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Abstract. We consider a one-dimensional Ising model with N spins, each in 
contact with two thermostats of distinct temperatures, T1 and T2. Under Glauber 
dynamics the stationary state happens to coincide with the equilibrium state 
at an effective intermediate temperature ( )T T T,1 2 . The system nevertheless 
carries a nontrivial energy current between the thermostats. By means of the 
fermionization technique, for a chain initially in equilibrium at an arbitrary 
temperature T0 we calculate the Fourier transform of the probability ( )τQP ;  
for the time-integrated energy current Q during a finite time interval τ. In the 
long time limit we determine the corresponding generating function for the 
cumulants per site and unit of time, ⟨ ⟩ /( )τQ Nn

c , and explicitly give those with 
n  =  1, 2, 3, 4. We exhibit various phenomena in specific regimes: kinetic mean-
field effects when one thermostat flips any spin less often than the other one, as 
well as dissipation towards a thermostat at zero temperature. Moreover, when 
the system size N goes to infinity while the effective temperature T vanishes, 
the cumulants of Q per unit of time grow linearly with N and are equal to those 
of a random walk process. In two adequate scaling regimes involving T and N 
we exhibit the dependence of the first correction upon the ratio of the spin–spin 
correlation length ( )ξ T  and the size N.
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1. Introduction

Over recent decades, the statistics of the currents that characterize an out-of- 
equilibrium state have been intensely studied both experimentally and theoretically. 
Indeed, the fluctuations of these currents in small systems are non-negligible with 
respect to their mean value, and they can now be investigated at nanoscale thanks to 
very fast technological improvements [1, 2]. Meanwhile, the theory of stochastic ther-
modynamics has been developed and the large fluctuations of time-integrated currents 
in out-of-equilibrium systems have been shown to obey generic fluctuation relations. 
The latter have been derived under various hypotheses about the microscopic dynam-
ics: deterministic or stochastic with either discrete or continuous degrees of freedom1. 
These fluctuation relations for time-integrated currents quantify how the second law of 
thermodynamics, valid for mean currents, is modified at the scale of fluctuations; they 
are linked in some way to the fluctuations of the time-integrated entropy production 
rate in the system2. In particular, the class of systems with a finite number of discrete 
degrees of freedom has provided firmly established fluctuation relations [4].

Besides these generic fluctuation relations based on symmetry arguments, solv-
able models have provided better insight into more detailed statistical properties of 
non-equilibrium stationary states (NESS). This is most valuable in the absence of any 
equivalent of the equilibrium Gibbs ensemble theory for the description of NESS. In 
particular, two paradigmatic kinetic models where a stationary current of particles or 
energy quanta flows from one reservoir to another have been widely investigated under 
various forms. On the one hand, we have one-dimensional systems of particles endowed 
with a simple exclusion process and non-equilibrium open boundary conditions; such 
models describe particle exchange between two reservoirs connected to both ends of the 
system and which have different chemical potentials (see reviews [8, 9]). On the other 
hand, we have Ising spin chains (with nearest-neighbor ferromagnetic interactions) 
where all spins are flipped by one of two thermostats.

In this paper we will introduce and study analytically a particular version of an 
Ising chain coupled to two thermostats. We begin by briefly recalling a few exact ana-
lytic results about kinetic Ising models.

In 1963 Glauber [10] endowed the Ising spin chain with a stochastic dynamics in 
order to describe the relaxation of this chain to its canonical equilibrium, which is 
determined only by the Ising energy and a given temperature T. A spin flip is inter-
preted as an energy exchange with a thermostat at temperature T. A single spin is 
flipped at a time, and the corresponding Markovian process is described by a master 
equation in spin configuration space.

The relaxation to the canonical equilibrium is ensured by the choice of the trans-
ition rates made by Glauber: these are the simplest ones that obey the detailed bal-
ance with the canonical configuration probability. The solution to the full description 
of the approach to equilibrium in this kinetic model was made in successive steps. 
First, Glauber determined the evolution of the average magnetization and spin–spin 
correlations, and studied the linear response to an applied magnetic field. In the early 

1 For a comprehensive review, see the report by Seifert [3] and the references therein. In particular, for the case  
of stochastic Markovian dynamics with jumps between a finite number of configurations, see [4].
2 Short introductions which point out the role of entropy are to be found e.g. in [5–7].
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1970s, higher order correlation functions were studied [11, 12]. In particular, Felderhof  
[12, 13] was the first person to apply the fermionization technique to the Glauber model 
and showed that the master equation is fully solvable: that is, for a system of N spins 
the 2N eigenvalues and eigenvectors of the Markov matrix were all found exactly.

Later, kinetic models for the Ising chain have been introduced in order to investi-
gate the non-equilibrium stationary state (NESS) sustained by this Ising chain when 
the spins are flipped by two thermostats at different temperatures.

Exact results regarding the stationary probability distribution of the spin 
configurations have been obtained through the determination of mean instantaneous 
quantities in various models [14–17]. Analytical expressions for the large deviation 
function of the time-integrated energy current in the non-equilibrium stationary state 
(NESS) have been obtained for simpler models [18, 19]. The complete description of 
the time-integrated energy currents has been obtained for a model where thermal con-
tact between two thermostats is ensured by the interaction inside a set of independent 
Ising spin pairs, where each thermostat flips only one spin in the pair, according to 
the corresponding Glauber dynamics [20]. The explicit joint probability of the cumu-
lative heats received from each thermostat at any time, and the analytical expression 
for the large deviation function of the time-integrated heat transfer from one thermo-
stat to the other, were obtained3. The explicit stationary probability distributions of 
microscopic configurations have also been obtained for other archetypal models: the 
asymmetric exclusion process [9] and several variants of the zero-range process [22, 23]. 
The generating function for the cumulants of the time-integrated particle current have 
been obtained by sophisticated methods for various models endowed with an simple 
exclusion process [9].

In this work we study the Ising chain with a ferromagnetic nearest-neighbor cou-
pling E, a finite number N of spins, and periodic boundary conditions. The chain is 
coupled to two thermostats at temperatures T1 and T2 in the simplest of all possible 
ways: each spin may be reversed by either thermostat according to Glauber trans ition 
rates with inverse time constants (inverse time scales of random jumps) ν1 and ν2, 
respectively. These are kinetic parameters which depend on the microscopic dynamics 
of the system, as opposed to the thermodynamic parameters T1 and T2 of the energy 
reservoirs. The amount of energy received by the chain for each spin flip is equal to  −E, 
0, or  +E. In the following, all energies will be expressed as multiples of 4E. We will take 
>T T1 2 throughout this work. We rescale the physical time t as ( )τ ν ν= + t1 2  and the 

kinetic parameters as ¯ /( )ν ν ν ν= +a a 1 2 , where a  =  1, 2.
We are interested in the joint probability ( )τP Q Q, ;1 2  for the stochastic energy 

amounts Q1 and Q2 received by the Ising chain from the thermostats during a given 
time τ. Then the probability for the time-integrated energy current Q (or net total 
energy that has flowed) from thermostat 1 to thermostat 2 during time τ is obtained 

as the marginal probability for the variable ( )= −Q Q Q1

2 1 2 . (We recall that Qa (with 

a  =  1, 2) is an integer.)

3 In the case of interacting Ising spin pairs one can obtain a partial description of the energy transfer from one 
thermostat to the other: the generating function for the long time cumulants per unit of time can be calculated 
analytically [21].

https://doi.org/10.1088/1742-5468/aa64f2
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The key to solvability is the observation4 that the sum of two Glauber rates at 
temper atures T1 and T2 is a Glauber rate with an effective kinetic parameter ν ν+1 2, 
and at an intermediate temperature T which is a function of T1, T2 and ¯ /( )ν ν ν ν= +1 1 1 2 . 
As a consequence, on the one hand, the transition rates obey the canonical detailed 
balance and in a finite time the Ising spin chain reaches its stationary state where 
the probability of a spin configuration is the Boltzmann–Gibbs weight at the effective 
temper ature ( ¯ )νT T T, ,1 2 1 . Then the net instantaneous energy current on each site has 
a zero mean, ⟨ ⟩ =j 0, but the contribution to this mean current from each thermostat 
does not vanish, ⟨ ⟩ ⟨ ⟩= − ≠j j 01 2 .

In order to deal with the extended Markov matrix which governs the evolution of 
the Fourier transform of the joint probability ( )τP s Q Q, , ;1 2  for spin configurations s and 
exchanged quantities Q1 and Q2, we extend the original method introduced by Felderhof 
[12, 13] for the Markov matrix of the probability ( )τP s;  of the spin configurations dur-
ing the relaxation to equilibrium for an Ising chain coupled to a single thermostat. 
This extended method yields all eigenvalues and eigenvectors of the extended master 
equation. It allows us to calculate the Fourier transform of ( )τP Q Q, ;1 2  and ( )τQP ; 5 at 
any time τ. The system fulfills the hypotheses of various generic fluctuation relations, 
(5.32)–(5.35) and (6.20)–(6.21), which are indeed satisfied by the explicit expressions for 
the involved quantities.

From the expression for the Fourier transform of the probability ( )τQP ;  of the 

time-integrated energy current ( )= −Q Q Q1

2 1 2 , we obtain the explicit expression of the 

generating function for the infinite time limit of the cumulants of Q per site and unit of 
time, to be denoted as ⟨ ⟩ / τQ Nn

c . The nth cumulant (per site and unit of time) of inter-
est, ⟨ ⟩ /( )→ ττ ∞ Q Nlim n

c , appears to be an nth degree polynomial in two variables A and 
B that are combinations of the thermodynamic and kinetic parameters,

A B¯ ¯ ( ) ¯ ¯ ( )ν ν γ γ ν ν γ γ= − = −1 , ,1 2 1 2 1 2 2 1 (1.1)
where γ β= Etanh 2a a  for a  =  1, 26. These polynomials have coefficients ( )γΣ N ,n  which 
depend on the system size N and the inverse effective temperature ( / )β γ= E1 2 artanh . 
They generalize the constant-coefficient polynomials that appeared in work by Cornu 
and Bauer [20] for a model where each thermostat flips only the spin on a given site. 
Although their model is different from the present chain with N  =  2, its various sym-
metries render its energetics identical to that of the present N  =  2 system7.

The explicit solution for the long time cumulants per site and unit of time allows one 
to investigate several physical effects beyond the generic symmetry relations. Indeed, 
kinetic and dissipation effects specific to various regimes of the thermodynamic and 
kinetic parameters can be investigated. They are summarized in the conclusion.

Moreover, size effects generated by the interaction between spins can be controlled. 
The model makes sense only if the effective temperature β is finite (γ≠ 1). Then the 
large deviation function exists in the infinite size limit and all long time cumulants 

4 This observation goes back at least to Garrido et al [24], whose focus is, however, different from ours.
5 We use the same symbol P for various different probabilities; the meaning will always be clear.
6 They are the same as the A and B of [20], except that our B has a minus sign compared to B, due to an inversion 
of the roles of the two thermostats.
7 Properties of their model that are invariant by a global spin flip are equivalent to the properties of our system 
that are left-right invariant along the chain with N  =  2.
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per unit of time for the whole chain, ⟨ ⟩ /→ ττ ∞ Qlim n
c , are proportional to the size N of 

the chain at leading order in N. In the double limit, where the effective temperature 
/β1  goes to zero while the size N goes to infinity, all these cumulants are proportional 

to ( )γ− N1  at leading order in N and γ−1 . We notice that the factor ( )γ−1  disap-
pears if one considers the rescaled cumulants per unit of time when the unit of time 
is the magnetization relaxation time τrel, which is equal to [( )( )]ν ν γ+ − −11 2

1. In this 
double limit the variables A and B defined in (1.1) vanish as γ−1  while the coefficients 

( )→ γΣ∞ Nlim ,N n  with ⩾n 2 diverge. As a consequence, the leading behavior of the res-
caled cumulants per unit of time is a random walk contribution of order N, whereas 
the first correction to it is not of order zero in N when →γ−1 0. In fact one has to 
consider two scaling regimes where the increase of ≫N 1 is related to the decrease of 
γ− ≪1 1; we exhibit how the first correction in the cumulants depends upon the ratio 

of the spin–spin correlation length ( )ξ T  and the size N.
This paper is structured as follows. In section 2 we define the Ising model between 

two thermostats. In section 3 we discuss the instantaneous energy current, whose aver-
age ⟨ ⟩j  per site we determine by elementary means. In section 4 we define and diago-
nalize the master operator in the extended space of spin configurations and energies Q1 
and Q2 received by the spin chain from both thermostats during a time interval τ, and 
in section 5 we determine the Fourier transform of the joint probability ( )τP Q Q, ;1 2 . 
We check that the explicit expression of ( )τP Q Q, ;1 2  in the present model does satisfy 
the fluctuation relations (5.32)–(5.35) which are retrieved from general considerations. 
In section 6 we obtain the Fourier transform of the probability ( )τQP ;  of the time-
integrated energy current Q from one thermostat to the other during a time τ. We 
determine the cumulants per site and unit of time of Q in the long-time limit and 
discuss their structure. In section 7 we study physical effects in various regimes of the 
thermodynamic and kinetic parameters for a finite chain. In section 8 we consider a 
large size chain at very low effective temperature: from the study of some divergent 
coefficients performed the in appendix, we exhibit the first correction to the leading 
N-behavior of the cumulants. In section 9 we briefly conclude.

2. Ising model coupled to two thermostats

We consider a chain of Ising spins =±s 1n , where = …n N1, 2, ,  and ⩾N 2 is an arbi-
trary integer. A configuration ( )= …s s s s, , , N1 2  of the Ising model has an energy H(s) 
given by

( ) ∑= −
=

+H s E s s ,
n

N

n n
1

1 (2.1)

where we adopt the periodic boundary condition =+s sN n n. We will be concerned with 
time dependent probability ( )τP s;  in configuration space.

In a formalism that goes back at least to Kadanoff and Swift [25], we associate 
with each s a ket ⟩ ⟩| = ⊗ |=s sn

N
n1 . A probability ( )τP s;  is then represented by a time 

 dependent ket

https://doi.org/10.1088/1742-5468/aa64f2
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( )⟩ ( ) ⟩∑τ τ| = |P P s s; .
s

 (2.2)

Since the classical discrete variables sn all commute, the Ising model has no dynamics of 
itself. In 1963 Glauber [10] stipulated that when the system is in contact with a ther-
mostat at temperature T1, then in a configuration s the spin sn on the nth lattice site 
may reverse its state with a transition rate given in dimensionless time ( )τ ν ν= + t1 2  
(where νa is an inverse time) by

⎡
⎣⎢

⎤
⎦⎥β ν γ= − +− +w s s s s;

1

2
1

1

2
,n n n n1 1 1 1 1( ) ¯ ( ) (2.3)

where ¯ /( )ν ν ν ν= +1 1 1 2  is an inverse time, γ β= Etanh 21 1 , and /β = k T11 B 1 is the inverse 
temperature. The ket ( )⟩τ|P  then evolves according to the master equation

( )⟩ ¯ ( ) ( )⟩
τ

τ ν β τ| = |P M P
d

d
1 th 1 (2.4)

with a ‘master operator’ ( )βMth 1  whose expression is originally due to Felderhof [12, 
13],

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∑β σ γ σ σ σ= − − +

=
− +M

1

2
1 1

1

2
,

n

N

n
x

n
z

n
z

n
z

th 1
1

1 1 1 (2.5)

in which σn
z  and σn

x are the usual Pauli spin operators defined by ⟩ ⟩σ | = |s s sn
z

n n n  and 
〉 〉σ | = |−s sn

x
n n . The master equation is easily shown to have the unique stationary state

( )⟩ ( ) ⟩ ⟩ ⟩∑β ρ β| = | | ≡ |P s1 , 1 ,
s

eq 1 eq 1 (2.6)

in which we have

( )
( )

( )∑ρ β
β

σ σ β= = − =
β

β
−

=
+

−H
H

H

Z
E Z

e
, , Tr e .

n

N

n
z

n
z

eq 1
1 1

1 1

1
1 (2.7)

We remark that H(s) in equation (2.1) is an eigenvalue of H.
By means of fermionization, the operator ( )βMth 1  may be completely diagonalized 

and all its eigenvectors determined [12, 13]. This means that, in principle, this problem 
is fully understood. Recent renewal of interest in kinetic Ising models, as mentioned in 
the introduction, is due to the development of the study of non-equilibrium station-
ary state systems. With this perspective in mind, we will here couple the same system 
to two thermostats at inverse temperatures β1 and β2 and acting with rates ν1 and ν2, 
respectively. The total operator describing the system, denoted by M, then becomes a 
weighted sum of the Glauber operators at inverse temperatures β1 and β2 ,

¯ ( ) ¯ ( )ν β ν β= +M M M .1 th 1 2 th 2 (2.8)
with ¯ ¯ν ν+ = 11 2 . In this work we study this model in detail.

Normally a system in contact with two reservoirs in different equilibrium states 
will tend to a stationary state. Usually the precise properties of such a state are not  
easy to determine. In the present case a simplification occurs since the operator M of 
equation (2.8) can be rewritten as

https://doi.org/10.1088/1742-5468/aa64f2
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( )β=M M ,th (2.9)
where β represents an effective intermediate temperature between β1 and β2 given by

¯ ¯β ν β ν β= +E E Etanh 2 tanh 2 tanh 2 .1 1 2 2 (2.10)
We will employ below the abbreviations γ β= Etanh 2  and γ β= Etanh 2a a  for a  =  1, 2.

It follows that the stationary state in this case actually happens to be equal to the 
equilibrium state at the effective temperature8. This does not mean that we immedi-
ately know the answers to the questions raised above considering the energy injection 
and dissipation. It means, however, that they can be calculated, which is what we do 
in this work.

3. Energy current between the thermostats

We consider the system in its stationary state, that is, in the equilibrium state at inverse 
temperature β. The reversal of a spin involves an energy change only if the two neigh-
bors of that spin are mutually parallel. Let fal be the fraction of all spins that have their 
two neighbors mutually parallel and aligned to it, and fop the fraction of those having 
them mutually parallel and opposite to it. The indicator function for a spin sn aligned 

with (opposite to) both of its neighbors is ( )( )± ±− +s s s s1 1n n n n
1

4 1 1 . Ensemble averag-

ing this by standard methods, which leads to the result ⟨ ⟩ [ ]/[ ]ζ ζ ζ= + ++
−s s 1n n r

r N r N , 
with ζ β= Etanh , we obtain for the periodic Ising chain

⩾
⎡
⎣⎢

⎤
⎦⎥

ζ ζ
ζ

ζ ζ
ζ

= ± +
+

+ +
+

− −
f N

1

4
1 2

1 1
, 2.

N

N

N

Nal,op

1 2 2

 (3.1)

We consider the action on this system by the operator ¯ ( )ν βM1 th 1 . The spins of the 
two classes fal and fop are reversed with transition rates expressed in the dimensionless 
time ( )τ ν ν= + t1 2  as

( ) ¯ ( )β ν β= ∓w E
1

2
1 tanh 2 ,al,op 1 1 1 (3.2)

respectively. (The minus sign corresponds to wal.) Let ⟨ ⟩j1  be the net average instan-
taneous energy current per unit of chain length from thermostat 1 into the system. 
Expressed in units of 4E, it reads

〈 〉 ( ) ( )
¯ ( )

⎡
⎣⎢

⎤
⎦⎥

β β

ν ζ ζ
ζ

ζ ζ
ζ

β

= −

=
+
+

− +
+
+

− −

j f w f w

E
2 1

1

2
1

1

1
tanh 2 .

N

N

N

N

1 al al 1 op op 1

1
1

2
2

1
 (3.3)

A similar expression holds for the net average current ⟨ ⟩j2  from thermostat 2 into the 
system under the action of ¯ ( )ν βM2 th 2 . From (2.10) and (3.3) together with the rela-
tion /( )β ζ ζ= +Etanh 2 12 2 , we get that ⟨ ⟩ ⟨ ⟩+ =j j 01 2 : in a stationary state the finite 
system cannot accumulate energy. Then ⟨ ⟩ ⟨ ⟩ ⟨ ⟩= = −j j j1 2  represents the net average 

8 The same observation was made by Cornu and Bauer [20] for their two-spin system with only two energy levels.

https://doi.org/10.1088/1742-5468/aa64f2
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energy current per site (=unit of chain length) that traverses the system from thermo-
stat 1 to thermostat 2. The most elegant expression for this quantity is obtained by 
remembering that ¯ ¯ν ν+ = 11 2  and writing it as ⟨ ⟩ ¯ ⟨ ⟩ ¯ ⟨ ⟩ν ν= −j j j2 1 1 2  with the result

⟨ ⟩ ¯ ¯ ( ) [ ]ν ν ζ ζ
ζ

β β= +
+
+

−
−

j E E
1

4
1

1

1
tanh 2 tanh 2 .

N

N1 2
2

2

2 1 (3.4)

This is our ‘direct’ result for the average instantaneous energy current density, valid in 
a finite periodic chain. Let Q stand for the net total energy (i.e. time-integrated energy 
current), expressed in units of 4E, that during a time interval [ ]τ0,  passes through the 
system from thermostat 1 to thermostat 2. We will let ¯ /ȷ Q τ≡ N  stand for the dimen-
sionless integrated current per site and per unit of time. In the long-time limit 〈¯〉 〈 〉ȷ = j  
and ⟨ ⟩Q  diverges with the time τ as

⟨ ⟩ ⟨ ⟩ →τ τ ∞!Q j N , , (3.5)
and ⟨ ⟩j  given by (3.4). There is no such simple method to calculate the higher order 
moments ⟨ ⟩Qn  for ⩾n 2. The work of this paper will lead us to expressions for the cumu-
lants ⟨ ⟩Qn

c. It will confirm equation (3.4) as a particular case.
It is of some interest to consider the linearization in temperature around the 

equilibrium state where β β β= =1 2 . Let β β δβ= +a a for a  =  1, 2 and let us set 
/δβ δβ δβ δ= − = − T k T12 1 2 B

2, where / β=T k1 B  (kB is Boltzmann’s constant) and the 
infinitesimal temperature difference is δ = −T T T1 2. Because of the relation (2.10) we 
then have

¯ ¯δβ ν δβ δβ ν δβ= = −, .1 2 12 2 1 12 (3.6)
Calling the linearized current δj, we obtain from (3.4)

⟨ ⟩ ¯ ¯ ( ) ( )
( )( )

δ λ δ λ ν ν ζ ζ
ζ ζ

β= = − +
+ +

−
j T Ek,

1 1

2 1 1
.

N

NT T 1 2

2 2 2

2
2

B (3.7)

The heat conduction coefficient λT tends to zero in both limits →β 0 and →β ∞, with 
E fixed.

4. Extended master operator: definition and diagonalization

4.1. Extended master operator !M

Each spin reversal is due to either ( )βMth 1  or ( )βMth 2 , and each spin reversal involves the 
injection or the release of a quantum of energy equal to 0 or to ± E4 . Let the integers 
Q1 and Q2 denote the total energy, measured in units of 4E, furnished to the system 
by the operators ( )βMth 1  and ( )βMth 2 , respectively, in a time interval of duration τ.  
For >T T1 2 both Q1 and  −Q2 will have positive expectation values. We will write 

( )→
=Q Q Q,1 2 . We are interested in the joint probability distribution ( )→

τP s Q, ; , which 

satisfies ( ) ( )→
→ τ τ∑ =P s Q P s, ; ;Q  and the initial condition

( ) ( )→ →
→

δ=P s Q P s, ; 0 ; 0 .
Q , 0 (4.1)
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Let sn denote the configuration obtained from s by flipping the spin at site n, and let 
( )∆Q sn  denote the increment in either Q1 or Q2 associated with the jump from s to sn, 

that is, ( ) ( )∆ = +− +Q s s s sn n n n
1

2 1 1 . (For the reversed spin flip at site n, namely the jump 

from sn to s, the increment in either Q1 or Q2 is ( ) ( )∆ = −∆Q s Q sn
n

n .) The probability 
( )→

τP s Q, ;  then obeys the balance equation

( ) ( ) ( )

( ) ( ( ) )

( ) ( ( ) )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑

∑

∑

τ
τ

β τ

β τ

β τ

= −

+ +∆

+ +∆

= =

=

=

→
→P s Q

w s P s Q

w s P s Q Q s Q

w s P s Q Q Q s

d , ;

d
; , ;

; , , ;

; , , ;

a n

N

n a

n

N

n
n n

n

n

N

n
n n

n

1,2 1

1
1 1 2

1
2 1 2

 

(4.2)

By analogy with the representation (2.2) of ( )τP s; , we represent the probability ( )→
τP s Q, ;  

by the time dependent ket

( )⟩ ( ) ⟩→ →
∑τ τ| = |P Q P s Q s; , ; .
s

 (4.3)

We consider the Fourier transformed ket

( )⟩ ( )⟩→ →
→ →

→
∑τ τ| = |⋅!P p P Q; e ; ,
Q

p Qi
 (4.4)

where ( )→ =p p p,1 2  with ⩽π π− < p p,1 2 . Upon taking the Fourier transform of the bal-
ance equation (4.2) we get the evolution equation for the ket (4.4),

( )⟩ ( ) ( )⟩
→

→ →τ
τ

τ
|

= |!
"

"M
P p

p P p
d ;

d
; , (4.5)

in which

( ) ¯ ( ) ¯ ( )→ ν β ν β= +! ! !M M Mp p p; ;1 th 1 1 2 th 2 2 (4.6)
where, by analogy with (2.5),

( ) ( )( )⎛
⎝⎜

⎞
⎠⎟
⎡
⎣⎢

⎤
⎦⎥∑β σ γ σ σ σ= − − +σ σ σ

=

− +
− +− +!M p ;

1

2
e 1 1

1

2
.a a

n

N

n
x p

a n
z

n
z

n
z

th
1

1
2
i

1 1
a n

z
n
z

n
z

1 1 (4.7)

In this expression, the operator ( )σ σ σ≡ +− +On n
z

n
z

n
z1

2 1 1 , whose eigenvalues are 1, 0, 

and  −1, has the properties ( )σ σ= = + − +O O 1n
k

n n
z

n
z2 2 1

2 1 1  for ⩾k 1 and =+O On
k

n
2 1  for ⩾k 0. 

Hence ( ) ( )= − + −− p O p Oe 1 i sin cos 1p O
a n a n

i 2a n . As a consequence, expression (4.6) may 
be rewritten as

( ) ( ) ( )

( ) ( )

→ ⎡
⎣⎢

⎤
⎦⎥

∑ σ σ σ σ σ

σ σ σ γσ σ σ

= + − +

− − − + +

=
− +

− + − +

!M p C D

C

1

2

1

2
1

1

2

1

2
1 1

1

2
,

n

N

n
x

n
x

n
z

n
z

n
z

n
x

n
z

n
z

n
z

n
z

n
z

1
1 1

1 1 1 1

 
(4.8)
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in which

( ) ¯ [ ] ¯ [ ]
( ) ¯ [ ] ¯ [ ]

→

→
ν γ ν γ
ν γ ν γ

= − + −
= − + −

C p p p p p

D p p p p p

cos i sin cos i sin ,

cos i sin cos i sin .
1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2
 (4.9)

These coefficients are real when p1 and p2 are purely imaginary.

4.2. Symmetrizing the master operator

We apply to ( )→!M p  a similarity transformation and define

( ) ( ) ( ) ( )→ →ρ β ρ β=
∼ −

∗ ∗!M Mp p ,eq

1
2

eq

1
2 (4.10)

with a ( )→β∗ p  left to be determined in such a way that ( )→∼M p  be Hermitian. The only 
nontrivial relation needed to find an explicit expression for (4.10) is [12, 13]

σ β ρ β σ ρ β
σ β σ σ β
σ σ σ β β

≡
= +
+ +

∗
−

∗ ∗

∗ − + ∗

− + ∗ ∗

E E

E E

cosh sinh

sinh cosh ,

n
x

n
x

n
x

n
z

n
z

n
z

n
z

n
z

eq

1
2

eq

1
2

2
1 1

2

1 1

˜ ( ) ( ) ( )
[

( ) ]
 

(4.11)

which is easily derived. The result is that ( )→!M p  of equation (4.8) becomes an expression 
( )→∼M p , which is of the same form as (4.8) but with C and D of equation (4.9) replaced 

with 
∼
C  and 

∼
D , respectively, where

( ) ( ) ( )
( ) ( ) ( )

→ → →

→ → →

β β β

β β β

= −

= −

∼

∼
∗ ∗ ∗

∗ ∗ ∗

C p C p E D p E

D p C p E D p E

, cosh 2 sinh 2 ,

, sinh 2 cosh 2 .
 

(4.12)

We now choose β∗ such that the coefficient ( )β∼ ∗D  of the non-Hermitian term vanishes. 
This amounts to taking

( ) ( )
( )

→
→

→β =∗ p E
D p

C p
tanh 2 (4.13)

where ( )→C p  and ( )→D p  are given by (4.9). We see that ( )→
β β=∗ 0  and that ( )→β∗ p  is real 

when p1 and p2 are purely imaginary. As a result, the symmetrized operator ( )→∼M p  
takes the form

( ) ( ) ( ) ( )→
⎡
⎣⎢

⎤
⎦⎥∑ σ σ σ σ γ σ σ σ σ= + − − − + +

∼

=
∗ ∗ − + − +M p C C

1

2

1

2
1

1

2
1 1

1

2n

N

n
x

n
x

n
z

n
z

n
z

n
z

n
z

n
z

1
1 1 1 1

 (4.14)
in which C∗ is given by

M β≡
∼

∗ ∗
→ → →C p p p, .( ) ( ( )) (4.15)

All →p dependence of ( )→!M p  is seen to enter through the single coefficient ( )→
∗C p .

After substituting (4.9) in (4.12) and (4.12) in (4.15) we find that this quantity may 
be written as

( ) ( )→ →γ= − +Θ∗C p p12 2 (4.16)
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where

A B( ) [ ( ) ] ( )→Θ = − − + −p p p p p2 cos 1 2i sin1 2 1 2 (4.17)
with A and B given by (1.1) in the Introduction. These coefficients will appear again in 
our final results in section 6.

4.3. Transformation to fermion operators

We define fermionic quasi-particles by means of the Jordan–Wigner [26] transformation

( )

( )

†
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∏

∏

σ σ σ

σ σ σ

= +

= − = …

=

−

=

−

c

c n N

1

2
i ,

1

2
i , 1, 2, , .

n
j

n

j
x

n
z

n
y

n
j

n

j
x

n
z

n
y

1

1

1

1
 

(4.18)

The vacuum state of these c-particles is the state ⟩|1  defined in (2.6). It is now straight-

forward to express ( )→∼M p  in terms of these fermion operators. We find from (4.14)

( ) ( ) ( )

( )( )

( ) ( )( )

†

† †

† †

M ∑

∑

∑

γ

= − − − +

+ − −

− − − −

∼
∗ ∗

=

=
+ +

∗
=

+ +

→p N C C c c

c c c c

C c c c c

1

4
1

1

2
1

1

2

1

4
1

n

N

n n

n

N

n n n n

n

N

n n n n

1

1
1 1

1
2 2

 

(4.19)

with the understanding that the creation and annihilation operators whose indices 
exceed N are defined by

( )
( )

† †= − −

= − − =
+

+

N

N

c c

c c m

1 ,

1 , 1, 2,

N m m

N m m
 

(4.20)
in which †= ∑ =N c cn

N
n n1  is the operator for the total number of quasi-particles.

4.4. Diagonalizing in terms of fermion operators

For convenience we hence restrict ourselves to even N. We define fermion operators †ηq 
and ηq by

† / †

/

∑

∑

η

η

=

= =

− −

−

c N

c N n N

e ,

e , 1, ..., ,

n
q

qn
q

n
q

qn
q

1 2 i

1 2 i 
(4.21)

where the wavenumber q runs through the N values
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π π π=± ± ± −
q

N N

N

N
,

3
, ...,

1
.

( )
 (4.22)

Equation (4.21) is easily inverted to find the †ηq and ηq in terms of the †cn and cn. This 

equation guarantees the periodicity conditions (4.20) in the subspace where N  is even. 
In that subspace equation (4.21) may also be used in (4.19) for n  =  N  +  1 and n  =  N  +  2. 
Obviously the c vacuum ⟩|1  is also the η vacuum.

Applying transformation (4.21) to (4.19) we get

( ) [ ( ) ( )]† † † †→ ∑ η η η η η η η η= − − + − − +
∼

− − − −M p N C D
1

2

1

2
1 i ,

q
q q q q q q q q q q (4.23)

valid in the subspace with an even number N  of c-particles9, and where the coefficients 
Cq and Dq are given by

( ) ( ) ( )

( ) ( )

→

→

γ

γ

= + − + −

= − −

∗ ∗

∗

C p C q C q

D p q C q

1

2
1 cos

1

2
1 cos 2 ,

sin
1

2
1 sin 2 ,

q

q

 
(4.24)

where the →p dependence comes in through the q independent coefficient ( )→
∗C p  defined 

in (4.15). Extending the approach of [12, 13] to nonzero →p we define angles χq (that are 
in general complex) by

( ) ( )→ →χ χ=
+

=
+

p
C

C D
p

D

C D
cos , sin ,q

q

q q

q
q

q q
2 2 2 2 (4.25)

and perform in the space of the pair { }†η η−,q q  a Bogoliubov–Valatin [30, 31] operator 

rotation

( ) ( ) ( )

( ) ( ) ( )

†

† †

→

→

ξ χ η χ η

ξ χ η χ η

= −

= − +

−

− −

p

p

cos
1

2
i sin

1

2
,

i sin
1

2
cos

1

2
.

q q q q q

q q q q q

 
(4.26)

It is useful to note that χ χ= −−q q. Upon using (4.26) to transform (4.23) to ξ operators 
we find the diagonal form

( ) †→ ∑µ µ ξ ξ= − −
∼

∗M p
q

q q q (4.27)

where

( )→µ = +p C Dq q q
2 2

 (4.28)
and

9 In the subspace with an odd  number of c-particles ( )M
∼ →p  takes a slightly different form, as discussed in detail in 

references [12, 13, 27–29] We will not need that form in this work.
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( ) ( )→ ∑µ µ= −∗ p
1

2
1 .

q
q (4.29)

From (4.24) and (4.28) it is easily seen that µ µ= −q q. Upon combining both equations 
we get for µq the explicit expression

( ) ( )→µ γ= − + ∗q C p qcos sin ,q
2 2 2 2

 (4.30)
with ( )→

∗C p  given by (4.16). We note that the generally complex quantity C∗ does not 
depend on q and that the →p dependence of this diagonalization process comes in only 
through ( )→

∗C p . For → →
=p 0 our results for ( )→µ pq  reduces to that of [12, 13], namely 

( )→
µ γ= − q0 1 cosq .

A different way, useful for later, to write the eigenvalue ( )→µ pq  is

( ) ( )→µ γ= − +Θq p q1 cos sin ,q
2 2 2

 (4.31)
where Θ has been defined in (4.17). We observe for later use that

( ) ( )→ →
µ = Θ =∗ 0 0, 0 0. (4.32)

It is convenient to rewrite the diagonalized form (4.27) of the master operator as

( ) ( )† †→ ∑ µ ξ ξ ξ ξ= − − + −
∼

>
− −M p N

1

2
1 ,

q
q q q q q

0
 (4.33)

where the symmetry property µ µ= −q q has been employed and where, here and hence, 

‘q  >  0’ refers to the N1

2
 positive values of q among those given in (4.22).

5. Joint probability distribution of the time-integrated energy currents

5.1. Joint probability distribution ( )→
τP Q;  of the time-integrated energy currents

Let ( )→
τP Q;  be the probability that at time τ the time-integrated energies furnished 

by the thermostats 1 and 2 to the system, counted in units of 4E, have the values Q1 
and Q2, respectively. Then according to (4.3) this probability distribution is given by 

( ) ⟨ ( )⟩→ →
τ τ= ∑ |P Q s P Q; ;s  and upon inverting (4.4) we find

( ) ( )→ →→ →∫ ∫τ
π π

τ=
π

π

π

π

− −

− ⋅ !P Q
p p

P p;
d

2

d

2
e ; ,p Q1 2 i

 (5.1)

where ( ) ⟨ ( )⟩→ →τ τ= ∑ |! !P p s P p; ;s . The evolution equation (4.5) may be formally solved as

( )⟩ ( )⟩( )→→ →τ| = |τ! !"MP p P p; e ; 0 ,p (5.2)

where !| →P p ; 0( )〉 is the Fourier transform of the initial state ( )〉|
→

P Q; 0 . Our protocol will 
be to take for the initial configuration the equilibrium state at an arbitrary inverse 
temperature β0. Moreover, since at time τ = 0 no energy exchange has taken place yet 
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we choose this probability concentrated in 
→
=Q 0, that is, ( ) ( )→ →

→
δ β| = |P Q P; 0
Q , 0 eq 0 . With 

the definitions (2.6) the probability ( )→ τ!P p;  reads

( ) ⟨ ( ) ⟩( )→→ τ ρ β= | |τ! "MP p; 1 e 1 .p
eq 0 (5.3)

This expression takes advantage of the fact that !M is block diagonal in the subspaces 
of fixed →p.

5.2. Rewriting ( )→
τP Q;

According to the complete diagonalization performed in section 4 the matrix element  
in the Fourier transform (5.3) is an expectation value in the η vacuum and can be 
rewritten as

( ) ⟨ ( ) ( ) ( ) ⟩/ ( ) /→→ τ ρ β ρ β ρ β= | |τ
∗

−
∗

∼
MP p; 1 e 1 ,p

eq
1 2

eq
1 2

eq 0 (5.4)

where we have passed to the symmetrized operator ( )→∼M p  and ⟩|1  denotes the η-vacuum. 
We decompose the η-vacuum as

⟩ ⟩/| = ⊗ |> −1 2 0 0 ,N
q q q

2
0 (5.5)

where ⟩| −0 0q q  is the state in which the quasi-particles of wavenumbers ±q are absent,

⟩ ⟩η η| = | =− − −0 0 0, 0 0 0,q q q q q q (5.6)
and ⟨ ⟩| =− −0 0 0 0 1q q q q .

It is useful to rewrite the time evolution operator (4.33) as

( )→ X∑ µ= − −
∼

>
M p N

1

2 q
q q

0
 (5.7)

with

† †X ξ ξ ξ ξ= + −− − 1,q q q q q (5.8)

where we have not indicated explicitly the →p dependence of the Xq, 
†ξq, and †ξq operators. 

Furthermore, we may express the Hamiltonian in terms of fermion operators, which 
yields

H

H A B

∑= −

= +
>

H E

q q

2 ,

cos i sin ,
q

q

q q q

0

 
(5.9)

where

† †

† †

† †

A
B
D

η η η η

η η η η

η η η η

= + −

= +

=

− −

− −

− −

1,

,

,

q q q q q

q q q q q

q q q q q

 

(5.10)
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where we included Dq for later reference. We now use the fact that Xq (in view of rela-
tions (5.8) and (4.26)) and Hq (in view of (5.9) and (5.10)) are quadratic in the η opera-
tors and that therefore

[ ] [ ] [ ]X X X H H H= = = ≠ ′′ ′ ′ q q, , , 0, .q q q q q q (5.11)
Upon using (5.5) in (5.4), we may factorize ( )→ τ!P p;  according to

( )
( )

( )→ →∏τ
β

τ= Πτ−

>

!P p
Z

p;
2

e ;
N

N

q
q

0

1
2

0
 (5.12)

in which

( ) ⟨ ⟩( )→ H X HτΠ = | |β µ τ β β
−

− −
−∗ ∗p; 0 0 e e e 0 0 .q q q

E E
q q

2q q q q0 (5.13)
Since ( )HKexp q  (for β= ∗K E or ( )β β= − ∗K E2 0 ) and ( )Xµ τ−exp q q  are both quadratic 
in the fermion operators, they act in the two-dimensional space spanned by the vacuum 

⟩| −0 0q q  defined above and the two-particle state ⟩| −1 1q q  defined by

⟩ ⟩† †η η| = |− − −1 1 0 0 .q q q q q q (5.14)
To make the action of ( )HKexp q  more explicit we expand the exponential using the 

relations

H A D H H H H= − + = =2 , , ,q q q q q q q
2 3 4 2

 (5.15)
which are easily checked. One then obtains

H HH

η η η η η η η η

η η η η

= + + −

= + + + +

+
− − − −

− −

K K

d K d K d K

d K

e 1 sinh cosh 1K
q q

q q q q q q q q

q q q q

2

0 1 2

4

q ( )
( ) ( )( ) ( )( )

( )

† † † †

† †
 

(5.16)

in which

( )
( )
( )
( ) ( )

= −
= − +
=
= −

d K K q K
d K K q K
d K q K
d K K

cosh cos sinh ,
1 cosh cos sinh ,
i sin sinh ,
2 cosh 1 .

0

1

2

4

 

(5.17)
For two specific choices of K we will use below the notation

([ ] ) ( )β β β= − = =∗ ∗b d E c d E i2 , , 0, 1, 2, 4.i i i i0 (5.18)
We have to similarly expand ( )Xµ τ−exp q q  and obtain along the same lines

( )
( )( ) ( )† † † †

X XX µ τ µ τ

ξ ξ ξ ξ µ τ ξ ξ ξ ξ

= − + −

= − − + + −

µ τ

µ τ µ τ

−

− − − −

e 1 sinh cosh 1

e e 1 2 cosh 1 .

q q q q

q q q q q q q q q

2
q q

q q
 

(5.19)
With the aid of the relations (4.26), we can turn this into an expansion of the form
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( )
( )

† †

† † † †

X η η η η

η η η η η η η η

= + +

+ + +

µ τ−
− −

− − − −

a a

a a

e

.

q q q q

q q q q q q q q

0 1

2 4

q q

 
(5.20)

After a fair amount of algebra, one finds for the coefficients ai the expressions

( )

µ χ µ
µ χ µ

χ µ
µ

= +
= − −
=
= −

a t t

a t t

a t

a t

cosh cos sinh ,

1 cosh cos sinh ,

i sin sinh ,

2 cosh 1 .

q q q

q q q

q q

q

0

1

2

4

 

(5.21)

We substitute now expansions (5.16) for β= ∗K E or ( )β β= − ∗K E2 0  and (5.20) in 
(5.13). Taking into account that creation (annihilation) operators acting to the left (to 
the right) on the η-vacuum give zero, we may suppress the corresponding terms in the 
expansions and can write (5.13) as

τ η η

η η η η η η η η η η η η

η η

Π = | +

× + + + + +

× + |

= − + − + +

− −

− − − − − −

− −

→p c c

a a a a

b b

a b c a b c b c a a a b c

; 0 0

0 0

2 .

q q q q q

q q q q q q q q q q q q

q q q q

0 2

0 1 2 4

0 2

0 0 0 2 0 2 2 0 0 1 4 2 2

( ) 〈 [ ]
[ ( ) ( ) ]
[ ] 〉

( ) ( )

† † † † † †

† † 

(5.22)
In the last line each term corresponds to a sequence of creations and annihilations as 
one reads the first line from the right to the left, starting from and ending up in the 
vacuum. We may now substitute the values of the ai, bi, and ci found above.

After some algebra is applied to (5.22) we may cast the ( )→ τΠ p;q  in the form

( ) ( ) ( ) ( )
( )

( )
( )

→ →
→ →

→

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥τ β µ τ

β
β

µ τ
µ

Π = +p S p
T p

S

p

p
; cosh

; sinh
,q q q

q

q

q

q
0

0

0
 (5.23)

where µq is given by (4.31) while

( ) ( ) ( )
( ) ( )( ) ( )
β β β
β β γ β
= −
= − +→ →

S E E q

T p S q U p q

cosh 2 sinh 2 cos ,

; 1 cos ; sin

q

q q

0 0 0

0 0 0
2 (5.24)

with

( ) ¯ ( ) ¯ ( )→ β ν β β ν β β= − + −U p u p u p; ; ;0 1 1 0 1 2 2 0 2 (5.25)
and

( ) ( ) ( )β β β= + −u p E p E; cosh 2 i cosh 2 .a a (5.26)
Combining (5.12) and (5.23) we get

( )
( )

( ) ( )
( ) ( )

→
→

→

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏ ∏τ

β
β µ τ

β
β µ

µ τ= +τ−

> >

!P p
Z

S
T p

S p
;

2
e cosh

;
sinh .

N
N

q
q

q
q

q

q q
q

0

1
2

0
0

0

0

0

 (5.27)
where the partition function defined in (2.7) reads
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( ) [ ]β β β= +Z E E2 cosh sinh .N N N
0 0 0 (5.28)

It is easy to verify the relation

( )
( )∏β
β =

>Z
S

2
1.

N

q
q

0 0
0 (5.29)

Using it in (5.27) and substituting (5.27) in (5.1) we finally obtain

( ) ( )
( ) ( )

→ →→
→

→

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫ ∫ ∏τ

π π
µ τ

β
β µ

µ τ= +τ

π

π

π

π
−

− −

− ⋅

>
P Q

p p T p

S p
; e

d

2

d

2
e cosh

;
sinh .N p Q

q
q

q

q q
q

1
2

1 2 i

0

0

0

 

(5.30)

This expression depends on the initial inverse temperature β0 through the ratio 
( )/ ( )→ β βT p S;q q0 0 . It is possible to show with the aid of considerable algebra that

( )
( )

( )
→

→
β

µ
β=

T
S

0;

0
,

q

q

q
0

0 (5.31)

which together with (5.27), (5.29) and (4.32) for ( )→
µ∗ 0  implies that ( )→

τ =!P 0; 1, equivalent  

to the normalization condition ( )→
→ τ∑ =P Q; 1Q .

5.3. Finite time fluctuation relation for ( )→
τP Q;

One can check on the explicit expression (5.30) that ( )τP Q Q, ;1 2  obeys a finite time 

fluctuation relation: by virtue of the relation A B A B( )/( ) ( )β β+ − = − Eln 2 2 1 , the 

ratio of probabilities for opposite values of the couple ( )Q Q,1 2  is given at any time by

( )
( )

[( ) ( ) ]τ
τ− −
= β β β β− − + −P Q Q

P Q Q

, ;

, ;
e .E Q Q1 2

1 2

4 1 0 1 2 0 2
 (5.32)

In fact this relation relies on two key properties. First one can define the extended 
transition rates associated with the extended master operator Mext such that 

( )/ ⟨ ⟩ ( )→ → → →
→τ τ τ= ∑ | | ′ ′ ′ ′′ ′ MP s Q s Q s Q P s Qd , ; d , , , ;s Q, ext  and whose explicit expression is 

derived from the balance equation (4.2). These extended transition rates are defined 
between two triplets, each of which involves a spin configuration together with the two 
energies received from thermostats since the beginning of the considered history of the 
system: when the system is in spin configuration s and the spin at site n is flipped by 
thermostat a (with a  =  1, 2) they read ( ( ) ( )) ( )( ) ( ) ( ) β∆ ∆ =w s Q s Q s w s, , ;n

a
n n n a
1 2 , where the 

expression for ( ) ( )( )∆ = ∆Q s Q sn
a

n  is given before (4.2), that for the other thermostat 
b is ( )( )∆ =Q s 0n

b , and the transition rate between spin configuration ( )βw s;n a  is given 
in (2.3). These extended transition rates have the symmetry property obeyed by the 
trans ition rates ( )βw s;n a  for the two reversed transitions →s sn and →s sn

( ( ) ( ))
( ( ) ( ))

( ) ( ) ( )

( ) ( ) ( )
( )( )∆ ∆

−∆ −∆
= β− ∆w s Q s Q s

w s Q s Q s

, ,

, ,
en

a
n n

n
a

n n n

Q s
1 2

1 2
a n

a

 (5.33)
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This symmetry can be considered as an extension of the so-called generalized detailed 
balance10 which involves only the transition rates between two configurations, and 
where the values of ( )( )∆Q sn

1  and ( )( )∆Q sn
2  are determined solely by the transition →s sn 

(which is the case when a spin at a given site can be flipped by only one thermostat). 
The second key property arises from the considered protocol and the specificity of the 
stationary configuration probability in the model. Indeed, the initial spin configuration 
distribution is the stationary configuration probability at the effective inverse temper-
ature β0 (with a nonvanishing mean current from thermostat 1 to thermostat 2). Besides, 
in the present model the latter configuration probability is the canonical equilibrium 
distribution at inverse temperature β0. The two key properties together allow one to 
apply the usual arguments for the derivation of fluctuation relations. In the present 
case the precise argument is a mere transposition of that to be found, for instance, 
in [6, 35], where a transition between two spin configurations is caused by only one 
thermostat.

As in the case where the generalized detailed balance is met by the mere transition 
rates between spin configurations, the property (5.32) can be interpreted in terms of 
some time-integrated entropy variation as follows. When a thermostat at inverse temper-
ature βa gives an energy 4EQa to the system, its entropy variation is β∆ = −S E Q4a a a. 

The exchange contribution ∆β β Sexch
,1 2  to the entropy variation of the system is defined 

as ( )− ∆ +∆S S1 2 , namely the opposite of the sum of the entropy variations of the two 

thermostats; hence ( )β β∆ = +β β S E Q Q4exch
,

1 1 2 2
1 2 . As in [6, 35], we introduce the excess 

exchange entropy variation of the system ∆ β Sexch
excs, 0 , which is defined as the difference 

between the exchange entropy variation under the non-equilibrium external constraint 
β β≠1 2 and its value under the equilibrium condition β β β= =1 2 0 and for the same val-

ues of the energies 4EQ1 and 4EQ2 received by the system: ∆ = ∆ −∆β β β β βS S Sexch
excs,

exch
,

exch
,0 1 2 0 0 . 

It also reads

[( ) ( ) ]β β β β∆ = − + −β S E Q Q4 .exch
excs,

1 0 1 2 0 2
0 (5.34)

Hence the fluctuation relation (5.32) can be rewritten as ( )τ =P Q Q, ;1 2  
τ−∆ − −β S P Q Qexp , ;exch

excs,
1 2

0[ ] ( ). As a consequence, the probability of the excess exchange 
entropy variation obeys a finite time fluctuation relation which takes the ‘universal’ 
form

( ) ( )τ τ∆ = −∆β β−∆ β
P S P S; e ; .S

exch
excs,

exch
excs,0 exch

excs, 0
0 (5.35)

6. Statistics of the time-integrated energy current

6.1. Distribution ( )τQP ;  of the time-integrated energy current

We now restrict our interest to the time-integrated current that during a time interval 
[ ]τ0,  has traversed the system. It is defined as

10 Several terminologies can be found in the literature: ‘local’ detailed balance [3, 32], ‘generalized’ detailed bal-
ance [33] or ‘modified’ detailed balance [6, 34].
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( )= −Q Q Q
1

2
,1 2 (6.1)

which may be integer or half-integer. It measures, in units 4E, half the energy furnished 
to the system by thermostat 1 plus half the energy extracted from it by thermostat 2. 
Since for long times no energy can accumulate in the system, this quantity is, in the 
long time limit, equal to the time-integrated energy current. The particular definition 
(6.1) is motivated by the fact that it is antisymmetric under exchange of the two ther-
mostats, which makes subsequent calculations easier.

Let ( )τQP ;  be the probability of Q at time τ. This marginal probability of ( )→
τP Q;  is 

obtained as ( ) ( )→
τ δ τ= ∑ −Q QP P Q; ;Q Q Q Q, ,21 2 1 2 . We will from here on, for any →p -dependent  

quantity ( )→X p , employ the notation ( ) ( )− ≡ !X p p X p, . From (5.30) and the preceding 
definitions we then get

( ) ( )∫τ
π

τ=
π

π

−

− !Q Q !
P

p
P p;

d

2
e ; ,p2i

 (6.2)

in which

( ) ( )
( )

( ) ( )
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏τ µ τ

β
β µ

µ τ= +τ−

>

!! !
!

!
!P p p

T p

S p
p; e cosh

;
sinh .N

q
q

q

q q
q

1
2

0

0

0
 (6.3)

We observe that ( )τQP ; , given by (6.2) and (6.3), still depends on the initial state 
parameter β0. For the choice β β=0  the system is in a stationary state for all ⩾τ 0; for 
β β≠0  it will asymptotically tend to that state.

We take advantage of the analyticity in p of the integrand ( )τ!!P p;  to point out 
that the moment generating function of ( )τQP ; , defined as ⟨ ⟩ ( )τ≡∑λ λ QQ

Q
QPe e ; , 

exists for all real λ and is given by

⟨ ⟩ ⎜ ⎟⎛
⎝

⎞
⎠

λ τ= −λ !Q !
Pe

i

2
; . (6.4)

6.2. Cumulants of Q in the long-time limit

In the long-time limit the cumulants per site and unit of time ⟨ ⟩ / τQ Nn
c  of the time- 

integrated energy current per site and unit of time are obtained from the scaled cumulant  
generating function ( )λgN , defined as

( ) ⟨ ⟩
→

λ
τ

≡
τ

λ
∞

QNg lim
1

ln eN (6.5)

The cumulants of interest are the values of the derivatives of ( )λgN  with respect to λ 
taken at λ = 0,

⟨ ⟩ ( )
τ

λ
λ

=
λ=

Q

N

gd

d
.

n n
N

n
c

0
 (6.6)
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According to (6.4) and (6.5), together with the explicit value (6.3) of ( / )λ τ−!!P i 2; , 
we get

( ) ⎜ ⎟⎛
⎝

⎞
⎠∑λ µ λ= − + −

>

!g
N

1

2

1 i

2N
q

q
0

 (6.7)

The expression for ( ) ( )µ µ= −! p p p,q q  is given by (4.31) where ( )→Θ p  is defined in (4.17). 
We set ( ) ( / / )θ λ λ λ= Θ −i 2, i 2  and get

( ) ( ) ( )∑λ γ θ λ= − + − +
>

g
N

q q
1

2

1
1 cos sinN

q 0

2 2
 (6.8)

with

A B( ) [ ]θ λ λ λ= − +2 cosh 1 2 sinh , (6.9)
in which ν ν γ γ= −11 2 1 2A ¯ ¯ ( ) and B ¯ ¯ ( )ν ν γ γ= −1 2 2 1  depend only on the kinetic and ther-
modynamic parameters of the model. We notice that the expression of the scaled gen-
erating function for the time-integrated current of energy has a form similar to that 
for various currents of interest in the case of a system of diffusing particles with pair 
creation and annihilation [36]. This is due to a connection between the model consid-
ered by these authors and an Ising spin chain with Glauber dynamics.

We notice that expression (6.7) for ( )λgN  can be obtained without knowing the 
explicit expression of the moment generating function ⟨ ⟩λQe  at any time τ. Indeed, the 
evolution of ⟨ ⟩λQe  is Markovian, as shown by (5.4) with λ= −p i1  and λ=p i2 . Hence 

( )λgN  is the largest eigenvalue of ( )λ λ−
∼
M i , i  and the operator expressions (5.7) and (5.8) 

lead to (6.7).
Eventually the cumulants of the time-integrated energy current per site and unit of 

time in the long-time limit are given by (6.6) and (6.8)

B⟨ ⟩ ( )
→ τ

γ= Σ
τ ∞

Q
N

Nlim
1

2
, ,1 (6.10)

A B
⟨ ⟩ [ ( ) ( )]

→ τ
γ γ= Σ − Σ

τ ∞

Q

N
N Nlim

1

2
, , ,

2
c

1
2

2 (6.11)

B AB B
⟨ ⟩ [ ( ) ( ) ( )]

→ τ
γ γ γ= Σ − Σ + Σ

τ ∞

Q

N
N N Nlim

1

2
, 3 , 3 , ,

3
c

1 2
3

3 (6.12)

A A B AB

B

〈 〉 [ ( ) ( ) ( ) ( )

( )]

Q

τ
γ γ γ

γ

= Σ − + Σ + Σ

− Σ
τ→∞ N

N N N

N

lim
1

2
, 3 4 , 18 ,

15 , .

4
c

1
2 2

2
2

3

4
4

 
(6.13)

where we have introduced

( )
( )∑γ

γ
Σ =

−>
−N

N

q

q
,

2 sin

1 cos
.n

q

n

n
0

2

2 1 (6.14)

https://doi.org/10.1088/1742-5468/aa64f2


Glauber’s Ising chain between two thermostats

22https://doi.org/10.1088/1742-5468/aa64f2

J. S
tat. M

ech. (2017) 043207

We have indicated explicitly the dependence of ( )γΣ N ,n  on the size N and the effective 
intermediate inverse temperature β of the stationary state; we recall that β is defined 
in terms of the parameter γ through (2.10). The ( )γΣ N ,n  are monotonically increasing 
with γ.

Expressions for higher order cumulants may be derived by increasing algebraic 
effort. Expression (6.10) for the time-averaged energy current has to coincide with 
equations (3.4) and (3.5) of section 3. Upon inserting the explicit expressions for both 
one obtains the identity

( ) ( )( )
( )

/ ( )

( )∑γ
γ

ζ ζ
ζ

Σ =
−

= + +
+

= …
π

π
=

−

−

−

ℓ

ℓ

ℓN
N

N,
2 sin

1 cos

1 1

2 1
, 2, 4, 6 ,

N
N

N

N

N1
1

2 2 2 1

2 1

2 2

 

(6.15)

where we recall that ζ β= Etanh  while γ β= Etanh 2 . Equation (6.15) may be checked 

by explicit calculation. It shows that ⩽ ( ) ⩽γΣ N , 11

2 1 . We have not found similarly 

simple expressions for the ( )γΣ N ,n  with ⩾n 2.
The expressions for cumulants, of which the first four are given in (6.10)–(6.13), 

have an interesting structure. The nth cumulant is an nth degree polynomial in the two 
variables A and B with coefficients ( ) ( )γ γΣ … ΣN N, , , ,n1 . The variables A and B depend 
on both thermostat temperatures T1 and T2 but are independent of the system size N. 
In contrast, the coefficients ( )γΣ N ,n  vary with the system size N, but depend only on 
the intermediate effective temperature T and not on T1 and T2 separately11. We will 
analyze the ( )γΣ N ,n  in detail in the limit of large N and low effective temperature T 
in section 8.

When the two thermostats have equal temperatures, =T T1 2, one has B= 0. Then 
only the even cumulants are nonzero, as must be the case when one considers the 
energy transfer between two thermostats at the same temperature. The even cumu-
lants with ⩾n 4 do not vanish: when =T T1 2 the distribution of Q is an even but  
non-Gaussian function [20].

For a two-spin system (N  =  2 and /π=±q 2) we have that ( )γΣ =2, 1n  for all n and 
γ, and when expressions (6.10)–(6.13) are rewritten in dimensionful time /( )τ ν ν= +t 1 2  

it appears that the cumulants per lattice site ⟨ ⟩ /Q tn1

2 c , with ( )= −Q Q Q1

2 1 2 , are equal 

to the cumulants ⟨ ⟩ /Q tn
1 c  for a pair in the model considered by Cornu and Bauer [20]. 

(In other words, in dimensionful time, when N  =  2 the scaled generating function for 
cumulants per lattice site, ( ) ( )ν ν λ+ g1 2 2 , is equal to the scaled cumulant generating 
function ( )α λ  for the pair of model.) Indeed, in their model where each spin is reversed 
by only one thermostat, an increment in Q is invariant under global flip of the two 
spins in the initial configuration of a transition, while in the present model where each 
spin is reversed by both thermostats, an increment in Q is invariant under the left-right 
exchange of the two spins in the N  =  2 chain.

6.3. Large deviation function of the time-integrated current /τQ
The energy Q which goes through the system from thermostat 1 to thermostat 2 dur-
ing a given time τ is determined by the whole history of the successive changes of spin 

11 Recall that T depends also on the kinetic parameters ν1 and ν2.
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configurations. We consider the time-integrated current per site and per unit of time 
(in multiples of 4E), ȷ̄, defined by

Q ȷ τ= N ,¯ (6.16)
According to definition (6.1) this variable takes the discrete values ¯ /( )ȷ τ= m N2m , where 
m is an integer. As time increases, the number of discrete values ȷ̄m in a given interval 
[ ¯ ¯ ]ȷ ȷε ε− +,  (with ε> 0) becomes larger and larger. Then the variable ȷ̄ is said to satisfy 
a large deviation principle if there exists a function (¯)I ȷN  such that12

Q
ȷ ȷ I ȷ⎜ ⎟⎛

⎝
⎞
⎠τ τ

ε ε− ∈ − + =
ε τ→ →∞ N

P
N

lim lim
1

ln , .N
0

[ ¯ ¯ ] ( ¯) (6.17)

The limit I ȷN( ¯) is the so-called large deviation function of the current ȷ̄. It vanishes 
for the most probable value of ȷ̄, namely when ȷ̄ is equal to ⟨ ⟩/→ ττ ∞ Q Nlim . This 
value coincides with the mean instantaneous current per site in the stationary state, 

⟨ ⟩/ ⟨ ⟩→ τ =τ ∞ Q N jlim .
One might try to evaluate the large deviation function I ȷN(¯) from the definition 

(6.17) by considering ( )τQP ;  and applying the saddle point method to its inverse 
Fourier transform representation (6.2)–(6.3), rewritten as an integral on the unit circle 
by setting =z e pi . However, this method is mathematically tricky because of the sin-
gularities in the complex z-plane. This is exemplified by the explicit calculation of the 
leading behavior of ȷ τP ;2( ¯ ) for the time-integrated current ȷ2¯  received from thermostat 
2 in the case of a two-spin model. We point out that the limit →τ ∞ must be taken 
under the condition that ȷ τ2¯  takes only integer values (see section 6 of [20]).

A far simpler method relies on the Gärtner–Ellis theorem, which ensures that, under 
weak hypotheses which are fulfilled in the generic case, the expression for I ȷN(¯) can 
be derived from the sole knowledge of the scaled cumulant generating function ( )λgN , 
defined in (6.5). For a Markovian process the determination of ( )λgN  is reduced to the 

calculation of the largest eigenvalue of the operator that governs the evolution of the 

generating function ⟨ ⟩ ( / )λ τ= −λ !Q !
Pe i 2; . In the present case, the scaled cumulant 

generating function ( )λgN , defined in (6.5), exists and is differentiable for all real λ, 
as shown by its expression, (6.8) and (6.9). Thus ( )λgN  satisfies the hypothesis of the 
simplified version of the Gärtner–Ellis theorem (see, e.g. [37, 38]). This version guaran-
tees that the large deviation function I ȷN( ¯) of the time-integrated energy current per 
site exists and can be calculated as the Legendre–Fenchel transform of ( )λgN , that is,

R
I ȷ ȷλ λ= −

λ∈
gmax .N N( ¯) { ¯ ( )} (6.18)

Moreover, in the present case ( )λgN  is strictly convex and continuously differentiable for 
all real λ. As a consequence, the maximum in the definition of the Legendre–Fenchel 
transform may be calculated with the aid of the Legendre transform,

I ȷ ȷ ȷ ȷλ λ= − g ,N N( ¯) ¯ ( )¯ ¯ (6.19)
where ȷλ ¯ is the solution of the extremum equation ( )/ ȷ̄λ λ =gd dN .

In the present case this extremum cannot be solved analytically except for the case 
N  =  2. Indeed, when N  =  2 only one wave number /π=q 1  is involved in the expression 

12 For a precise discussion of this definition see [6] section 5 and appendix E.
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(6.8) for ( )λgN  and the corresponding expression ( )λg2  happens to coincide with the 
scaled cumulant generating function ( )λg  for another two-spin model considered by 
Cornu and Bauer. Various explicit expressions of ( ¯)I ȷ2 , together with some properties, 
can be found in section 6.1.2 of [20].

We point out that I ȷN( ¯) obeys a generic fluctuation relation which relies on the ratio of 
transition rates for two reversed jumps of configurations. It can be retrieved for the explicit 

solution of the paper in various ways. First, since β β+ − = − Eln 2 2 1A B A B( )/( ) ( ) , 

the scaled generating function ( )λgN  given by (6.8) and (6.9) has the symmetry property

( ) ( ( ) )λ λ β β= − − −g g E4 .N N 2 1 (6.20)
As a consequence, I ȷN(¯) obeys the fluctuation relation

(¯) ( ¯) ( ) ¯I ȷ I ȷ ȷβ β= − + − E4 .N N 2 1 (6.21)
This relation also appears for a system of particles moving along a line between two 
thermostats at different temperatures and endowed with the kinetics of a simple exclu-
sion process [39]. We notice that the symmetry property (6.20) determines the value 
of the large deviation function for ȷ = 0¯ . Indeed, expression (6.18) for the large devi-
ation function, together with (6.20), implies that for zero current the minimum is 
located at the point of symmetry of ( )λgN , namely ( )λ β β= − − E20 2 1 . As a conse-
quence, ( ) ( ( ) )β β= − − −I g E0 2N N 2 1 . We notice that, since the system is a finite number 
of energy levels the long time fluctuation relation (6.21) for Q can be derived from the 
finite time fluctuation relation (5.32) for the couple of variables Q1 and Q2.

6.4. Infinite size chain at finite effective temperature

When the system size goes to infinity at finite effective temperature ( →∞N  with γ< 1), 
the limit of the generating function ( )λ γg ;N  given by (6.8) (6.8) and (6.9) reads

∫λ γ
π

γ λ λ= − + − + − +
π

→∞
g q q qlim ;

1

2

1

2
d 1 cos 2 cosh 1 sinh sin .

N
N

0

2 2A B( ) ( ) [ ( ) ]
 

(6.22)
The function ( )→ λ γ∞ glim ;N N , as well as its first derivative with respect to λ, are 
well defined for all real values of λ. Therefore, according to the Gärtner–Ellis theo-
rem, when N goes to infinity, there exists a large deviation function I ȷ γ;(¯ ) given by 

(¯ ) (¯ )I ȷ I ȷγ γ= →∞; lim ;N N .
Moreover, not only the first long-time cumulant per site and unit of time 

⟨ ⟩/→ ττ ∞ Q Nlim , but also all other cumulants with ⩾n 2, remain finite in the limit 
of infinite size at finite effective temperature. Indeed, when γ< 1, all derivatives of 

( )→ λ γ∞ glim ;N N  with respect to λ have a finite value at λ = 0 in this limit. The fact that 
all cumulants per site and unit of time remain finite in this limit can be also retrieved 
from the structure of the cumulants exhibited by the expressions (6.10)–(6.13) for 
cumulants of order n  =  1, 2, 3, 4). Indeed, the nth cumulant is a polynomial of order n 
in the variables A and B with coefficients proportional to the ( )γΣ N ,p  with ⩽p n. The 
finite values of A and B are independent of N while if γ< 1
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( )
( )→ ∫γ

π γ
Σ =

−

π

∞ −N q
q

q
lim ,

1
d

sin

1 cosN
n

n

n0

2

2 1 (6.23)

is finite for all ⩾n 1.

7. Various physical effects

7.1. Kinetic effects

We call ‘kinetic’ those effects that are related to the kinetic parameters ν̄1 and ν̄2 gov-
erning the mean frequencies of the spin flips by each thermostat. It is of interest to 
consider, at arbitrary fixed temperatures T1 and T2, the condition /ν ν ≪ 12 1 . That is, 
the colder thermostat flips any spin more slowly than the hotter one. We restore in the 
discussion below the dimensionful physical time variable /( )τ ν ν= +t 1 2 . Upon expand-
ing ( )ν ν+ gN1 2  as given by (6.8) and (6.9) in a power series in /ν ν2 1 we find that

( ) ( ) [ ( )] ( )
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭ν ν λ ν γ ν

ν
+ = + − + Σ +λ λ

+ −
−

+ − Og p p p p N
2

e e , ,N1 2
2

1 1
2

1
 (7.1)

in which

( )( ) ( )( )γ γ γ γ= − + = + −+ −p p
1

2
1 1 ,

1

2
1 1 .1 2 1 2 (7.2)

The argument γ1 of the function ΣN ,1 in (7.1) is the leading order term of the expansion 
of γ for small /ν ν2 1.

The leading order term in (7.1) is in fact the scaled generating function for the cumu-
lants of a biased random walk with step rates ( )γΣ+p N ,1 1  to the right and ( )γΣ−p N ,1 1  to 
the left, and dimensionful kinetic parameter ν2 [40, 41]. The corresponding formulae in 
the case where ν ν≪1 2 are obtained by exchanging ν1 and ν2 and replacing γ1 by γ2. In 
other words, if the indices f and s denote the fast and slow thermostats, respectively, 
then the scaled generating function given in (7.1) takes the generic form

( ) ( ) [ ( )] ( )
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭ν ν λ ν γ ν

ν
+ = + − + Σ +λ λ

+ −
−

+ − Og p p p p N
2

e e , ,N1 2
s

1 f
s

f
 (7.3)

From the generic relation (6.6) cumulants read to leading order in /ν νs f

⟨ ⟩ ( ) ( )

⟨ ⟩ ( ) ( )

→

→

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

ν γ γ γ ν
ν

ν γ γ γ ν
ν

= − Σ +

= − Σ +

∞

−

∞

Q
O

Q
O

Nt
N

Nt
N

lim
2

, ,

lim
2

1 , ,

t

m

t

m

2 1
c s

2 1 1 f
s

f

2
c s

1 2 1 f
s

f

 

(7.4)

for = …m 1, 2, . The latter expressions, with t in place of τ, can be retrieved from our 
expressions (6.10)–(6.13) by multiplying them by /τ ν ν= +t 1 2 and expanding them to 
leading order in /ν νs f.
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7.2. One thermostat at zero temperature

Dissipation towards a thermostat at zero temperature was studied by Farago and 
Pitard [18, 19] for an Ising chain in which the energy is injected at a single site. We 
consider here the corresponding limit for the present model.

Let thermostat 2 have T2  =  0 while we keep T1  >  0. Consequently γ = 12 , which for 
A and B given by (1.1) implies that γ= = −1 1A B . Combined with (6.9) this yields 
( ) ¯ ¯ ( )[ ]θ λ ν ν γ= − −λ2 1 e 1 .1 2 1  When the latter expression is substituted in (6.8), we get 

that when γ = 12

( ) ( ) ¯ ¯ ( ) [ ]∑λ γ ν ν γ= − + − + − −λ
>

g
N

q q
1

2

1
1 cos 2 1 e 1 sin .N

q 0

2
1 2 1

2
 (7.5)

The function ( )λgN  is now monotonous, increasing on the whole real λ axis. It follows 
that the saddle point equation ȷλ λ =gd dN ( )/ ¯ has no solution for ȷ̄< 0, which may be 
restated as

I ȷ ȷ=∞ <, 0.N(¯) ¯ (7.6)
This expresses the strict impossibility for the energy to flow from the thermostat at 
T2  =  0 to the one at finite temperature T1  >  0.

The calculation of the cumulants in section 6.2 nevertheless remains valid and their 
expressions now simplify. The cumulants now become polynomials in ¯ ¯ ( )ν ν γ−11 2 1 . For 
instance, the first two cumulants, (6.10) and (6.11), now read

⟨ ⟩ ¯ ¯ ( ) ( )

⟨ ⟩ ¯ ¯ ( ) [ ( ) ¯ ¯ ( ) ( )]

→ →

→ →

ν ν ν ν γ γ

ν ν ν ν γ γ ν ν γ γ

= + − Σ

= + − Σ − − Σ

γ

γ

∞

∞

Q

Q

Nt

Nt
N

lim lim
2

1 ,

lim lim
2

1 1 , ,

t
N

t
N

1

1 2
1 2 1 ,1

1

2
c 1 2

1 2 1 ,1 1 2 1 2

2

2

 
(7.7)

where the inverse temperature β in the special case γ = 12  is determined from 
¯ ( )β γ ν γ= = − −Etanh 2 1 11 1 .

7.3. Kinetic effects when colder thermostat is at zero temperature

When the colder thermostat is at zero temperature, T2  =  0, and one thermostat is 
faster than the other, the scaled generating function given by equation (7.1) becomes

( ) ( ) ( )[ ]  ( )
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭ν ν λ ν γ γ ν

ν
+ = − − Σ +λ Og N

2
1 e 1 , .N1 2

s
1 1 f

s

f
 (7.8)

This is the generating function for a Poisson process. As is well known, its cumu-
lants are all equal, and indeed we find, to leading order in /ν νs f,

⟨ ⟩ ( ) ( )
→

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥ν γ γ ν

ν
= − Σ +

∞
O

Q

Nt
Nlim

1

2
1 ,

t

n
c

s 1 1 f
s

f
 (7.9)

for = …n 1, 2, . By comparing (7.7) and (7.9) one sees that the limits →T 02  and ν ν≪s f 
commute.
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8. Large size and low effective temperature

8.1. Parameters at low effective temperature

We now consider the regime where ≫N 1 and γ< − ≪0 1 1. According to the relation 
( )γ γ ν γ γ= − −2 1 2 1  the condition γ< − ≪0 1 1 corresponds to

⩽ γ− ≪0 1 12 (8.1)
while

/ ¯γ γ ν< − <≪ ≪0 1 and or 0 1.2 1 1 (8.2)
We notice that in the case γ γ=1 2 and ⩽ γ− ≪0 1 12  the stationary state would cor-
respond to an equilibrium state at very low temperature.

In view of later analysis, we rewrite A and B, defined in (1.1), as

γ ν ν γ ν ν= − = −1 , 1 ,1 2 1 2A a B b( ) ¯ ¯ ( ) ¯ ¯ (8.3)
where γ γ γ= − −1 11 2a ( )/( ) and b ( )/( )γ γ γ= − −12 1 . The model is defined for ¯ ¯ν ν ≠ 01 2  and 
the non-equilibrium condition reads γ γ<1 2. As a result, the identity ¯ ( )γ γ ν γ γ= − −2 1 2 1  
entails the hierarchy ⩽ ⩽γ γ γ γ γ< < 11 2 1 2 , and b a⩽< <0 1.

For the sake of conciseness, from now on we denote the long time cumulants per 
site and unit of time

( ) ⟨ ⟩
( )

( )
→

κ γ
ν ν

=
+∞

Q
N

N t
,

1
lim .n

t

n
c

1 2
 (8.4)

The cumulants can be conveniently split into two contributions: a random walk process 
with the same first two cumulants as for the Q process, and a deviation from it. The 

cumulants ( )κ n  for the random walk are denoted by ( )κ n
RW. All even (odd) cumulants take 

the same value, as exemplified by (7.4) in the case of two thermostats whose kinetic 
parameters are of different orders of magnitude. The cumulant of order n can be  
written as

k( ) ( ) ( )( )κ γ γ γ= − ΣN N, 1 , ,n
nRW 1 (8.5)

with the definition

k a b¯ ¯ ( ) ( )⎡
⎣⎢

⎤
⎦⎥ν ν= + − + − −1

2

1 1

2

1 1

2
,n

n n

1 2 (8.6)

where a and b are defined in (8.3). As illustrated by the expressions (6.10)–(6.13) for the 
first four cumulants, the generic expression of the cumulants ( )κ n  are related to those 
for the corresponding random walk as follows. The first cumulant of the Q process can 
be reduced to the random wall contribution

( ) ( )( ) ( )κ γ κ γ=N N, , ,1
RW
1

 (8.7)
while for ⩾n 2

( ) ( ) ( )( ) ( ) ( )κ γ κ γ κ γ= +∆N N N, , ,n n n
RW (8.8)
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where the deviation ( )( )κ γ∆ N ,n  from the random walk process reads

c a b( ) ( ) ( )( ¯ ¯ ) ( )( ) ( )∑κ γ γ γ ν ν∆ = − Σ
=

N N, 1 , , ,n

p

n
p

p
p

p
n

2
1 2 (8.9)

In (8.9) the factor c a b( )( ) ,p
n  is a linear combination of terms a b −q p q, with = …q p0, , , 

where the numerical coefficients depend on the order n of the cumulant; it is deter-
mined from the definition (6.6) for every cumulant per site and unit of time, and the 
expression (6.8) and (6.9) for their generating function.

8.2. Finite chain at zero effective temperature

For a finite size chain, the limit of zero effective temperature for the scaled cumulant 
generating function, ( )→ λ γγ glim ;N1 , is a finite sum given by (6.8) and (6.9) with γ equal 
to one. This function and all its derivatives with respect to λ are well defined for all 
real values of λ. As a consequence, when →γ 1 all cumulants are finite and the large 
deviation function exists and is given by ( ¯ ) ( ¯ )I ȷ I ȷ γ= γ→; 1 lim ;N N1 .

The random walk contribution to the cumulant ( )κ n  is defined in (8.5). According to 
the explicit expression (6.15) for ( )γΣ N ,1 , its value at γ = 1 is merely ( )Σ =N , 1 11  for 

all N. Therefore in the limit →γ 1 the random walk contribution ( )( )κ γN ,n
RW  vanishes as 

γ−1 . More precisely,

k
( )

→

( )κ γ
γ−

=
γ

N
lim

,

1
,

n

n
1

RW
 (8.10)

where kn is defined in (8.6).
We now turn to the Q process. By virtue of (8.7), its first moment coincides with 

the first moment of the corresponding random walk, ( ) ( )( ) ( )κ γ κ γ=N N, ,1
RW
1 , and its 

leading behavior is the leading behavior of ( )( )κ γN ,RW
1 , given by (8.10). Besides, for all 

⩾n 2 the coefficient ( )γΣ N ,n  defined in (6.14), remains finite when γ = 1 at fixed N. 
Thus, according to the expression (8.9), the deviation ( )( )κ γ∆ N ,n  of a cumulant from 
the corre sponding random walk expression vanishes as ( )γ−1 2 when →γ 1,

( ) (( ) )( )
→

κ γ γ∆ = −
γ
ON , 1 .n

1

2
 (8.11)

Eventually the leading ( )γ−1 -term in the cumulant ( )κ n  is equal to the ( )γ−1 -term in 

the corresponding random walk contribution ( )κ n
RW. By virtue of (8.10), it reads

k( )
→

( )κ γ
γ−
=

γ

N
lim

,

1
.

n

n
1

 (8.12)

We point out that the deviation of the first moment ( )( )κ γN ,1  from its leading 
contribution of order γ−1 , denoted by ( )( )κ γ∆ N ,1 , vanishes as ( )γ−1 2, as is the case 
for the deviation ( )( )κ γ∆ N ,n  of every higher order cumulant from the corresponding 
random walk cumulant. Indeed, by virtue of (8.7), the difference ( )( )κ γ∆ N ,1  is the 
difference between the first moment of the random walk and its leading ( )γ−1  term, 
and according to the expression (8.5) for the random walk cumulant, it reads
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k( ) [ ( ) ]( )κ γ γ∆ = − Σ −N1 , 1 .1
1 1 (8.13)

It can be rewritten in terms of a single finite sum

k( ) ( )( )
/
∑κ γ γ∆ = − ∆
=ℓ

ℓs N1 ,
N

1 2
1

1

2

1, (8.14)

where the increment ( )γ∆ ℓs N ,1,  is written in (A.2). This finite sum indeed converges 
when →γ 1, and

(( ) )( )
→

κ γ∆ = −
γ
O 1 .1

1

2
 (8.15)

8.3. Infinite size chain at low effective temperature

In the case of an infinite size chain at finite effective temperature (γ< 1), as discussed 
in subsection (6.4), the large deviation function exists and all cumulants are finite. 
When →γ 1, the scaled generating function for the cumulants still exists and it is 
differentiable for all λ. As a consequence, the large deviation exists and is given by 

I ȷ I ȷ γ= γ→∞ =lim ;N N 1
( ¯) ( ¯ ) , while the first cumulant remains finite.

First we consider the double limit →∞N  and →γ 1 for the random walk process. 
By virtue of the definition (8.5)

k
( )

→ →

( )κ γ
γ−

=
γ∞

N
lim

,

1
.

N

n

n
, 1

RW
 (8.16)

where the notation for the limit is meant to emphasize the commutativity of the limits 
→∞N  and →γ 1 for the leading ( )γ−1 -term in every random walk cumulant. Indeed, 

according to the expression (6.15), on the one hand ( ) [ ( ) ]/→ γ βΣ = +∞ N Elim , 1 tanh 2N 1
2  

and ( )→ → γΣ =γ ∞ Nlim lim , 1N1 1 , while, on the other hand, for all N ( )→ γΣ =γ Nlim , 11 1  
and ( )→ → γΣ =γ∞ Nlim lim , 1N 1 1 .

For the infinite chain (as for the finite chain) the first cumulant ( )( )κ γ∞,1  coincides 
with the first cumulant of the corresponding random walk ( )( )κ γ∞,RW

1 , according to 
(8.7). Therefore the first cumulant in the double limit →∞N  and →γ 1 also vanishes as 

k( )γ−1 1. According to the decomposition (8.7) and (8.8), the deviation of ( )( )κ γN ,n  from 
the random walk process, ( )( )κ γ∆ N ,n , is a linear combination of terms ( ) ( )γ γ− Σ N1 ,p

p  
with ⩽ ⩽p n2  given by (8.8) and (8.9). For finite N, ( )( )κ γ∆ N ,n  vanishes as ( )γ−1 2 
when →γ 1. In the double limit →∞N  and →γ 1, every ( )γΣ N ,p  with ⩽ p2  diverges 
according to its definition (6.14), as can also be seen in the integral representation (6.23) 
for ( )γΣ ∞,n . Therefore the limits →γ 1 and →∞N  cannot be taken independently of 
each other for the calculation of ( )κ∆ n . However ( )( )κ γ∆ N ,n  is expected to decay more 
slowly than ( )γ−1 2 but still faster than γ−1  in an adequate scaling for N and γ−1 . 
Eventually, in the case of the infinite chain, the cumulants vanish as γ−1 , when →γ 1 
with the same coefficient as the random walk contribution

k( )
→ →

( )κ γ
γ−
=

γ∞

N
lim

,

1
.

N

n

n
, 1

 (8.17)
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Now we turn to the correction to this leading γ−1  term. In the regime where 
≫N 1 and γ< − ≪0 1 1, for every cumulant ( )( )κ γN ,n  the correction to the leading 

( )γ−1 -term (8.12) is the sum of two contributions arising from (8.7) and (8.8): on 
the one hand, the correction (8.13) to the leading ( )γ−1 -term in the first moment of 
the random walk defined in (8.5), and on the other hand, the leading behavior of the 
deviation ( )κ∆ n  defined in (8.9). In the double limit ≫N 1 and γ< − ≪0 1 1, the sum 
[ ] [ ( ) ]γ γ− Σ −− N1 , 11

1 , diverges as well as the ( )γΣ N ,n  for ⩾n 2. Indeed, as detailed 
in the appendix, and in the double limit →∞N  and →γ 1, these sums diverge. These 
divergences can be controlled in two scaling regimes which compare the increasing rates 
of N and [ ]γ− −1 1, namely

   [ ] ) →
   [ ] ) / ⩽

γ

γ ρ ρ

− +∞

− = <∞

N

N

scaling regime I : 1

scaling regime II : 1 2 with 0 .

Eventually, in the scaling regime [ ]I , the cumulants behave as

a b k( ) [ ( ) ¯ ¯ ( ¯ ¯ )]( )
[ ]

/ [ ]κ γ γ γ ν ν ν ν∼ − + −N F, 1 1 ; ,n
n n

scl I

3 2
1 2

I
1 2 (8.18)

where a b( ¯ ¯ )[ ] ν νF ; ,n
I

1 2  does not vanish when ¯ ¯ →ν ν 01 2 , while in the scaling regime [ ]II

a b k( ) [ ( ) ¯ ¯ ( ¯ ¯ )]( )
[ ]

/ [ ]κ γ γ γ ν ν ρ ρ ν ν∼ − + −N F, 1 1 , ; , ,n
n n

scl II

3 2
1 2

II
1 2 (8.19)

where a b( ¯ ¯ )[ ] ρ ν νF , ; ,n
II

1 2  does not vanish when ρ = 0 or ¯ ¯ →ν ν 01 2 . We notice that the fac-
tor ¯ ¯ν ν1 2 in (8.18) and (8.19) ensures that, when either ν ν≪1 2 or ν ν≫1 2 even in the 
scaling regimes [ ]I  and [ ]II , the leading behavior of the cumulants ( )κ n  per site and unit 
of time is still given by that of the corresponding random walk defined in (8.5).

8.4. Interpretation of the scaling regimes

Previous results can be interpreted by introducing two physical quantities: the relax-
ation time to the stationary state and the spin correlation length.

First we recall that in the present model the dynamics for the spin configurations 
of the system can be seen as a Glauber dynamics with effective kinetic parameter 
ν ν+1 2 and effective inverse temperature β. Hence the stationary distribution of spin 
configurations is the canonical equilibrium distribution at inverse temperature β, and 
the evolution of the spin configurations from an initial probability distribution to the 
stationary one is that of a relaxation to equilibrium. It has been shown by Glauber [10] 
that in the course of this relaxation the magnetization of the whole chain decays expo-
nentially to its stationary value over the time scale [( )( )]γ ν ν= − + −t 1rel 1 2

1. In other 
words, trel is the relaxation time to the stationary state, a characteristic of which is that 
the mean magnetization is constant. In the limit →γ 1, ν ν+1 2 remains finite and the 
relaxation time trel goes to infinity. Therefore, it is convenient to consider the long-time 
cumulants per site and per unit of magnetization relaxation time, namely

⟨ ⟩
/

⟨ ⟩
( )→ → γ

=
−∞ ∞

Q Q

t t t
lim lim

1
,

t

n

t

n
c

rel

c
 (8.20)
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which are referred to as ‘long time rescaled cumulants’ in the following. According to 
(8.17), all rescaled cumulants for the whole chain scale as the system size N in the low-
temperature regime,

k
⟨ ⟩

/→
∼

ξ∞ ≫ ≫

Q

t t
Nlim

t

n

N
n

c

rel 1, 1
 (8.21)

where the finite coefficient kn is a random walk cumulant given by (8.6): for ⩾m 1

k b

k a

¯ ¯

¯ ¯

ν ν

ν ν

=

=

−
1

2
1

2

m

m

2 1 1 2

2 1 2

 
(8.22)

where a and b are defined in (8.3).
Second, the correlation length ξ is defined from the correlation ⟨ ⟩+s sn n r  between 

spins at sites n and n  +  r in the infinite size chain (limit →∞N  at fixed β) when the 
distance r is large. In the present model, the stationary state for spin configurations 
is the equilibrium state at the effective inverse temperature β defined from γ by 
γ β= Etanh 2 . The equilibrium correlation ⟨ ⟩+s sn n r  in the Ising chain with finite size 
N reads ⟨ ⟩ ( )/( )ζ ζ ζ= + ++

−s s 1n n r
r N r N  with ζ β= Etanh . When →∞N  at fixed β, it 

takes the form ⟨ ⟩ ζ=+s sn n r
r at any distance r. Therefore the dimensionless correlation 

length ( )ξ β  in the system is

ξ β β= − −Eln tanh .1( ) [ ] (8.23)
In the low effective temperature regime [ ( )] [ ( )]ξ γ ∼ +β β− − −O2e 1 eE E1 2 2  while 

[ ( )]γ− ∼ +β β− −O e1 2e 1E E4 4 . Therefore

( )
⎛
⎝⎜

⎞
⎠⎟γ

ξ ξ
− = +O2 1

1 1
.

2 (8.24)

In the low effective temperature regime, at leading order all rescaled cumulants for 
the whole chain scale as the system size N (see (8.21)but the behavior of the subleading 
term depends on the scaling regime for N and β.

In scaling regime [ ]I , the size N grows much faster than βe E2  so that ( )γ− ≫N1 12 . 
According to (8.24) the latter condition implies that in scaling regime [ ]I , when the 
temperature decreases the correlation length ( )ξ β  increases but the size N of the chain 
grows much faster: ( / )ξ ≫N 1. Then the scaling behavior (8.18) for the whole chain can 
be rewritten for ⩾n 1 as

k
⟨ ⟩

/→
[ ]⎡

⎣⎢
⎤
⎦⎥ξ

∼ +
ξ∞ ≪ ≪

Q

t t
N

N
flim

t

n

N n n
c

rel 1

I
 (8.25)

where a b( / )( ¯ ¯ ) ( ¯ ¯ )[ ] [ ]ν ν ν ν=f F1 2 ; ,n n
I

1 2
I

1 2 . The correlation length ξ may be viewed as the 
typical size of domains of parallel spins. Thus /ξN  is the typical number of domains 
with parallel spins or, equivalently, the number of domain walls, Ndw,

[ ]ξ
∼ ≪ ≪N

N N Nwith 1
scl I

dw dw (8.26)
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Eventually, any rescaled cumulant of the whole chain grows linearly with the number 
of sites N, and in scaling [ ]I  the correction to this leading N-behavior scales as the num-
ber of parallel spins domains Ndw.

In scaling regime [ ]II , the size N grows as the temperature goes to zero in such a way 
that ( ) /γ ρ− =N1 22 2  with ρ fixed and finite, namely by virtue of (8.24),

[ ]ξ
ρ∼ <∞N

.
scl II (8.27)

Then the behavior (8.19) of the rescaled cumulants for the whole chain can be rewritten  
for ⩾n 1 as

k
⟨ ⟩

/
[ ( )]

→ [ ]
[ ]ρ ρ∼ +

∞

Q

t t
N flim

t

n

n n
c

rel scl II

2 II
 (8.28)

where a b( ) ( / )( ¯ ¯ ) /( ¯ ¯ )[ ] [ ]ρ ν ν ν ν=f F1 2 ; ,n n
II

1 2
II

1 2 . In the limit where →ρ 0 the function ( )[ ] ρf n
II  

goes to a non-vanishing value. The latter regime corresponds to the equilibrium at 
inverse temperature β in the limit of very low temperature. Eventually, in scaling [ ]II  
the correction to the leading N-behavior of every rescaled cumulant of the whole chain 
is a finite contribution.

The size dependence of the cumulants of particle currents has been investigated for 
various exclusion processes: the one-dimensional symmetric simple exclusion process 
with open boundaries [42], on a ring with periodic boundary conditions [43], for a one-
dimensional hard particle gas on a ring or with open boundary conditions [44] and for 
the one-dimensional lattice gas model ABC in the vicinity of a phase transition [45]. In 
[46] the weakly asymmetric exclusion process on a ring has been considered in a scaling 
regime where the parameter which drives the system out of equilibrium tends to zero as 
the inverse of the system size; all cumulants of a current are calculated at both leading 
order and next-to-leading order in the size of the system.

9. Conclusion

The one-dimensional Ising chain has, for a very long time, been a laboratory for devel-
oping methods of statistical physics. In this work we have contributed to that enter-
prise. We have considered the N-spin cyclic chain with each spin coupled to two 
thermostats at distinct temperatures T1 and T2 and a dynamics that generalizes the 
Glauber model [10]. There appears, as expected, an energy current from the hotter to 
the colder thermostat. Our fermionization method is a direct extension of the method 
introduced by Felderhof for the evolution of the spin probability distribution in an 
Ising chain with Glauber dynamics. It has allowed us to obtain the full spectrum of 
eigenvalues and eigenvectors of a master equation acting in the product space of the 
spin configurations, and two ‘counters’ that keep track of the net energy furnished by 
each of the individual thermostats.

In other words, we have calculated the statistics of the total time-integrated energy 
current Q between the thermostats after a given time interval τ. We found an explicit 
expression for the probability distribution ( )τQP ;  (at arbitrary finite N) at any time τ. 
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In the long time limit we exhibit the generating function for the long time cumulants 
per site and unit of time ⟨ ⟩→τ ∞ Qlim n

c for the transferred energy Q. Their expressions 
can be determined at any order n. We notice that, since the evolution of the joint prob-
ability ( )τQP s, ;  where s is the spin configuration, is Markovian, the corresponding 
generating function is equal to the largest eigenvalue of the matrix that governs the 
evolution of the Laplace transform of ( )τQP s, ;  with respect to the variable Q. Indeed, 
in models solved by fermionic techniques such as those in [18, 19, 36], the large devia-
tion of the time-integrated current X of interest is obtained as the largest eigenvalue of 
that matrix. However, in these works the Laplace transform of ( )τP X; , which describes 
the full statistics, is not exhibited.

The explicit solution for the long time cumulants per site and unit of time has 
allowed us to investigate effects specific to various regimes of the thermodynamic 
and kinetic parameters. The main effects are the following. When thermostat 2 is at 
zero temperature, the current from thermostat 1 to thermostat 2 cannot have nega-
tive fluctuations and the large deviation function is non-zero only for positive time- 
integrated currents; there is pure dissipation towards the zero temperature bath. When 
one thermostat is very slow with respect to the other one, the generating function for 
the long time cumulants of Q per site and unit of time becomes that of a biased random 
walk; all odd (even) cumulants are equal to the same value. In this asymmetric random 
walk the effective kinetic parameter is that of the slower thermostat. This effect has 
already been exhibited in the two-spin model of [20]. In the present model, with ⩾N 2 
spins, the sole coefficient due to N-body effects that does contribute to the asymmetric 
random walk cumulants is ( )γΣ N ,1 f , where the index f refers to the slower thermostat; 
the N-body effects involve only the inverse temperature of the faster thermostat. If 
the colder thermostat is at zero temperature, the generating function for the long time 
cumulants per site and unit of time becomes that of a Poisson process with an effective 
kinetic parameter equal to that of the slower thermostat; the random biased walk is 
confined to positive values of Q.

In this work we have dealt only with global quantities. However, our results allow 
for the calculation, in principle, of any quantity related to the energy currents, and in 
particular energy current–current correlation functions at different points in space and 
time. This is the subject of ongoing investigation.

Acknowledgments

Appendix. Behavior of coefficients ( )γΣ N ,n

In order to investigate the leading behavior of the correction ( )γΣ −N , 11 , where 
( )→ → γ= Σγ∞ N1 lim ,N , 1 1 , as well as the divergence of ( )γΣ N ,n  for ⩾n 2 in the double 

limit ≫N 1 and γ< − ≪0 1 1, we consider the following finite sums of interest. First 
we use the property ( )= Σ N1 , 11  in order to rewrite the correction ( )γΣ −N , 11  as a 
single sum

( ) ( ) ( )
/
∑γ γ γΣ − = − ∆
=ℓ

ℓN s N, 1 1 , ,
N

1
1

2

1, (A.1)
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where

( )
( ) [ ]

γ
γ

∆ = −
− −ℓ
ℓ ℓ

ℓ ℓ
s N

N

q q

q q
,

2 cos sin

1 cos

1

1 cos
.1,

2

 (A.2)

and the discrete variable ( ) /π= −ℓℓq N2 1  varies between /π=q N1  and [ / ]/ π= −q N1 1N 2 . 
Similarly, the definition (6.14) can be rewritten as ( ) ( )/γ γΣ = ∑ =ℓ ℓN s N, ,n

N
n1

2
,  with ⩾n 2 

and

( )
( )

γ
γ

=
− −ℓ

ℓ

ℓ
s N

N

q

q
,

2 sin

1 cos
.n

n

n,

2

2 1 (A.3)

In the double limit where →∞N  and →γ 1 the increments defined in (A.2) and 
(A.3) display the following behavior,

( ) ( )
( )

γ γ
γ

∆ ∼∆ ≡ℓ ℓ
ℓ

!s N s N
N D N

, ,
1 1

,
1, 1, (A.4)

and

( ) ( )
[ ( )]

γ γ
γ

∼ ≡ −ℓ ℓ
ℓ

ℓ

!s N s N
N

q

D N
, ,

2

,
n n

n

n, ,

2

2 1 (A.5)

with the denominator

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠γ γ π= − + −ℓ

ℓD N
N

, 1
1

2

2 1
.

2

 (A.6)

At this point one has to distinguish between two scaling regimes of parameters.
The scaling regime [ ]I  corresponds to ( )γ− ≫N1 12 . Then we rewrite the denominator  

( )γℓD N ,  as

( ) ( ) [ ( ) ]γ γ= − +ℓ ℓ
!D N q, 1 1 2 (A.7)

with ( ) /[ ]π γ= − −ℓℓ
!q N2 1 1 . Hence, from the definition (A.1), we get that when 

( ) →γ− ∞N1 2

( ) ( )
[ ]

γ γΣ − ∼ − −N , 1 2 2 1 .1
scl I (A.8)

In the same limit, for ⩾n 2 the expression ( ) ( )( ) /γ γ− ∑
−

=ℓ ℓ
!s N2 1 ,

n N
n

2 3
1
2

,  tends to a con-

stant denoted as [ ]σn
I  and

( )
[ ( )][ ] /

[ ]γ
γ

σΣ ∼
− −N , 2

1

2 1
n n n

scl I 3 2
I

 (A.9)

with

[ ]
[ ] ( )

∫σ
π

=
+

− +∞

−q
q

q

2
d

1
.n

n n

n
I

2 1

0

2

2 2 1 (A.10)

We notice that if →∞N  at fixed γ< 1, then ( )γΣ ∞,n  is given by (6.23) and it diverges 

as /( )γ− −1 1 n2 3 as →γ 1 with the same behavior as that given in (A.9). In other 
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words, the result from the successive limits →∞N  and then γ− ≪1 1 leads to the same 
divergence in γ−1  as if one considers scaling regime [ ]I  where ( ) →γ− ∞N1 2 .

The scaling regime [ ]II  corresponds to ( )γ ρ− =N1 2 1

2
2 with ρ fixed. Then the 

denominator ℓD  defined in (A.6) is conveniently rewritten as

( ) [ ( ) ]γ ρ π= + −ℓℓD N
N

,
1

2
2 1

2
2 2 2

 (A.11)

In the scaling regime [ ]II  the series [( ) ] ( )/γ γ− ∑ ∆−
=ℓ ℓ

!N s N1 ,N1
1
2

1,  tends to a constant 
denoted as ( )ρ×C2 RW . Then, from the definition (A.1), we get that

( ) ( ) ( )
[ ]

γ γ ρΣ − ∼ − −N N C, 1 2 1 .1
scl II

RW (A.12)

By virtue of the relation ( )γ ρ− =N1 2 1

2
2, the latter behavior can be rewritten as

( ) ( ) ( )
[ ]

γ γ ρ ρΣ − ∼ − −N C, 1 2 1 ,1
scl II

RW (A.13)
with

( )
( )∑ρ

ρ π
=

+ −=

∞

ℓℓ
C 4

1

2 1
.RW

1
2 2 2 (A.14)

In the same scaling ( )( ) / γ∑− −
=ℓ ℓ

!N s N ,n N
n

2 3
1
2

,  tends to a constant denoted as ( )ρ×C2 n ,

( ) ( )
[ ]

( )γ ρΣ ∼ −N N C, 2 .n
n

n
scl II

2 3
 (A.15)

By virtue of the relation ( )γ ρ− =N1 2 1

2
2, the latter behavior can be rewritten as

( )
( )

( )
[ ]

/⎡
⎣⎢

⎤
⎦⎥γ ρ

γ
ρΣ ∼

−

−

N C, 2
2 1

,n

n

n
scl II

2 3 2

 (A.16)

with

( ) ( ) ( )
[ ( ) ]∑ρ π
ρ π

= −
+ −=

∞

−
ℓ
ℓℓ

C
2

2

2 1

2 1
.n

n n

n

2

1

2

2 2 2 2 1 (A.17)

We notice that if the limit →γ 1 is taken at fixed N, then the behavior of ( )Σ N , 1n  at 
large N is given by that of a sum where the ℓth increment ( )ℓ

!s N , 1n,  has the denominator 
( ) /( )( ) π= −ℓℓD N N, 1 1 2 2 12 2 2. Then ( )Σ N , 1n  behaves as ( )−N C2 0n

n
2 3  where the constant 

Cn(0) happens to be the value of ( )ρCn  (A.17) taken at ρ = 0. In other words, the result 
from the successive limits →γ 1 and then ≫N 1 coincides with the behavior (A.15) of 

( )γΣ N ,n  in scaling [ ]II . In other words, the divergence in N of ( )γΣ N ,n  when the limit 

→γ 1 is taken first is the same as in the scaling regime [ ]II , where ( )ρ γ= −N 2 1  is 
fixed and then sent to zero.
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