no harm.
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Hence, in the formulae for cm(τ) and sm(τ), contours can be deformed. For
r ∈]0,+∞[, let C(τ, r) ≡ sup|z|=r|cosh(τ

√
∆+(z))| < +∞ and S(τ, r) ≡ sup|z|=r|sinh

(τ
√

∆+(z))/
√

∆+(z)| < +∞.
Taking |z| = r as the integration contour, one gets immediately that, for each

r, cm(τ) ≤ C(τ, r)r−m and sm(τ) ≤ S(τ, r)r−m. This shows that cm(τ) and sm(τ) are
o(e−K|m|) at large |m| for any K.

With some efforts, we could get some explicit upper bounds for C(τ, r) and S(τ, r).
Then we could extremize over r to get a subexponential bound for cm(τ) and sm(τ), but
we shall not need this refinement.

In the limit T1 = 0, ∆+(z) is in fact holomorphic for z ∈ C so that cm(τ) and sm(τ)
vanish for m = −1,−2, . . ..

5. Heat amount cumulants for any T1 and T2

5.1. Generic properties for a system with a finite number of configurations

5.1.1. Characteristic function for the heat amount Q2. The random variable Q2 can
take only discrete values n2∆e, where n2 is a positive or negative integer. Therefore its
probability density Π(Q; t), defined as Π(Q; t) dQ = P (Q2 ∈ [Q,Q+ dQ[; t), reads

Π(Q; t) =
1

∆e

+∞∑
n2=−∞

δ

(
Q
∆e
− n2

)
P (n2; t), (5.1)

where δ stands for the Dirac distribution. Since P (n2; t) decays faster than exp(−K|n2|)
for any K > 0 when |n2| goes to infinity (see section 4.5), the Laplace transform G̃(λ; t)
of Π(Q), i.e. the characteristic function of the random variable Q2, is well defined for any
λ,

G̃(λ; t) ≡
∫ +∞

−∞
dQ eλQΠ(Q; t) = 〈eλQ2(t)〉. (5.2)

As a consequence, the properties of the probability density Π(Q; t) can be investigated
through those of its Laplace transform, thanks to the inversion formula

Π(Q; t) =

∫ +i∞

−i∞

dλ

2πi
e−λQG̃(λ; t). (5.3)

According to the property (5.1), G̃(λ) is a periodic function of λ with period equal to
i2π/∆e, and the right-hand side of the latter formula can be written as

1

∆e

∫ 2π

0

dθ

2π
e−iθQ/∆eG̃

(
iθ

∆e
; t

) +∞∑
m=−∞

e−i2πmQ/∆e. (5.4)

By virtue of the Poisson equality
∑+∞

m=−∞e−i2πmQ/∆e =
∑+∞

n2=−∞δ (Q/∆e− n2),
comparison with (5.1) leads to

P (n2; t) =

∫ 2π

0

dθ

2π
e−iθn2G̃

(
iθ

∆e
; t

)
. (5.5)
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The latter equality coincides with the inverse formula (analogous to (4.12)) in terms of
the generating function, G(z; t) =

∑+∞
n2=−∞z

n2P (n2; t),

P (n2; t) =

∮
|z|=1

dz

2πi

1

zn2+1
G(z; t), (5.6)

where G(z; t) ≡ G̃((1/∆e) ln z; t).

5.1.2. Relation between long-time cumulants per unit time for Q1 and Q2. The generic
properties of the cumulants of Q1 and Q2 have been reviewed in [16]. We recall those
which will be useful in the following. For a Markov process, the long-time behaviors of these
cumulants are proportional to the time t elapsed from the beginning of the measurements.
The asymptotic behavior of the cumulants per unit time are given by the derivatives of

αa(λ) ≡ lim
t→+∞

1

t
ln〈eλQa(t)〉 (5.7)

according to

lim
t→+∞

κ
[p]
Qa
t

=
∂pαa(λa)

∂λpa

∣∣∣∣
λa=0

for a = {1, 2}. (5.8)

Moreover, in the case of a system with a finite number of configurations, Q1 +Q2 =
E(Cf)− E(C0) is restricted to some finite interval and

α1(λ) = α2(−λ). (5.9)

As a consequence the long-time cumulants per unit time obey the following relations

lim
t→∞

κ
[p]
Q1

t
= (−1)p lim

t→∞

κ
[p]
Q2

t
. (5.10)

5.2. Explicit formulæ for the cumulants per unit time

According to the relation (5.10) between the long-time cumulants per unit time for Q1

and Q2, we have only to consider the cumulants for the heat amount Q2 received from
bath 2. For the two-spin system, where Q2 = n2∆e, it is convenient to introduce the
cumulants κ[p]

n2
for the dimensionless variable n2 and the associated characteristic function

〈eλn2〉, where λ is a dimensionless variable. According to the relation (5.8) the long-time
behavior of the cumulants per unit time are derived through the relation

lim
t→+∞

1

t
κ[p]
n2

=
∂pα2(λ)

∂λ
p

∣∣∣∣
λ=0

(5.11)

with

α2(λ) = lim
t→+∞

1

t
ln〈eλn2〉. (5.12)

According to the definition of 〈eλn2〉, the relation (4.9) between the probability
P (σ1, σ2, n1, n2; t) and the operator U(n1, n2; t), together with the definition (4.11) of

Û(z1, z2; t) and its evolution equation (4.16), the characteristic function may be expressed
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Figure 1. First infinite-time cumulants per unit time as functions of ν2/ν1.
Illustration of the large ν2/ν1 behavior with the two asymptotes, (ν1/2)(γ1− γ2)
for odd cumulants and (ν1/2)(1 − γ1γ2) for even cumulants. The other model
parameters are fixed to the sample values γ1 = 0.7, γ2 = 0.4, ν1 = 2.

as

〈eλn2〉 =
∑
σ1,σ2

∑
σ′1,σ

′
2

(
σ1, σ2|e((ν1+ν2)/2)t A(z1=1,z2=eλ)|σ′1, σ′2

)
P (σ′1, σ

′
2; t = 0). (5.13)

According to (4.17), A(z1 = 1, z2 = eλ) + (1 + γ?)I4 is a real positive matrix and the
Perron–Frobenius theorem can be applied. Henceforth, α2(λ) coincides with the eigenvalue

of the matrix [(ν1 + ν2)/2]A(z1 = 1, z2 = eλ) with the largest modulus (and which is

necessarily real). The four eigenvalues to consider are the µ(ε,η)(z = eλ) which are given by
the expression (4.26), with ε=± and η =±. The one with the largest modulus corresponds
to (ε, η) = (+,+) and reads

α2(λ) =
ν1 + ν2

2

[
−1 +

√
1− 2A+ (A+B)eλ + (A−B)e−λ

]
, (5.14)

where A and B are defined in (4.23).
It is simple to calculate a number of cumulants per unit time in the infinite-time limit

from (5.11). Their behavior as a function of the kinetic parameter ν2/ν1 exhibits some
interesting features. For large ν2/ν1, the cumulants go to a limit which is the same for all
odd and for all even cumulants, as will be explained in section 7. Figure 1 illustrates this
convergence, which gets slower and slower for higher moments. The first six cumulants
are represented. This figure also shows some oscillations at finite ν2/ν1. These oscillations
become more and more visible on higher cumulants. Figure 2 illustrates this phenomenon.
Cumulants from the fifth to the ninth are represented. In both figures, the other model
parameters are fixed to the sample values γ1 = 0.7, γ2 = 0.4, ν1 = 2.

Only the first cumulants have analytic expressions simple enough to fit on a line. For
the sake of conciseness, the results are first expressed in terms of the dimensionless time

doi:10.1088/1742-5468/2013/10/P10009 32

http://dx.doi.org/10.1088/1742-5468/2013/10/P10009


J.S
tat.M

ech.(2013)
P

10009

Thermal contact through a diathermal wall: a solvable toy model

Figure 2. Higher cumulants. Illustration of the oscillations at finite ν2/ν1. The
other model parameters are fixed to the sample values γ1 = 0.7, γ2 = 0.4, ν1 = 2.

τ = 1
2
(ν1 + ν2)t as

lim
τ→+∞

1

τ
κ[1]
n2

= B

lim
τ→+∞

1

τ
κ[2]
n2

= A−B2

lim
τ→+∞

1

τ
κ[3]
n2

= B[1− 3A+ 3B2]

lim
τ→+∞

1

τ
κ[4]
n2

= A− 3A2 +B2[−4 + 18A− 15B2].

(5.15)

All odd cumulants are proportional to B, because all odd powers of λ in the expansion
of the expression (5.14) for α2(λ) are proportional to B. The first three cumulants are
rewritten in terms of the model parameters as

lim
t→+∞

〈Q2〉st
t

= ν1ν2 (γ1 − γ2)
(ν1 + ν2)∆e

2
= 〈j2〉st

lim
t→+∞

〈Q2
2〉st − 〈Q2〉2st

t
= ν1ν2

[
1− γ1γ2 − ν1ν2(γ1 − γ2)2

] (ν1 + ν2)(∆e)2

2

lim
t→+∞

〈Q3
2〉cst
t

= ν1ν2 (γ1 − γ2) [1− 3ν1ν2(1− γ1γ2) + 3ν2
1ν

2
2 (γ1 − γ2)2]

(ν1 + ν2)(∆e)3

2
.

(5.16)

〈Q3
2〉c is the third cumulant, which is equal to the third centered moment, namely

〈Q3
2〉c ≡ 〈[Q2 − 〈Q2〉]3〉.
At equilibrium γ1 = γ2, so that B = 0: then, by virtue of the remark after (5.15),

the long-time behavior of all odd cumulants of Q2 is subdominant with respect to the
elapsed time t, and in the long-time limit P (Q2; t) becomes an even function of Q2 at
leading order in time t. The fourth cumulant of the cumulated heat Q2 received from the
thermostat 2 per unit time does not vanish: limt→+∞1/t ln〈eλQ2〉eq is not quadratic in λ,
and even in the long-time limit the variable Q2 has a non-Gaussian distribution, contrary
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to the variable [Q2 − 〈Q2〉] /
√
t (for which all cumulants of order larger than three vanish

in the infinite-time limit). The first two even cumulants per unit time read

lim
t→+∞

〈Q2
2〉eq − 〈Q2〉2eq

t
= ν1ν2

(
1− γ2

) (ν1 + ν2)(∆e)2

2

lim
t→+∞

〈Q4
2〉ceq

t
= ν1ν2

(
1− γ2

) [
1− 3ν1ν2(1− γ2)

] (ν1 + ν2)(∆e)4

2
.

(5.17)

〈Q4
2〉c denotes the fourth cumulant, which can be expressed as 〈Q4

2〉c = 〈[Q2 − 〈Q2〉]4〉 −
3〈[Q2 − 〈Q2〉]2〉.

For a system weakly out-of-equilibrium the Einstein–Green–Kubo relation, namely

lim
(β1,β2)→(β,β)

〈j2〉st
β1 − β2

=
1

2
lim
t→+∞

〈Q2
2〉eq − (〈Q2〉eq)2

t
, (5.18)

is indeed obeyed by the system, as it should be. This can be checked by comparing
the expression (5.17) with the limit obtained when (β1, β2) → (β, β) for the ratio
〈j2〉st/(β1 − β2), which, by virtue of (3.27), reads

〈j2〉st
β1 − β2

= ν1ν2
γ1 − γ2

(β1 − β2)∆e

(ν1 + ν2)(∆e)2

2
. (5.19)

When the system is far from equilibrium, comparison of the latter expression for
〈j2〉st/(β1 − β2) with the expression (5.16) for the long-time limit of the second cumulant
per unit time shows that 〈j2〉st/(β1−β2) 6= limt→+∞[〈Q2

2〉st−〈Q2〉2st]/t , as it should be (see
subsection 5.3 of [16]). Indeed, by virtue of equation (5.14), α2(λ) obeys the symmetry
relation α2(λ) = α2(−F − λ) with F = ln(A + B)/(A − B) = (β1 − β2)∆e, but α2(λ) is
not a quadratic function of λ, i.e. Q2 has a non-Gaussian distribution in the long-time
limit.

6. Large deviation function for the cumulative heat current Q2/t

In this section, we derive the large deviation function for the cumulative heat current Q2/t
by three methods. The first one is based on the general theory of large deviations for the
definition of large deviation functions and uses one of its cornerstones, the Gärtner–Ellis
theorem. The second and the third rely on the fact that Q2 takes discrete values in a t-
independent set, and uses an ad hoc definition of large deviation functions (see appendix E
of [16]). Though the general theory of large deviations and the ad hoc definition for discrete
exchanged quantities do not have to be the same, the ad hoc definition is nevertheless a
sensible definition of large deviations. Physically, the general and the ad hoc definition
are expected to yield the same result in a case as simple as the two-spin system, and our
explicit computations can be seen as a proof of this fact. A natural tool to compute the
ad hoc large deviation function is via a contour integral representation, but, as we shall
see below, this method is surprisingly tricky even for the simple two-spin system at hand.
In contrast with the general theory of large deviations, the contour integral method is
the basis of a systematic expansion at large times. However, corrections are less universal
than the dominant term.

The cumulative heat current received from heat bath 2 during the time interval t
takes the values J = Q2/t, with Q2 = n∆e, n integer. By dimensional analysis, the large
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deviation function fQ2(J ), which has the dimension of an inverse time, must be a function
of

̃ =
J
∆e

=
n

t
, (6.1)

and we shall often consider the expressions of

f̃Q2(̃) ≡ fQ2(J ) (6.2)

rather than those of fQ2(J ) = f̃Q2(J /∆e). Moreover, the explicit calculations are more
conveniently dealt with if, instead of considering ̃, we introduce the dimensionless current
 associated with the dimensionless time τ = [(ν1 + ν2)/2]t,

 =
n

τ
=

2

(ν1 + ν2)
̃. (6.3)

The dimensionless large deviation function fQ2
of  is such that tf̃Q2(̃) = τfQ2

(), and

the expression of f̃Q2(̃) can be retrieved from that for fQ2
() through

f̃Q2(̃) =
ν1 + ν2

2
fQ2

(
2

(ν1 + ν2)
̃

)
. (6.4)

We notice that large deviation functions for other cumulative quantities are related
to fQ2 . Indeed, in a system with a finite number of configurations, Q1 + Q2 is bounded
and, as a consequence of the general theory of large deviations (see e.g. [16]),

fQ1(J ) = fQ2(−J ). (6.5)

In the same vein, as ∆exchS = β1Q1 +β2Q2 = −(β1−β2)Q2 +β1(Q1 +Q2), with Q1 +Q2

bounded, the large deviation function for ∆exchS and that forQ2 satisfy the simple relation

f∆exchS(J ) = fQ2

(
− J
β1 − β2

)
. (6.6)

6.1. Derivation from Gärtner–Ellis theorem

6.1.1. Method. By analogy with (5.12), we introduce the dimensionless function

α2(λ) ≡ lim
τ→+∞

1

τ
ln〈eλn2〉. (6.7)

A simplified version of the Gärtner–Ellis theorem (see e.g. the review for physicists [23]
or the mathematical point of view [24]) states that, if α2(λ) exists and is differentiable for
all λ in R, then the large deviation function of the current  = n2/τ exists and it can be
calculated as the Legendre–Fenchel transform of α2(λ), namely, with the signs chosen in
the definitions used in the present paper,

fQ2
() = min

λ∈R
{α2(λ)− λ}. (6.8)

As a consequence, since α2(λ) obeys the symmetry α2(λ) = α2(−(β1−β2)∆e−λ) (as can
be checked from (5.14)), f() obeys the fluctuation relation f()−f(−) = (β1−β2)∆e×.
Moreover, the cumulant generating function ln〈eλn2〉 is necessarily convex (downward). In
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the present case α2(λ) is strictly convex and continuously differentiable for all real λ,
so that the minimum in the definition of the Legendre–Fenchel transform can be readily
calculated by using the Legendre transform,

fQ2
() = α2

(
λc()

)
− λc() with

dα2

dλ
(λc) = . (6.9)

6.1.2. Various expressions for fQ2 and its properties. From the relation α2(λ) = [(ν1 +

ν2)/2]α2(λ) and the expression (5.14) for α2(λ), when T1 6= 0 (γ1 6= 1), A 6= B and we get

fQ2
() =  ln

√
A+B

A−B
− || cosh−1

[
Y ()√
A2 −B2

]
− 1 +

√
1− 2A+ 2Y (). (6.10)

cosh−1x denotes the positive real whose hyperbolic cosine is equal to x, namely cosh−1x =

ln
[
x+
√
x2 − 1

]
, and

Y () = 2 +
√
4 + (1− 2A)2 + A2 −B2. (6.11)

The expression for fQ2
() involves the combinations of the model parameters

ln

√
A+B

A−B
= (β1 − β2)

∆e

2
, A2 −B2 = ν2

1ν
2
2

(
1− γ2

1

) (
1− γ2

2

)
,

A = ν1ν2(1− γ1γ2).

(6.12)

The expression (6.10) for fQ2
() can be rewritten in two different forms according to

the sign of . By using the identity cosh−1x = ln
[
x+
√
x2 − 1

]
, the cosh−1 term in (6.10)

can be split into two contributions and, according to the sign of , we get

fQ2
() =

<0
− ln(A−B) +  ln

[
Y () +

√
Y 2()− (A2 −B2)

]
− 1 +

√
1− 2A+ 2Y (),

(6.13)

while

fQ2
() =

>0
+ ln(A+B)−  ln

[
Y () +

√
Y 2()− (A2 −B2)

]
− 1 +

√
1− 2A+ 2Y ().

(6.14)

In the limit where T1 vanishes (A→ B), the latter expressions yield the results discussed
in section 8.

The thermodynamical and kinetic parameters of the heat baths are disentangled if,
in place of A and B, we consider the parameters

p+ = 1
2
(1 + γ1)(1− γ2) and p− = 1

2
(1− γ1)(1 + γ2). (6.15)

The relations with A and B are A = ν1ν2 (p+ + p−) and B = ν1ν2 (p+ − p−). Therefore,
(A+B)/(A−B) = p+/p−,

√
A2 −B2 = 2ν1ν2

√
p+p−. Then, by virtue of the relation (6.4)
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Figure 3. Effect of increasing the non-equilibrium driving parameter γ1 − γ2. A
few large deviation functions are represented for various values of γ1, when the
other parameters are fixed to the sample values γ2 = 0.1, ν1 = 100, ν2 = 10. The
leftmost curve (for γ1 = 0.1) is the equilibrium large deviation function and the
dashed curve is the quadratic with the same curvature at the origin. The rightmost
curve is for γ1 = 1, i.e. heat bath 1 at zero temperature. For the intermediate
curves, from left to right, γ1 takes the values 0.7, 0.9, 0.966 6667.

and the expression (6.10) for fQ2
(), f̃Q2(̃) reads

f̃Q2(̃) = ̃ ln

√
p+

p−
− |̃| cosh−1

[
Z(̃)
√
p+p−

]

+
ν1 + ν2

2

[
−1 +

√
1− 2ν1ν2 [p+ + p− − 2Z(̃)]

]
, (6.16)

where, with the definition Y ()/
√
A2 −B2 ≡ Z(̃)/

√
p+p−,

Z(̃) =
1

ν1ν2

[
2̃2 +

√
4̃4 + [(ν1 + ν2)2 − 2ν1ν2(p+ + p−)] ̃2 + (ν1ν2)2p+p−

]
. (6.17)

By virtue of the definitions (6.15) of p+ and p−, the thermodynamic parameters of the

thermal baths appear in f̃Q2(j) through the following combinations√
p+

p−
= e(β1−β2)∆e/2,

√
p+p− = 1

2

√
(1− γ2

1) (1− γ2
2), p+ + p− = 1− γ1γ2.

(6.18)

At equilibrium the large deviation function is even. As γ1 − γ2 increases, the large
deviation function becomes more and more asymmetric. In the zero-temperature limit
γ1 = 1, the large deviation function becomes infinite for ̃ < 0. Figure 3 illustrates the
changes in the shape of the large deviation function, with increasing departure from
equilibrium.

Some generic properties of a large deviation function can be checked in the case of the
above explicit formulas. By virtue of (5.15) 〈〉st = B and one checks that fQ2

(〈〉st) = 0,
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f
′
Q2

(〈〉st) = 0 and f
′′
Q2

(〈〉st) = −1/(A−B2), namely

f
′′
Q2

(〈〉st) = −
[

lim
τ→+∞

κ[2]
n2

τ

]−1

. (6.19)

The expression (6.10) for fQ2
() is the sum of a term (β1−β2)∆e/2 and an even function

of . As a consequence, we check again that fQ2
()− fQ2

(−) = (β1− β2)∆e, namely, by
virtue of (6.4), fQ2(J ) obeys the fluctuation relation fQ2(J ) − fQ2(−J ) = (β1 − β2)J .
Moreover, the absolute value of  in the expression (6.10) for fQ2

() is responsible for a
(rather mild) singularity in the curve fQ2(J ) at J = 0: a jump in the third derivative.

We notice that the large current behavior of fQ2
() in the present model reads

fQ2
() ∼
||→+∞

−2|| ln ||. (6.20)

6.2. Derivation from a saddle-point method

Before embarking on the derivation, let us explain why the saddle-point method is not
straightforward for this model.

The saddle-point approximation or expansion is well-suited for the asymptotic study
of integrals of the form

∫
Γ dzΨ(z)eτΦ(z), where τ is some large real parameter and the

functions Ψ(z), Φ(z) are holomorphic in a domain large enough such that the initial
integration contour Γ can be deformed to a steepest descent path while remaining
within the holomorphicity domain during the deformation. One may also have to encircle
some singularities when deforming the contour, and then one must keep track of their
contributions, which may or may not dominate the saddle-point contribution. This can
of course be generalized to a finite sum

∑
i

∫
Γi

dzΨi(z)eτΦi(z) when each individual term
satisfies the hypotheses above. Note, however, that to get the leading behavior one may
have to take into account possible destructive interferences between different pieces, for
instance if the real parts of saddle-point values are the same for several Ψi, or if the saddle
points for certain terms compete with encircled singularities for other terms.

In our case, we deal with an integral of the type
∫

Γ dz
∑

iΨi(z)eτΦi(z) where there is a

single integration contour, and the sum4
∑

iΨi(z)eτΦi(z) has nice holomorphicity properties
that allow one to deform contours (almost) freely, but each term in itself has singularities
and cuts. So we have to face a kind of dilemma: either we want to keep holomorphicity,
then the large parameter does not appear in an exponential—and to our knowledge no
straightforward constant phase technique applies—or we look at each pure exponential
piece individually, and then some branch cuts may prevent one from deforming the contour
purely as a constant phase steepest descent path: the steepest descent path is not closed,
some parts of the original path are deformed along the cuts and they may dominate the
saddle-point. But, also, the contribution of the pure exponential pieces may interfere. In
our case, we have managed to show that in fact the interferences between contributions of
one pure exponential and cut contributions from another pure exponential are destructive
(with remainder terms controlled explicitly), leaving the contribution of only a single
saddle-point (not one saddle-point for each pure exponential). But our argument relies on
some tricks and features that appear to us at this stage as coincidences: we have not been

4 Which in our case consists of only two terms.
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able to identify a general framework avoiding our tedious analysis. And indeed, examples
are known [25, 26] where (depending possibly on parameters) the cut contributions do or
do not dominate the saddle-point.

To conclude these comments, let us mention one general direction that seems worth
pursuing, though we have not been able to use it to simplify significantly our argument
even in our simple case. In physical problems, the functions Φi(z) will often be closely
related to the different branches of a single algebraic function. For instance, the functions
Φi(z) are often closely related to the eigenvalues of some z-dependent matrix. So a
natural route would be to regard the integrals not in the z plane, but on the appropriate
uniformizing Riemann surface, in our case an elliptic curve.

We now turn to the detailed analysis.

6.2.1. Method. The current probability density Π(; τ) is related to the probability
P (Q2/(τ∆e) ∈ [, + d[; τ) by the definition P (Q2/(τ∆e) ∈ [, + d[; τ) ≡ Π(; τ)d.
Since Q2/∆e can take only integer values, the density distribution Π(; τ) is a sum of
Dirac distributions

Π(; τ) =
+∞∑

n=−∞
δ
(
− n

τ

)
τP

(
Q2

∆e
= n; τ

)
. (6.21)

In the long-time limit

Π(; τ) ∼
τ→+∞

+∞∑
n=−∞

δ
(
− n

τ

)
τP as(; τ), (6.22)

where P as(; τ) is a function of the continuous parameter  that we shall compute below,
and which is such that the following asymptotic behavior holds:

P

(
Q2

∆e
= τ; τ

) ∣∣∣∣
τ integer

∼
τ→+∞

P as(; τ). (6.23)

The notation g(, τ)|τ integer is a reminder of the rule that if the function g(, τ) is given
by an integral representation, the latter must be calculated in the case where τ is an
integer. By using one of the ad hoc definitions of the large deviation function introduced
in appendix E.2 of [16], the function P as(; τ) can be rewritten as

P as(; τ) = A(, τ)eτfQ2
() with lim

τ→+∞

1

τ
lnA(, τ) = 0. (6.24)

When one is interested only in the large deviation function, the only information to be
retained from the latter equation is merely

fQ2
() = lim

τ→+∞

1

τ
lnP (Q2 = τ∆e; τ)

∣∣∣∣
τ integer

. (6.25)

Consequently, fQ2
() can be investigated by means of a saddle-point method applied

to the representation of P (Q2 = τ∆e; τ)|τ integer in the complex z plane given by (4.45). In
the latter expression P (Q2 = n∆e; τ) is equal to e−τ times a linear combination of cn(τ),
sn(τ), sn+1(τ) and sn−1(τ). When T1 = 0 the expressions (4.34) and (4.35) of the latter
functions are convenient for studying the large τ behavior of cn=τ(τ), sn=τ(τ). When
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T1 6= 0 the study is slightly more complicated and it is more conveniently performed by
considering the related coefficients defined by cn(τ) = ρnc̃n(τ) and sn(τ) = ρns̃n(τ), where
the expression (4.53) of ρ is finite when T1 6= 0. We present the details in the case where
T1 6= 0.

When T1 6= 0, in the long-time limit, we have to consider the behaviors of the functions

Kc(; τ) ≡ c̃n=τ (τ) =

∮
|z|=1

dz

2πi

1

zτ+1
cosh

(
τ

√
∆̃+(z)

)
(6.26)

and

K(∆n)
s (; τ) ≡ s̃τ+∆n (τ) =

∮
|z|=1

dz

2πi

1

z∆n

1

zτ+1

sinh

(
τ
√

∆̃+(z)

)
√

∆̃+(z)
(6.27)

with ∆n = 0, 1,−1. It is sufficient to exhibit the derivation of the long-time behavior of
Kc(; τ), because the calculation of the long-time behavior of K(∆n)

s (; τ) follows the same
lines. Moreover, according to the property c̃n(τ) = c̃|n|(τ), we have to consider only the
case where  > 0.

For the study of the large τ limit, the cosh function in the integrand of Kc(; τ) is
split into two exponentials, and Kc(; τ) appears as the sum of two integrals

2Kc(; τ) =

∮
|z|=1

dz

2πiz
eτΦ(+)(z) +

∮
|z|=1

dz

2πiz
eτΦ(−)(z) (6.28)

where

Φ(±)(z) = − ln z ±

√
b+

a

2

(
z +

1

z

)
. (6.29)

We notice that, since τ is in fact an integer, exp(−τ ln z) is single valued and there is
no cut in the complex plane z associated with the logarithmic function. However, since
the cosh function has been split into two exponentials, we have to consider the two cuts

associated with
√

∆̃+(z). These cuts are

]−∞,−x>] and [−x<, 0], (6.30)

where −x> and −x< are the two negative real roots of the second-order polynomial
z∆̃+(z), where ∆̃+(z) is given in (4.56). The roots are such that 0 ≤ x< < 1 < x>.

6.2.2. Deformation of contours. The large τ behavior of Kc(; τ) can be investigated by

applying the saddle-point method to the contribution from the integral involving Φ(+)(z).
For that purpose we have to find a way to deform the unit circle into a contour that goes
through a saddle-point along a constant phase path where Φ(+)(z) is maximum at the
saddle-point. It can be easily found that the function Φ(+)(z) has two real saddle points
where Φ(+)(z) as well as its second derivative are real, but only one of them corresponds
to a maximum of Φ(+)(z) when the real axis is crossed perpendicularly. The latter saddle-
point is xc = exp

[
cosh−1 (x+())

]
, namely by using cosh−1 (x) = ln[x+

√
x2 − 1],

xc = x+() +
√
x2

+()− 1 (6.31)
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Figure 4. Deformed contour for eτΦ(+)(z), which decomposes as a steepest descent
contour Γ? which goes through the saddle-point xc in the anti-clockwise sense and
a piece which circumvents part of the cut ]−∞,−x>] in the clockwise sense. The
other cut [−x<, 0] lies inside the unit circle represented by a dotted line.

with

x+() ≡ 2

a

[
2 +

√
4 + b2 +

a2

4

]
. (6.32)

The constant phase contour Γ? which crosses the real axis perpendicularly at xc can be
looked for in the form z?(θ) = eλ?(θ)+iθ. It proves to be

z?(θ) = ecosh−1(y?(θ;))+iθ, (6.33)

where θ ∈ ]−π, π[ and

y?(θ; ) = u(θ; ) cos θ +

√
1 +

2b

a
u(θ; ) + u2(θ; ) (6.34)

with

u(θ; ) =
θ2

sin2θ

22

a
. (6.35)

The contour Γ? crosses the negative real axis at the point z?(θ = π) ≡ −x?() with

−x?() = −exp

[
cosh−1

(
b

a
+ π2 

2

a

)]
(6.36)

which lies on the cut ]−∞,−x>], because−x> =− exp
[
−cosh−1 (b/a)

]
. As a consequence,

the unit circle can be deformed into the contour Γ? and a contour C(+)
[−x?,−x>] that goes

around the cut ]−∞,−x>] between the points −x?() and −x> in the clockwise sense (see
figure 4) ∮

|z|=1

dz

2πiz
eτΦ(+)(z) =

∮
Γ?

dz

2πiz
eτΦ(+)(z) +

∮
C(+)

[−x?,−x>]

dz

2πiz
eτΦ(+)(z). (6.37)
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Figure 5. Deformed contour for eτΦ(−)(z), consisting of the circle at infinity, not
represented here, and a path which circumvents the whole cut ]−∞,−x>] in the
clockwise sense.

On the other hand, in the integral involving Φ(−)(z) the unit circle can be deformed
into a circle, minus the point on the negative real axis, with radius R that goes to infinity
and a path around the cut ]−∞,−x>]. By using the parametrization z = Reiθ, with θ 6= π,

we get the following large |z| behavior: |exp
[
τΦ(−)(z)

]
| ∼
|z|→+∞

exp
[
−τ
√
aR cos(θ/2)

]
, so

that the contribution of the integral along a circle of radius R vanishes in the limit where
R goes to infinity. Consequently, (see figure 5),∮

|z|=1

dz

2πiz
eτΦ(−)(z) =

∮
C(+)

]−∞,−x>]

dz

2πiz
eτΦ(−)(z). (6.38)

The crucial point is then to notice that the sum eτΦ(+)(z) + eτΦ(−)(z) is an analytic function
of z, which has no cut along the interval ]−∞,−x>]. As a consequence, the integral along

the contour C(+)
]−∞,−x>] with Φ(−)(z) can be replaced by the opposite of the same integral

with Φ(+)(z) in place of Φ(−)(z), and the equality (6.38) becomes∮
|z|=1

dz

2πiz
eτΦ(−)(z) =

∮
C(−)

]−∞,−x>]

dz

2πiz
eτΦ(+)(z), (6.39)

where C(−)
]−∞,−x>] is the contour which goes around the cut ]−∞,−x>] in the anti-clockwise

sense.
When the contributions (6.37) and (6.39) from the integrals involving respectively

Φ(+) and Φ(−) are summed according to the definition (6.28) of Kc(; τ), we get

2Kc(; τ) =

∮
Γ?

dz

2πiz
eτΦ(+)(z) +

∮
C(−)

]−∞,−x?]

dz

2πiz
eτΦ(+)(z). (6.40)

We stress that exp
[
τΦ(+)(z)

]
diverges when |z| goes to infinity, except on the negative

real axis, so that the contour integral along the cut ]−∞,−x?] cannot be closed at the

point z = −∞. The expression (6.40) corresponds to integrating eτΦ(+)(z)/(2πiz) along the
contour in figure 6.

doi:10.1088/1742-5468/2013/10/P10009 42

http://dx.doi.org/10.1088/1742-5468/2013/10/P10009


J.S
tat.M

ech.(2013)
P

10009

Thermal contact through a diathermal wall: a solvable toy model

Figure 6. Contour of integration for eτΦ(+)(z) in the integral representation (6.40)
of Kc(; τ).

On the contour C]−∞,−x?], z = eλ+iσπ, where σ = +1 if z is above the cut and σ = −1
otherwise. Since τ = n, where n is an integer,∮

C(−)
]−∞,−x?]

dz

2πiz
eτΦ(+)(z) = (−1)n

∫ +∞

lnx?

dλ

π
e−τλ sin

(
τ
√
a coshλ− b

)
. (6.41)

The sign of this contribution changes for two consecutive values of , but its absolute value
is bounded, ∣∣∣∣∣

∮
C(−)

]−∞,−x?]

dz

2πiz
eτΦ(+)(z)

∣∣∣∣∣ ≤ 1

πτ
e−τ lnx? . (6.42)

6.2.3. Large τ behavior. According to the saddle-point formula∮
Γ?

dz

2πiz
eτΦ(+)(z) ∼

τ→+∞

1√
τ

1

xc

√
2π × d2Φ(+)/dz2|z=xc

eτΦ(+)(xc). (6.43)

By using the inequalities, − lnx? < − lnxc, derived from the expression (6.31) and (6.32)
and (6.36), and − lnxc ≤ Φ(+)(xc), derived from (6.29), the bound exhibited in (6.42)
implies that ∮

C(−)
]−∞,−x?]

dz

2πiz
eτΦ(+)(z) = o

(
eτΦ(+)(xc)

)
(6.44)

where o
(
eτg(j)

)
denotes a function which decays faster than eτg(j) when τ goes to +∞.

Eventually, the definition (6.26) of Kc(; τ) and the decomposition (6.40) together
with the behaviors (6.43) et (6.44) lead to

c̃τ (τ) |τ integer ∼τ→+∞
Ac̃ × eτΦ(+)(xc), (6.45)

where

Φ(+)(xc) = − ln[x+() +
√
x2

+()− 1] +
√
b+ ax+() (6.46)
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and

Ac̃ =
1√
τ

1

2
√

2π

1

xc

√
d2Φ(+)/dz2|z=xc

(6.47)

with xc = x+() +
√
x2

+()− 1 and

d2Φ(+)/dz2|z=xc =
2

a


√
4 + b2 + a2/4

[x+() +
√
x2

+()− 1 ]2
√
x2

+()− 1
. (6.48)

The same argument can be performed for K(∆n)
s (; τ) defined in (6.27), with the result

s̃τ+∆n|τ integer (τ) ∼
τ→+∞

As̃ × eτΦ(+)(xc) with As̃ =

[
x∆n

c

√
∆̃+(xc)

]−1

Ac̃. (6.49)

As a consequence,

lim
τ→+∞

1

τ
ln
[
e−τρτc̃τ (τ)

]
= f() (6.50)

and

lim
τ→+∞

1

τ
ln
[
e−τρτs̃τ+∆n (τ)

]
= f() (6.51)

with f() = −1 +  ln ρ + Φ(+)(xc). By virtue of (4.53), ln ρ = ln
√

(A+B)/(A−B)

and, according to the definitions in (4.56), cosh−1 ((1− b)/a) = cosh−1(A/(
√
A2 −B2)) =

ln
√

(A+B)/(A−B). Therefore f() reads

f() = −1 +  cosh−1

(
1− b
a

)
− || ln

[
x+() +

√
x2

+()− 1

]
+
√
b+ ax+(), (6.52)

where x+() is defined in (6.32).
Eventually, according to (4.45), P (Q2/∆e = n; τ) is a finite linear combination of

functions of n plus a finite increment ∆n, which can be rewritten as

P

(
Q2

∆e
= n; τ

)
=
n=τ

∑
∆n=0,1,−1

b∆n g∆n(τ+ ∆n; τ), (6.53)

and all functions g∆n prove to have the same ‘large deviation function’ f() in the sense
of definition (6.25),

g∆n(τ+ ∆n; τ) ∼
τ→+∞
τ integer

A∆n(, τ)eτf(). (6.54)

Therefore, by comparison with (6.23) and (6.24) we get

fQ2
() = f() and A(, τ) = τ

∑
∆n=0,1,−1

b∆nA∆n(, τ), (6.55)

where the expression (6.52) of f() indeed coincides with the result (6.10).
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6.3. Derivation by Laplace’s method on a discrete sum

As the reader may have noticed, the computation of the large deviation function via
contour integrals is a bit tricky and clumsy due to the cuts, and relies on some
compensations which are not totally obvious to foresee.

In the case at hand it is possible to derive the large deviation function via Laplace’s
method applied to a discrete sum of non-negative contributions. We illustrate this briefly
in the case of K(∆n)

s .

The key is an explicit formula for sin(τ
√

∆̃+(z))/
√

∆̃+(z) as a Laurent series in z.

From the symmetry z ↔ 1/z we can concentrate on positive powers of z. We start with

sin

(
τ
√

∆̃+(z)

)
√

∆̃+(z)
=

+∞∑
k=0

τ 2k+1

(2k + 1)!
[∆̃+(z)]k (6.56)

and expand [∆̃+(z)]k as a Laurent polynomial in z,(
b+

a

2

(
z +

1

z

))k
=
∑
l,m≥0
l+m≤k

zl−m
(a

2

)l+m
bk−l−m

k!

l!m!(k − l −m)!
. (6.57)

So for n ≥ 0 one gets (take l = m+ n above)

∮
|z|=1

dz

2πi

1

zn+1

sin

(
τ
√

∆̃+(z)

)
√

∆̃+(z)
=
∑
m≥0

∑
k≥2m+n

τ k+1

(2k + 1)!

(a
2

)2m+n

× bk−2m−n k!

m!(m+ n)!(k − 2m− n)!
. (6.58)

As τ , a and b are > 0, this is a (double) sum of positive terms, and we are interested in
the limit

τ → +∞ n = τ+ ∆n with ∆n ∈ {0,−1, 1}. (6.59)

It is straightforward to check that in this limit the maximal term in the (double) sum is
in the bulk (i.e. not for m = 0 or k = 2m+ n) and such that k and m scale linearly with
τ . One can use the Stirling approximation for all factorials and obtain the large deviation
function straightforwardly, the most painful part of the computation being the location
of the maximal term. We omit all details.

7. Dependence upon typical time scales of the thermostats

In this section we are interested in the influence of the typical time scales in the limit
where the heat exchanges with one of the two thermostats become infinitely fast. We
only explicitly consider the limit when ν2/ν1 goes to infinity, namely when heat bath
2 exchanges heat with the two-spin system far faster than heat bath 1 does. Indeed,
the opposite limit when ν2/ν1 vanishes involves similar calculations (where the roles of
Qd1 ≡ −Q1 and Q2 are interchanged), and the results in both limits are essentially the
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same when they are stated in terms of quantities pertaining either to the ‘fast’ heat bath
or to the ‘slow’ heat bath. The main results are summarized with the latter terminology
in section 1.2.

7.1. Stationary mean values in the infinite ν2/ν1 limit

The evolution of the probability distribution P (σ1, σ2; t) is given in (4.39), where the
time scales involve the parameter α =

√
1− 4A with A = ν1ν2 (1− γ1γ2). When the

ratio of inverse time scales ν2/ν1 goes to +∞, limν2/ν1→+∞
1
2
(ν1 + ν2) [1 + α] = ν2 and

limν2/ν1→+∞
1
2
(ν1+ν2) [1− α] = ν1(1−γ1γ2), so that the probability distribution P (σ1, σ2; t)

goes exponentially fast to its stationary value over the time scale 1/[ν1(1−γ1γ2)]. Moreover,
since γ? ≡ ν1γ1 + ν2γ2, limν2/ν1→+∞γ? = γ2, and, according to (3.6), the stationary
probability distribution Pst(σ1, σ2) coincides with the canonical distribution at the inverse
temperature β2 of the fast thermostat, namely

lim
ν2/ν1→+∞

Pst(σ1, σ2) = 1
4
(1 + γ2σ1σ2). (7.1)

As a consequence the heat capacities C
[a]
st (T1, T2) corresponding to a variation

of the temperature Ta of bath a (for a = 1, 2) and given in (3.22), become

limν2/ν1→+∞C
[1]
st (T1, T2) = 0 and limν2/ν1→+∞C

[2]
st (T1, T2) = Ceq(T2) respectively, while the

heat capacity Cst(T1, T2) corresponding to equal variations of both bath temperatures,
and given at the end of section 3.2.3, becomes limν2/ν1→+∞Cst(T1, T2) = Ceq(T2).

On the other hand the time scale of the mean currents of exchanged quantities is that
of the slow thermostat. Indeed, according to (3.27),

lim
ν2/ν1→+∞

〈j2〉st = (γ1 − γ2)
ν1∆e

2
, (7.2)

and the thermal conductivity is determined by the typical time scale 1/ν1 of the slow
thermostat. Similarly the housekeeping entropy flow (3.47), which is equal to the opposite
of the mean exchange entropy flow in the stationary state dexchS/dt|st, becomes

lim
ν2/ν1→+∞

σhk[Pst] = ν1 (γ1 − γ2) (β1 − β2)
∆e

2
. (7.3)

7.2. Various probabilities in the infinite ν2/ν1 limit

The stationary probability that the heat received from bath 1 is equal to Q1 = −n1∆e is
given by (4.44), where γ0 is to be replaced by limν2/ν1→+∞γ? = γ2, with the result

lim
ν2/ν1→+∞

Pst(n1; t) = lim
ν2/ν1→+∞

e−τ [cn1(τ) + sn1(τ)] . (7.4)

According to the definitions (4.34) and (4.35), the integral representations of cn(τ) and
sn(τ) in the complex plane involve the discriminant ∆+(z). In order to discuss the
dependence upon the inverse time scales ν1 and ν2, it is convenient to rewrite the expression
(4.22) of ∆+(z) in terms of the parameters p+ and p− defined in (6.15). The correspondence
with A and B reads A = ν1ν2 (p+ + p−) and B = ν1ν2 (p+ − p−), and

∆+(z) = 1 + 2ν1ν2

[
−(p+ + p−) + p+z + p−

1

z

]
. (7.5)
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Therefore limν2/ν1→+∞∆+(z) = 1 and the leading order of 1
2
(ν1 + ν2)[−1 +

√
∆+(z)] is

merely 1
2
ν1[−(p+ + p−) + p+z + p−(1/z)]. Consequently e−τcn1(τ) and e−τsn1(τ) have the

same asymptotic behavior and

lim
ν2/ν1→+∞

e−τ [cn(τ) + sn(τ)] =

∮
|z|=1

dz

2πi

1

zn+1
GRW(z; ν1t), (7.6)

where

GRW(z; ν1t) = exp

{
−1

2
(p+ + p−)ν1t+

1

2

[
p+z + p−

1

z

]
ν1t

}
. (7.7)

This expression can be interpreted as GRW(z; ν1t) =
∑+∞

n=−∞z
nPRW(n; ν1t), namely

GRW(z; ν1t) is the generating function of the probability PRW(n; ν1t) for the continuous-
time random walk, also referred to as the ‘randomized’ random walk (see for instance
page 59 of [27]), which is determined by the Markov evolution equation

dPRW(n; ν1t)

dt
=
ν1

2
[− (p+ + p−)PRW(n; ν1t) + p+PRW(n− 1; ν1t) + p−PRW(n+ 1; ν1t)] ,

(7.8)

and the initial condition PRW(n; t = 0) = δn,0. By virtue of the identity which defines the
generating function of modified Bessel functions In(x),

e(1/2)[p+z+p−(1/z)]ν1t =
+∞∑

n=−∞

(
z

√
p+

p−

)n
In (ν1t

√
p+p−) , (7.9)

where

In(x) ≡
∫ 2π

0

dθ

2π
e−inθex cos θ. (7.10)

As can be derived from the latter integral representation, the modified Bessel function
In(x) is an even function of n, I−n = In. Therefore the series representation of the
expression (7.7) for the generating function GRW(z; ν1t) yields

PRW(n; ν1t) =

(√
p+

p−

)n
I|n| (
√
p+p− × ν1t) e−(1/2)(p++p−)ν1t. (7.11)

Eventually the limit in (7.4) reads

lim
ν2/ν1→+∞

Pst(n1; t) = PRW(n1; ν1t), (7.12)

where the thermodynamic parameters of the thermal baths appear through the
combinations of p+ and p− explicitly given in (6.18). On the other hand the probability
that at time t the system has received a heat amount Q2 = n2∆e from bath 2 is
given by (4.45). Since limν2/ν1→+∞e−τcn(τ) = 1

2
PRW(n; ν1t) and limν2/ν1→+∞e−τsn(τ) =

1
2
PRW(n; ν1t),

lim
ν2/ν1→+∞

Pst(n2; t) =
1 + γ2

2

2
PRW(n2; ν1t) +

1− γ2
2

4
[PRW(n2 + 1; ν1t) + PRW(n2 − 1; ν1t)].

(7.13)
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We notice that at equilibrium, namely in the stationary state where β1 = β2 = β,
p+ = p− according to (6.18), and the limit (7.12) reads

lim
ν2/ν1→+∞

Peq(n1; t) = I|n1|(
1
2
(1− γ2)ν1t)e

−(1/2)(1−γ2)ν1t. (7.14)

Similar formulae hold for the three contributions in limν2/ν1→+∞Peq(n2; t), which is derived
from (7.13).

7.3. Interpretation: mean-field regime

When the initial state is distributed according to the stationary measure, the probability
that at time t the system is in a configuration where σ1σ2 is equal to ±1 and that the
system has received a heat amount Q1 = −n1∆e from bath 1 is given by (4.42) and (4.43),
where γ? is to be replaced by limν2/ν1→+∞γ? = γ2, namely

lim
ν2/ν1→+∞

Pst (σ1σ2 = ±1, n1; t) = 1
2

[1± γ2] lim
ν2/ν1→+∞

e−τ [cn1(τ) + sn1(τ)] . (7.15)

Comparison with (7.1) and (7.4) shows that the latter equation can be interpreted as

Pst(σ1σ2 = ±1, n1; t) ∼
ν2/ν1→+∞

Pst(σ1σ2 = ±1)× Pst(n1; t). (7.16)

This is a mean-field property: between two flips of spin σ1, spin σ2 is flipped so many
times by thermostat 2 that, when spin σ1 is flipped again, the sign of σ1σ2 is no longer
correlated to its value when the previous flip of σ1 occurred. Therefore the variation of
n1, which is generated by the flip of σ1 and the value of which is determined by the sign
of σ1σ2, is no longer correlated to the sign which σ1σ2 had when the previous variation of
n1 occurred: the probability distributions of σ1σ2 and n1 are independent of each other.

On the other hand, the probability that at time t the system is in a configuration
where σ1σ2 is equal to 1 and that the system has received a heat amount Q2 = n2∆e from
bath 2 has an expression given by the remark after (4.42) and (4.43). We get

lim
ν2/ν1→+∞

Pst(σ1σ2 = +1, n2; t) =
(1 + γ2)2

4
PRW(n2; ν1t) +

1− γ2
2

4
PRW(n2 + 1; ν1t), (7.17)

while

lim
ν2/ν1→+∞

Pst(σ1σ2 = −1, n2; t) =
(1− γ2)2

4
PRW(n2; ν1t) +

1− γ2
2

4
PRW(n2 − 1; ν1t). (7.18)

Comparison with (7.13) shows that there is no factorization similar to (7.16). In other
words the variables n2 and σ1σ2 are still correlated.

7.4. Symmetry property specific to the probability of Q1

The probability PRW(n; ν1t) for the continuous-time random walk, recalled in (7.11), obeys
the symmetry

ln
PRW(n; ν1t)

PRW(−n; ν1t)
= n ln

p+

p−
at any time t. (7.19)

As a consequence, according to (7.12) and the relations (6.18), the probability distribution
for the heat amount dissipated towards the slow bath, Qd

1 = −n1∆e, obeys the finite-time
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symmetry

ln
Pst(Qd

1; t)

Pst(−Qd
1; t)

=
ν2/ν1→+∞

(β1 − β2)Qd
1. (7.20)

However, by virtue of (7.13), there is no similar finite-time symmetry property for
Pst(Q2; t).

7.5. Cumulants per unit time for Qd
1 and Q2

At any time, according to (7.7), the characteristic functionGRW(eλ; ν1t) for the continuous-
time random walk takes the very simple form

GRW(eλ; ν1t) = exp[tαRW(λ; ν1)], (7.21)

where

αRW(λ; ν1) =
ν1

2

[
− (p+ + p−) + p+eλ + p−e−λ

]
. (7.22)

On the other hand, according to (7.12),
∑+∞

n1=−∞eλn1 limν2/ν1→+∞Pst(n1; t) = GRW(eλ; ν1t).

Therefore, the cumulants for Qd
1 are given at any finite time by the formulæ κ[q]

n1
=

∂q lnGRW(eλ; ν1t)/∂λ
q|λ=0 and the cumulants per unit time read for p ≥ 0

1

t
κ[2p+1]
n1

=
ν2/ν1→+∞

ν1

2
(p+ − p−) =

ν1

2
(γ1 − γ2) (7.23)

and for p ≥ 1

1

t
κ[2p]
n1

=
ν2/ν1→+∞

ν1

2
(p+ + p−) =

ν1

2
(1− γ1γ2). (7.24)

In the case of Q2, by virtue of (7.13)

+∞∑
n2=−∞

eλn2Pst(n2; t) =
ν2/ν1→+∞

1
2

[
1 + γ2

2 + (1− γ2
2) coshλ

]
GRW(eλ; ν1t). (7.25)

The cumulants per unit time of Q2 coincide with the cumulants per unit time of Qd
1 only

in the long-time limit, in agreement with (5.10) and because Qd
1 = −Q1 = n1∆e,

lim
t→+∞

1

t
κ[p]
n2

= lim
t→+∞

1

t
κ[p]
n1
. (7.26)

When the system is at equilibrium γ1 = γ2 and the long-time behavior of all odd cumulants
per unit time vanish, as already noticed in section 5.2.

We notice that the previous results can also be retrieved directly from the expression
for the generating function α2(λ) of the long-time cumulants per unit time. (The limits
ν2/ν1→ +∞ and t→ +∞ do commute with each other.) The expression of α2(λ) is given
in (5.14), and, according to the relations after (6.15), it reads

α2(λ) = 1
2

{
−(ν1 + ν2) +

√
(ν1 + ν2)2 + 2ν1ν2

[
−(p+ + p−) + p+eλ + p−e−λ

]}
. (7.27)
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α2(λ) is a symmetric function of ν1 and ν2. In the limit ν2/ν1 → +∞ the generating
function of the long-time cumulants per unit time becomes

lim
ν2/ν1→+∞

α2(λ) = αRW(λ; ν1), (7.28)

where αRW(λ; ν1) is given in (7.22).

7.6. Long-time current distribution in the infinite ν2/ν1 limit

According to the definition (7.10) of the modified Bessel function

In=t̃(αt) =

∫ 2π

0

dθ

2π
etg(θ;̃) with g(θ; ̃) = −ĩθ + α cos θ, (7.29)

where α denotes some parameter. In the complex plane where the affix reads z =
θ + iθ′, g(z; ̃), the analytic continuation of g(θ; ̃), is a periodic function of z with
period 2π when t̃ is equal to an integer. Therefore In=t̃ can be rewritten as In=t̃ =∫

[−π,π](dz/2π) exp[tg(z; ̃)] and, by applying a saddle-point method to the latter integral,

with a deformation of the initial contour in order to exhibit the constant phase path which
goes through the saddle-point in the direction where it is indeed a maximum, as done in
section 6.2, one obtains (with the relevant saddle-point zc = −i ln[(|̃|/α) +

√
(̃/α)2 + 1])

that

In=t̃(αt) ∼
t→+∞

1√
2παt

√
(̃/α)2 + 1

× exp

t
α
√(

̃

α

)2

+ 1− |̃| ln

 |̃|
α

+

√(
̃

α

)2

+ 1

 . (7.30)

(The latter asymptotic behavior can also be directly read at page 378 of [28]). The long-
time behavior of a current density Π(̃; t) is given in terms of P (n = t̃; t) by (6.22) and
(6.23). From the expression (7.11) for PRW(n = t̃; ν1t) with α = ν1

√
p+p−, we get

P as
RW(̃, t; ν1) = ARW(̃, t; ν1)etfRW(̃;ν1) (7.31)

with ARW(̃, t; ν1) = 1/
√

2πν1t
√
p−p− + (̃/ν1)2 and

fRW(̃; ν1) = −ν1

2
(p+ + p−) + ̃ ln

√
p+

p−
+ |̃| ln

√
p+p− + ν1

√
̃2

ν2
1

+ p+p−

− |̃| ln
[
|̃|
ν1

+

√
̃2

ν2
1

+ p+p−

]
, (7.32)

where fRW(̃; ν1) is the large deviation function for the randomized random walk described
by the Markov equation (7.8). We notice that, as predicted by large deviation theory and
in particular the Gärtner–Ellis theorem, fRW(̃; ν1) can also be retrieved as the inverse
Legendre transform of the generating function of the long-time cumulants per unit time
αRW(λ; ν1) written in (7.22).
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The probability density of the cumulative heat current Qd
1/t in the long-time limit is

given by (6.22), (7.12) and (7.31), with the result

Πas

(
Qd

1

t∆e
= ̃; t

)
=

ν2/ν1→+∞

+∞∑
n=−∞

δ
(
̃− n

t

)
tARW(̃, t; ν1)etfRW(̃;ν1). (7.33)

Similarly, according to (7.13), by an argument similar to that leading to (6.55), the
probability density of the cumulative heat current Q2/t in the long-time limit is shown to
read

Πas

(
Q2

t∆e
= ̃; t

)
=

ν2/ν1→+∞

+∞∑
n=−∞

δ
(
̃− n

t

)
tA2(̃, t; ν1)etfRW(̃;ν1), (7.34)

with A2(̃, t; ν1) 6= ARW(̃, t; ν1). We retrieve that the cumulative heat Qd
1 = n1∆e and

Q2 = n2∆e have the same large deviation function, and, more precisely,

lim
ν2/ν1→+∞

fQ2(J ) = fRW

(
J
∆e

; ν1

)
. (7.35)

We notice that the expression (7.32) for the large deviation function fRW(̃; ν1) agrees

with the limit of the expression (6.16) for f̃Q2(̃), when ν2/ν1 goes to infinity and ̃/ν1 is
fixed. Indeed, in the expression (6.16), which is valid when T1 6= 0, the function Z(̃) given
in (6.17) is such that

lim
ν2/ν1→+∞
̃/ν1 fixed

Z(̃) =

√
̃2

ν2
1

+ p+p−, (7.36)

while (ν1 + ν2)
(
−1 +

√
1− 2ν1ν2[p+ + p− − 2Z(̃)]

)
∼ −ν1 [p+ + p− − 2Z(̃)].

8. Case where T1 = 0: pure energy dissipation towards thermal bath 1

8.1. Microscopic irreversibility

When the temperature T1 of the colder bath vanishes, in the sense that β1∆e goes to
infinity, the microscopic reversibility (2.2) is broken,

(−σ, σ|W|σ, σ) = 0 whereas (σ, σ|W| − σ, σ) 6= 0 (8.1)

by virtue of the expression (2.9) for the transition rates when γ1 = 1. In other words the
thermal bath at zero temperature cannot provide energy to the system, i.e., it cannot flip
spin σ1 if the flip corresponds to an increase of the two-spin system energy. There is only
energy dissipation towards the zero-temperature bath.

When β1∆e = +∞, the ratio in the modified detailed balance (2.3) vanishes or is
infinite when two configurations differ from each other by the sign of σ1; while when
spin σ1 is flipped by thermostat 1, the corresponding variation of the thermostat entropy,
δSTH

1 (C ′← C) ≡ −β1δq1(C ′← C) with definition (3.26), is infinite. All direct consequences
of the modified detailed balance (2.3) are no longer valid.
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However, the Markov matrix (2.10) of the configuration evolution is still irreducible
(see the definition after (2.10)) because histories such as

(σ, σ)→ (σ,−σ)→ (−σ,−σ)→ (−σ, σ) (8.2)

correspond to a succession of flips with non-vanishing transition rates. Therefore,
according to the Perron–Frobenius theorem, there still exists a single stationary
distribution, and in the latter distribution every configuration has a non-vanishing weight.
The stationary probability given by (3.6) is still a canonical distribution with an effective
inverse temperature β0

∗ = (2/∆e)tanh−1γ0
? , with γ0

? = ν1 + ν2γ2,

lim
β1∆e→+∞

Pst(σ1, σ2) = 1
4
[1 + γ0

?σ1σ2]. (8.3)

According to (3.27), the mean current is finite,

lim
β1∆e→+∞

〈j2〉st =
ν1ν2

ν1 + ν2

(1− γ2)
∆e

2
. (8.4)

Since β1∆e = +∞, the stationary exchange entropy flow (3.34) is infinitely negative in
the stationary state

lim
β1∆e→+∞

dexchS

dt

∣∣∣∣
st

= −∞, (8.5)

while the rate of entropy production, which has the opposite value in the stationary state,
is infinitely positive, limβ1∆e→+∞dintS

SG/dt|st = +∞. We also notice that the heat capacity

with respect to a variation of the temperature T1 from the zero value, C
[1]
st (T1 = 0, T2),

defined in (3.19), vanishes according to (3.22).
As a consequence of the fact that the thermal bath at zero temperature cannot give

energy to the system, Q1 = −n1∆e is necessarily negative and

P (Q1,Q2; t) = 0 if Q1 > 0. (8.6)

This can be checked on the explicit expressions of section 4.2 as follows. The probability
that the system is in configuration (σ1, σ2) at time t0 = 0, in configuration (σ′1, σ

′
2) at

time t and receives Q1 = −n∆e and Q2 = (n + ∆n)∆e during the time interval [0, t]
is (σ′1, σ

′
2|U(n, n + ∆n; t)|σ1, σ2). According to (4.36) and (4.37), where γ1 is to be set

equal to 1, the latter matrix elements involve the functions cn(τ) and sn(τ) defined in
(4.34) and (4.35). When T1 vanishes, γ1 tends to 1, A − B = ν1ν2(1 − γ1)(1 + γ2) goes
to zero and, by virtue of (4.22), limβ1∆e→+∞∆+(z) = 1 − 2A + 2Az. As a consequence,

cosh(τ
√

∆+(z)) =
∑

p=0[1/(2p)!]τ 2p(1 − 2A + 2Az)p contains only positive powers of z,

and so does sinh(τ
√

∆+(z))/
√

∆+(z). Consequently cn(τ) and sn(τ) vanish for n < 0 and
limβ1∆e→+∞(σ′1, σ

′
2|U(n, n+ ∆n; t)|σ1, σ2) = 0 for any n < 0.

8.2. Long-time behavior

The explicit values of the infinite-time limit for the cumulants per unit time of the heats
Qd

1 and Q2 can be calculated as in section 5.2. When T1 vanishes, γ1 = 1, A tends to
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A0 = ν1ν2(1− γ2), and A−B vanishes. Then the expression (5.14) of α2(λ) is reduced to

lim
β1∆e→+∞

α2(λ) = 1
2

{
−(ν1 + ν2) +

√
(ν1 + ν2)2 + 2ν1ν2(1− γ2)

[
−1 + eλ

]}
. (8.7)

The expressions of the first three cumulants can be retrieved by setting γ1 = 1 in the
expressions (5.16).

As in section 6, the large deviation function can be derived either as the Legendre
transform of α2(λ) or by a saddle-point method similar to that performed in section 6.2
for PP0(n2; t) given by (4.45), which also provides the amplitude of the probability, or it
can be retrieved directly by taking the limit γ1 → 1 in the expressions (6.13) and (6.14)
for the large deviation function fQ2

(), as follows. In the limit where T1 vanishes, so does

A−B, and Y () tends to Y 0() = 
[
+

√
2 + 1− 2A0

]
, where A0 = ν1ν2(1− γ2), while,

according to (3.27) and (6.3),

〈〉0st = ν1ν2(1− γ2). (8.8)

As a result,

lim
β1∆e→+∞

fQ2(J ) =
J<0
−∞

lim
β1∆e→+∞

fQ2(J ) =
J>0

ν1 + ν2

2

(
− 1 +

[
1 + ln〈〉0st

]


+
√
2 + 1− 2〈〉0st −  ln 

[
+

√
2 + 1− 2〈〉0st

])
(8.9)

where  = [2/(ν1 + ν2)]J /∆e.

8.3. Limit where ν2/ν1 becomes infinite

8.3.1. Finite-time behaviors. The discussion can be performed along the same lines as
in section 7. We only point out the features which are qualitatively different when γ1 = 1.
The discrepancies are due to the fact that, according to (6.15), when γ1 = 1, though p+

remains finite,

p− = 0, (8.10)

and the random walk process associated with the variation of the heat amounts Qd
1 or

Q2 can have only positive increments. As shown below, a Poisson process appears as a
randomized random walk which can proceed only in the sense of increasing positive n2.

Since p− vanishes, while p+ = 1 − γ2, the expression (7.5) for ∆+(z) becomes
limβ1∆e→+∞∆+(z) = 1 + 2ν1ν2(1 − γ2) [−1 + z] and the generating function GRW(z; ν1t)
which appears in section 7.2 (see (7.7)) is to be replaced by

GPois(z; ν1t) = e[−1+z]p+ν1t (8.11)

with

p+ν1 = 1
2
(1− γ2)ν1 = lim

ν2/ν1→+∞
〈̃〉0st ≡ 〈̃〉0 ?st . (8.12)
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GPois(z; ν1t) is the generating function GPois(z; ν1t) =
∑+∞

n=0z
nPPois(n; ν1t) for the Poisson

process ruled by the Markov evolution equation

dPPois(n; ν1t)

dt
= p+ν1 [−PPois(n; ν1t) + PPois(n− 1; ν1t)] , (8.13)

and the initial condition PPois(n; t = 0) = δn,0. The solution reads

PPois(n; ν1t) =
(p+ν1t)

n

n!
e−p+ν1t. (8.14)

Eventually the probability that at time t the system has dissipated a heat amount
Qd

1 = n1∆e towards bath 1 at zero temperature reads

lim
ν2/ν1→+∞

lim
β1∆e→+∞

Pst(n1; t) = PPois(n1; ν1t). (8.15)

A formula similar to (7.13), where PRW(n2; ν1t) is to be replaced by PPois(n2; ν1t), holds
for the probability that at time t the system has received a heat amount Q2 = n2∆e from
bath 2.

8.3.2. Long-time behavior. The infinite-time cumulants per unit time for the heat
Q2 can be obtained by noticing that, when ν1/ν2 vanishes, the expression (8.7) for
limβ1∆e→+∞α2(λ) becomes

lim
ν2/ν1→+∞

lim
β1∆e→+∞

α2(λ) = αPois

(
λ; ν1

)
, (8.16)

where

αPois

(
λ; ν1

)
=
ν1

2
(1− γ2)

[
−1 + eλ

]
(8.17)

is the cumulant generating function for a Poisson process with average ν1p+ = (ν1/2)(1−
γ2). We notice that the two limits can be taken in the reverse order: by virtue of
(7.28) limβ1∆e→+∞limν2/ν1→+∞α2(λ) = limβ1∆e→+∞αRW(λ; ν1) = αPois(λ; ν1). The long-
time cumulants per unit time are all equal

lim
t→+∞

1

t

(
lim

ν2/ν1→+∞
lim

β1∆e→+∞
κ[p]
n2

)
=
ν1

2
(1− γ2). (8.18)

The large deviation function can be retrieved

• either as the Legendre transform of α2(λ) = αPois(λ; ν1),

• or by a saddle-point method applied to the expression (8.14) of PPois(n; ν1t) and similar
to that performed for PRW(n; ν1t), with the result,

PPois(t̃; ν1t)

∣∣∣∣
t̃ integer

∼
t→+∞

1√
2πt̃

etfPois(̃;ν1) (8.19)

with

fPois(̃; ν1) = −〈̃〉0 ?st + ̃− ̃ ln
̃

〈̃〉0 ?st

, (8.20)

where 〈̃〉0 ?st is defined in (8.12),
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• or directly by taking the limit ν2/ν1 → +∞ with ̃/ν1 fixed in the expression for the
large deviation function limβ1∆e→+∞fQ2(J ) given in (8.9) (and by noticing that 〈〉0st
is of order ν1/ν2, while 2 is of order (̃/ν1)2 × (ν1/ν2)2),

• or by taking first the expression for J > 0 of limν2/ν1→+∞fQ2(J ) given by (7.35) and
(7.32), and then taking the limit β1∆e→ +∞, namely p− → 0.

Eventually, the large deviation function takes the simple form

lim
ν2/ν1→+∞

lim
β1∆e→+∞

fQ2(J ) =
J<0
−∞

lim
ν2/ν1→+∞

lim
β1∆e→+∞

fQ2(J ) =
J>0

fPois

(
J
∆e

; ν1

)
=

1

∆e

[
−〈J2〉0 ?st + J − J ln

J
〈J2〉0 ?st

]
(8.21)

where 〈J2〉0 ?st = (ν1/2)(1− γ2)∆e.
The expression of 〈J2〉0 ?st can be interpreted as follows. Since bath 1 is at zero

temperature, spin σ1 may be flipped only when it is opposite to spin σ2. Moreover, since
ν2 � ν1, once spin 1 has been flipped so that σ1σ2 = 1, on average spin 2 is flipped a
great odd number of times with a net energy transfer ∆e from heat bath 2 until spin σ1

is again flipped with an energy transfer ∆e to heat bath 1 so that σ1σ2 = 1 again. As a
consequence, the mean energy current through the spin system is equal to ∆e times the
typical inverse time ν1 between two possible flips induced by thermal bath 1 times the
probability that σ2 is opposite to σ1, namely (1− γ2)/2.

8.4. Limit where ν2/ν1 tends to zero

In the reverse limit, where ν2 � ν1, the roles of the two heat baths in the discussion of
section 7 are interchanged (see comment after (4.42) and (4.43), as well as comparison
of (4.44) and (4.45)). The slow thermostat is heat bath 2 and the evolution of Q2 is a
Poisson process with the kinetic parameter ν2.

The stationary mean heat current received by the system is now 〈J2〉0 ?st = (ν2/2)(1−
γ2)∆e. The interpretation of the latter expression is the following. Since ν2 � ν1, as soon
as spin σ2 is flipped to a value opposite to spin σ1 with an energy transfer ∆e from heat
bath 2, bath 1 flips spin σ1 so that σ1σ2 = 1 and an energy ∆e is transferred to heat bath
1. The next flip can be only a flip of spin σ2, and its probability per time unit is the value
of the transition rate of spin 2 when σ1σ2 = 1, namely (1/2)ν2(1− γ2). As a consequence
the mean energy current through the spins system is equal to ∆e times (ν2/2)(1− γ2).
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