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Abstract. We study the Game of Life as a statistical system on an L× L 
square lattice with periodic boundary conditions. Starting from a random 
initial configuration of density ρin = 0.3 we investigate the relaxation of the 
density as well as the growth of spatial correlations with time. The asymptotic 
density relaxation is exponential with a characteristic time τL whose system size 
dependence follows a power law τL ∝ Lz with z = 1.66± 0.05 before saturating 
at large system sizes to a constant τ∞. The correlation growth is characterized 
by a time-dependent correlation length ξt that follows a power law ξt ∝ t1/z

′
 

with z′ close to z before saturating at large times to a constant ξ∞. We discuss 
the difficulty of determining the correlation length ξ∞ in the final ‘quiescent’ 
state of the system. The decay time tq towards the quiescent state is a random 
variable; we present simulational evidence as well as a heuristic argument 

indicating that for large L its distribution peaks at a value t∗q(L) ≃ 2τ∞ logL.
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1. Introduction

The Game of Life (GL) is a cellular automaton proposed in 1970 by Conway [1] and 
made popular by Gardner [2]. It evolves deterministically in discrete time t = 0, 1, 2, ... 
according to the following rules. On a 2D square lattice, at any instant of time t, each 
site r may be occupied or empty (occupation number nt(r) = 1 or nt(r) = 0). The sites 
are often referred to as ‘cells’ and the occupied and empty states are said to correspond 
to the cell being ‘alive’ or ‘dead’, respectively. The state of a site r at time t  +  1 follows 
deterministically from its own state and the states of its eight neighbors (the Moore 
neighborhood) at time t; the update rule is formulated with the aid of the auxiliary 
quantity St(r) ∈ {0, 1, ..., 8}, defined as the sum at time t of the occupation numbers of 
the neighbors of r. In terms of this sum Conway’s update rule reads

 –  if St(r) ̸= 2, 3, then nt+1(r) = 0 ; 

 –  if St(r) = 2, then nt+1(r) = nt(r) ; 

 –  if St(r) = 3, then nt+1(r) = 1,

and is carried out synchronously for all sites.
The qualification ‘totalistic’ is used to indicate that the occupation numbers of the 

neighboring sites enter the update rule only through their sum. The number of possible 
totalistic cellular automata based on the Moore neighborhood is equal to 218. Several 
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authors [3–5] have contributed to classifying the automata in this category. Conway 
noticed that there is (i) a large ‘supercritical’ subclass for which, typically, an initially 
localized set of living cells will progressively fill the whole available lattice with living 
cells at some average density, and (ii) a complementary subclass for which no such 
explosive growth happens.

The GL update rule stated above stemmed from Conway’s attempt to find the most 
interesting update rule. In physical parlance, this meant that he was trying to stay as 
close as possible to the critical line separating the two subclasses, while refusing to be 
supercritical.

Interest in the statistical properties of the GL goes back to at least the work of 
Dresden and Wong [6], who adopted an analytical approach, and that of Schulman and 
Seiden [7], who incorporated stochasticity in the rules of the game and were followed 
therein by many later researchers. Much interest in the GL was subsequently gener-
ated by Bak et al [8]. On the basis of their simulation of the effect of small external 
perturbations repetitively applied to the GL these authors claimed that, due to ‘self-
organization’ [9, 10], the GL is exactly at a critical point. This idea has been advanced 
many times [11–16], either as a fact or as a hypothesis, but was abandoned following 
the investigations of, in particular, Bennett and Bourzutschky [17], Hemmingsson [18], 
Nordfalk and Alstrøm [19] and Blok and Bergersen [20]. Our work confirms, if that was 
still needed, that the GL is subcritical; however, and as many authors have noted, it is 
close to criticality. In this study we investigate its near-critical properties while staying 
strictly within the limits of the original GL: we are interested in deterministic dynam-
ics and do not study any stochastic extensions of the GL, nor subject it to external 
perturbations.

In this work we will study the GL on a periodic L× L lattice, letting it start from 
an arbitrary random initial configuration. It is well known that under such circum-
stances the GL, after a transient which may take thousands of time steps, enters a limit 
cycle, also referred to as a ‘quiescent’ or a ‘stationary’ state. The quiescent state is 
composed of small independent (i.e. non-overlapping) groups of living cells that we will 
call ‘objects’ and that may be static or periodically oscillating (see e.g. [8, 13, 21]). The 
vast majority of these objects belong to a dozen or so different types with linear sizes in 
the range from two to five lattice units. The oscillators among them almost all have a 
period of two time units; oscillators of higher periodicities do exist but are statistically 
insignificant. Related to the oscillators is the class of objects that are time-periodic 
modulo a translation in space. In GL jargon these are referred to as ‘spaceships’, their 
simplest and foremost example being the ‘glider’. On dedicated websites a great deal 
of attention is paid to these special objects. On a lattice with periodic boundary con-
ditions they may certainly occur during the relaxation process, but their probability 
of survival into the quiescent state is far too small for them to have an impact on the 
properties studied in this work.

This paper is organized as follows.
In section 2 we consider the relaxation of the density of living cells to its quiescent 

state value. The relaxation curve is well known [21], but its asymptotic long time decay 
is subject to finite size effects that have never been reported. The observation of these 
effects requires strongly improved statistics, presented in section 2. We extract from 
our simulations the L-dependent decay time τL associated with the asymptotic density 
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decay. For L ! 60 this decay time appears to have the power-law behavior τL ∝ Lz 
with z ≈ 1.66, whereas after a crossover regime it saturates for L ! 180 to a constant 
τ∞ ≈ 1800.

In statistical mechanics, the study of the order parameter is often a prelude to the 
study of correlation functions. In section 3, therefore, we consider how density pair 
correlations develop over the course of time. We are not aware of any earlier study of 
these time-dependent correlations. We establish that there is a correlation length ξt 
that grows with time as ξt ∝ t1/z

′
 and saturates for t ! 8000 to a constant ξ∞ ≈ 50. Our 

value for z′ is close to that of z and we strongly suspect that they are in fact one and 
the same exponent, the difference being due to some unknown systematic bias in our 
analysis. At the end of section 3 we emphasize the difficulty of collecting statistics on 
the correlations in the quiescent state.

In section 4 we consider the probability distribution PL(tq) of the decay times tq to 
the quiescent state. It appears that for large tq, with very good accuracy, this distribu-
tion decays exponentially with the same decay constant 1/τL as found in section 2. A 
heuristic argument leads us to conclude that for large L the time t∗q at which PL reaches 
its peak scales as t∗q(L) ∝ logL. The predicted curve for t∗q(L) is in excellent agreement 
with the simulation data.

In section 5 we discuss our results and compare them with related work in the lit-
erature. We address several closely related points of interest and also briefly return to 
the question of self-organized criticality.

2. Density decay

We have simulated the time evolution of the GL on an L× L lattice for linear sys-
tem sizes up to L  =  512. The system was started in a random initial configuration 
(‘soup’) of density ρin = 0.3, meaning that each site was independently alive with 
probability ρin or dead with probability 1− ρin. We then observed the decay with 
time of the density ρL(t) ≡ L−2

∑
r⟨nt(r)⟩, where the angular brackets ⟨. . .⟩ stand for 

the average over the random initial configurations. Since we wish to analyze the 
decay of the density difference ρL(t)− ρL(∞), which is analogous to an order param-
eter, we have in our simulations first determined the L-dependent quiescent state 
density ρL(∞).

2.1. Quiescent state density ρL(∞)

Table 1 shows our simulation results for the quiescent state density ρL(∞) for sys-
tem sizes from L  =  128 upwards, together with the number N of quiescent states 
that contributed to each average. The error bars were obtained from the dispersion 
among ten subsets of quiescent states. The convergence to the infinite lattice limit 
ρ∗ ≡ limL→∞ ρL(∞) seems to be at least exponential in L, but it is hard to ascertain its 
rate. The last line of table 1 lists what we feel is the best possible estimate,

ρ∗ = 0.028 72± 0.000 01, (2.1)

https://doi.org/10.1088/1742-5468/aaf718
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which is compatible with, and slightly more accurate than, the best earlier determina-
tions [21, 22].

2.2. Density decay at intermediate times

In figure 1, using now the values of ρL(∞) determined above, we show in a log–log plot 
the decay curves of the density difference ρL(t)− ρL(∞) for various values of L. The 
most prominent feature is that in the large lattice limit the decay curves clearly conv-
erge to a limit curve ρ(t) ≡ limL→∞ ρL(t). There appears to be an interval of almost 
two decades of intermediate times where the limit curve is close to linear, signaling a 
power-law relation

ρL(t)− ρL(∞) ∝ t−b, 10 ! t ! 1000. (2.2)
The slope of the dashed straight line, drawn for comparison, shows that b ≈ 0.5.

The steepening of the limit curve at times t ! 2000 indicates the crossover from 
power-law to exponential decay. The GL is therefore subcritical: had it been critical, 
the power law would have held up to increasingly longer times for increasing L.

Bagnoli et al [21] provide essentially the same limit curve, which they obtained for 
a lattice size of 320× 200 sites, but plot the density, instead of the density difference, 
as a function of time. For intermediate times such an analysis leads to a good linear fit 

ρ(t) ∝ t−b̃, but with a different exponent b̃ about equal to b̃ ≈ 0.3; Garcia et al [23] in 
later work report b̃ = 0.39± 0.04. Neither work discusses the finite size behavior of this 
curve, which will be our next object of investigation.

2.3. Density decay for t → ∞

Figure 1 shows that the smaller the lattice size L, the earlier the exponential decay sets 
in. We now proceed to discuss these finite size effects.

Figure 2 presents the same relaxation curves as figure 1, but in a log-linear plot 
which turns the exponential tails of the decay curves into straight lines. It appears that 
we have

Table 1. List of quiescent state densities ρL(∞) with N the number of quiescent 
states having contributed to the average. The last line is our extrapolation to 
infinite system size, limL→∞ ρL(∞) ≡ ρ∗ = 0.028 72(1).

L ρL(∞) N

128 0.028 873 ± 0.000 009 100 000
144 0.028 828 ± 0.000 027 10 000
160 0.028 845 ± 0.000 022 10 000
176 0.028 758 ± 0.000 025 10 000
192 0.028 771 ± 0.000 012 10 000
208 0.028 734 ± 0.000 017 10 000
224 0.028 754 ± 0.000 009 10 000
240 0.028 711 ± 0.000 018 12 500
256 0.028 739 ± 0.000 008 40 000
512 0.028 721 ± 0.000 006 40 000
∞ 0.028 72 ± 0.000 01

https://doi.org/10.1088/1742-5468/aaf718
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ρL(t)− ρL(∞) ∝ e−t/τL (2.3)
without any extra multiplicative power of time on the right-hand side. Note that in 
figure 2 the differences ρL(t)− ρL(∞) go down to values as low as 10−6, compared with 
only 10−3 in the time regime shown in figure 1. In figure 2 the intermediate power 
law decay has become nearly indistinguishable in the extreme upper left corner of the 
graph. The limiting curve is truly exponential only when ρ(t)− ρ(∞) is of the order 
of a few thousandths. In order that we obtain good statistics for such small density 
differences the curves for the largest values of L required the largest computational 
effort (see table 1): those for L ! 144 are averages over the time evolution of a number 

Figure 1. Density difference ρL(t)− ρL(∞) on a log–log scale for values of the 
system size L that increase from left to right. For L ! 100 the curves become 
difficult to distinguish from their L = ∞ limit. The dashed line has slope  −0.5.

Figure 2. Density difference ρL(t)− ρL(∞) on a linear-log scale. Note that the 
vertical scale here goes down to much smaller values than in figure 1. The curves 
are for the same values of L with the same color code as in figure 1. Curves for 
larger values of L overlap among themselves and with the limit curve, and are not 
shown.

https://doi.org/10.1088/1742-5468/aaf718
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N of initial configurations between 10 000 and 40 000. The curves for the smaller L are 
averages over at least 100 000 initial configurations.

It is easy to extract the asymptotic decay time τL for each lattice size L from the 
linear part of the corresponding decay curve. The τL are shown in a log–log plot in 
figure 3. For moderate L they go up as a power law of L, but then saturate at a value 
τ∞ ≈ 1800. Numerically we find

τL ≃
{
ALz, A = 1.03, z = 1.66± 0.04,
τ∞ = 1800± 50, L → ∞, (2.4)

where z is the dynamical exponent. The individual error bars (not indicated) of each 
data point in figure 3 are chiefly due to the choice of the interval for the linear fit in 
figure 2. The small scatter in the set of data points is representative for these individual 
errors. The error bar ±0.04 in z is due to the variations in slope of the red line that is 
still compatible with the data points. The error in τ∞ is based on what seems a reason-
able extrapolation.

Figure 3 shows that deviations from the power law first begin to occur, roughly, for 
L ! 60. We expect that this length scale also corresponds to a spatial correlation length 
and will investigate that idea in section 3.

For later reference we show in figure 4 the curves of figure 1 multiplied by the power 
tb (taking b  =  0.50) and with their time scaled by τL. As a consequence, the power-law 
regime appears as a plateau and the exponential tails coincide. In the regime of scaled 
times between roughly 500 and 5000 corrections to this finite size scaling are clearly 
visible; we have not investigated these any further.

3. Time-dependent correlation length

We wish to interpret the length scale identified above as a correlation length, and to 
that end we now investigate the correlations between the occupation numbers on sites a 
distance r apart. To the best of our knowledge, such correlations have not been studied 
before.

Figure 3. Data points: the relaxation times τL extracted from figure 2 shown on a 
log–log scale. Red line: best linear fit, having a slope of 1.66.

https://doi.org/10.1088/1742-5468/aaf718
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In the initial configuration the site occupation numbers of distinct sites are uncor-
related. Correlations will develop for t  >  0, and we expect that there will be a time-
dependent correlation length ξt. As the system is subcritical, this length must in the 
large time limit necessarily saturate at some finite constant value ξ∞.

For the simulations that follow we would ideally like to work on an infinite lattice. 
In practice we have worked on a 512× 512 lattice, whose linear size is considerably 
larger than the range of the expected correlations. We will conclude a posteriori that 
for our purposes this lattice size is practically the ‘thermodynamic limit’.

We have determined the time-dependent truncated pair density function

ρ2(r, t) ≡ ⟨nt(0)nt(r)⟩ − ⟨nt(0)⟩2 (3.1)
where, as before, ⟨. . .⟩ denotes the average over the random initial ensemble at density 
ρin = 0.3. The notation ρ2(r, t) in (3.1) is meant to include both a translational average 
and an average over the spatial annulus with |r| = r.

Our interest is in the large-r behavior of the pair density, and we have checked that 
circular symmetry sets in quickly for distances !10 lattice units. To represent ρ2(r, t) 
we divided the axis of the variable log r into equal-size bins centered at r  =  rk where 
log rk = k/10 for k = 0, 1, 2, . . .. This, combined with the annular average, leads to better 
statistics1 for large values of r. We have determined ρ2(r, t) for all k such that rk ! 180. 
Figure 5 shows our raw data for the pair correlation ρ2(r, t), plotted as a function of r for 
the geometric sequence of times t = 50, 100, 200, ..., 6400. The figure first of all corrobo-
rates the expected phenomenon that the range of the correlations increases with time. 
It warrants numerous comments, that we will make in the four following subsections.

3.1. Correlation decay at intermediate and short distances

In an intermediate spatial range that depends on t the curves show the power-law 
behavior ρ2(r, t) ∝ r−η with η = 1.30± 0.10. Although this intermediate range does 

Figure 4. The curves of figure 1 multiplied by t0.50 and with the time scaled such 
that their exponential tails coincide. The values of L and the color code are as in 
figure 1. The power law regime appears as a plateau (dashed line).

1 Some of the bins with small k values are empty, but this is of no importance for our analysis of the large-r  
behavior.

https://doi.org/10.1088/1742-5468/aaf718
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not cover more than a decade, its existence again shows that the GL is not far from 
criticality.

The values of ρ2(r, t) for r ! 10 represent short-range correlations and are outside 
our focus of attention, but we must nevertheless comment on them. The precise shape 
of ρ2(r, t) in this spatial region is definitely dependent on our choice of binning. The 
truncated pair density may, and in fact does, have zeros on the r axis. For t  =  50 a 
negative dip in the correlation occurs around r  =  27 and is followed by at least two 
further oscillations. As t increases, this first dip moves to higher r, such that for t  =  400 
it is located at r  =  95 and for t  =  800 it has moved out of the range of r covered by 
our simulations. However, the existence of dips at larger r may still reflect upon the r 
dependence of the tail visible in the simulation.

For our longest times, t  =  3200 and t  =  6400, the short range structure in ρ2(r, t) is 
seen to strongly increase. We comment on this in section 3.3.

3.2. Correlation decay for r → ∞

Figure 6 shows a log–log plot of the data (except the t  =  50 curve) of figure 5 after they 
have been subjected to a scaling similar to, although more complicated than, the one 
that led to figure 4. The scaling here consists of the following three operations:

 (i)  Multiplication by the power r1.30, which results in the power-law regimes appearing 
as plateaus; the plateaus are not very well developed at short times but become 
better visible at later times.

 (ii)  Multiplication by a constant e∆(t) chosen such that all plateaus are at the same 
common level indicated by the dashed line in the figure.

Figure 5. The truncated pair density ρ2(r, t) as a function of the radial distance 
r. The curves are for times t = 50, 100, . . . , 6400. All simulations are for a lattice 
of 512× 512 sites. The curves for the largest times, t  =  3200 and t  =  6400, are 
averages over 100 000 and 50 000 configurations, respectively. Those for the smaller 
times are each on 5000 configurations. The dashed line has slope of  −1.30 and 
indicates the power-law behavior discernible in an intermediate time regime of 
each curve before it steepens.

https://doi.org/10.1088/1742-5468/aaf718
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  The ‘shift’ ∆(t) is determined only up to a constant; we have arbitrarily set 
∆(5600) = 0 (curve not shown). This shift describes the decay with time of the 
amplitude of the correlation. One might have expected that e−∆(t) would be 
proportional to ρ−2(t), which in many cases in statistical physics is the natural 
normalization factor for the pair density; this simple normalization does not, 
however, appear to hold here. We find that for 400 ! t ! 2400 the shift ∆(t) is 
roughly linear in t.

 (iii)  Rescaling of the abscissa from r to r/ξt, with the ξt chosen such that for all curves 
their initial deviations from the plateau value occur at the same rescaled time. 
This determines the ratios of the ξt. We observe that there is a good scaling; its 
mathematically expression is

ρ2(r, t) ≃
e−∆(t)

rη
G (r/ξt) , (3.2)

  valid in the time regimes of the power law and of its crossover to a steeper decay. 
It appears that in the region where the deviations from power-law behavior first 
occur, i.e. for 20 ! r/ξt ! 80, the scaling function is best approximated not by an 
exponential but by G(u) = cst× u e−κu. We have fixed the scale of the abscissa in 
figure 6 by the choice κ = 1.

The resulting values of ξt are shown on a log–log scale in figure 7. Over most of the 
range shown there is a linear dependence, indicating the power-law relation ξt ∝ t1/z

′
. 

Deviations from this relation begin to occur only for t  =  3200 and become more appar-
ent for t  =  6400. The saturation of ξt at some finite value ξ∞, although only slow, seems 
clearly indicated; numerically we estimate

Figure 6. The curves of figure 5 multiplied by rη and shifted by ∆(t), as a function 
of the scaled coordinate r/ξt. This makes them coincide in the region 20 ! r/ξt ! 80 
where their spatial decay begins to deviate from the power law r−η.

https://doi.org/10.1088/1742-5468/aaf718
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ξt ≃
{
B t1/z

′
, B = 0.12, z′ = 1.5± 0.1,

ξ∞ = 50± 10, t → ∞. (3.3)

Figure 7 also shows for comparison the straight line corresponding to the exponent 
value z  =  1.66 found in section 2. The two slopes are visually close to parallel, even 
though our estimates for the statistical errors in z and z′ fall short of overlapping.

The essence of our remarks below equation (2.4) about the error bar estimation 
remains valid here. In the absence of strong indications to the contrary, we adhere to 
the simplest scenario in which at each time t there is only a single length scale, so that 
z′ = z. Our error bars reflect the statistical errors but do not take into account any 
systematic effects that there might be. We tentatively attribute the difference between 
the two values to a small but unknown systematic bias that we believe most likely 
affects the analysis of the correlation function, which is less straightforward than that 
of the density decay.

We note, finally, that the limit value ξ∞ in figure 7 cannot be estimated with the 
same accuracy as τ∞ in figure 3.

3.3. Correlations upon the approach of the quiescent state

We now discuss the evolution of the pair correlation at late times, when the system 
approaches its quiescent state.

For the 512× 512 (essentially infinite) lattice the time decay of the density difference 
ρL(t)− ρL(∞) starts its crossover to exponential around t ≈ 1000, but becomes truly 
exponential only for times as late as several thousand time units. The density ρL(t) of 
living cells is then only a few thousandths above the quiescent state value ρ∗ = 0.028 72.

The nature of the quiescent state was recalled in the introduction. The small static 
and periodic objects of which it consists cannot overlap—if two of them were to over-
lap, they would interact and transform into something else. Therefore the constituents 
of the quiescent state act as ‘hard objects’ with a typical diameter of the order of a few 

Figure 7. Data points: the correlation length ξt as a function of time t on a log–log 
scale. The red line is the best linear fit and has a slope 1/z′ with z′ = 1.50; the 
dashed black line, shown for comparison, has slope 1/z with z  =  1.66 as determined 
in section 2.3.

https://doi.org/10.1088/1742-5468/aaf718


Density decay and growth of correlations in the Game of Life

12https://doi.org/10.1088/1742-5468/aaf718

J. S
tat. M

ech. (2019) 013212

lattice units. This is a new short-distance length scale, which changes the structure of 
the pair correlation.

Figure 8 shows the pair density (multiplied by the power law r1.30) at four different 
times: t = 5600, 6400, 8000 and 20 000. The curves are averages over a number N of 
independent systems equal to N = 35 000, 50 000, 20 000 and 35 000, respectively. At 
time t = 20 000 (red curve) virtually all systems have reached the quiescent state.

All these runs were performed for lattice size L  =  512. Error bars were determined 
from the variance of ten subgroups of results. As expected, all error bars increase with 
r. For t  =  5600 and t  =  6400 they remain, nevertheless, at most of the order of the sym-
bol size over the full range shown. For t  =  8000 they begin to considerably exceed the 
symbol size when r ! 100.

When the time t is further increased, the curve ρ2(r, t) seemingly becomes a chaotic 
function of r. This appearance is due to two very different effects which we will discuss 
for t = 20 000:

 (i)  First, for r ! 20 the error bars in the t = 20 000 curve are still small, and what 
looks like a random curve is actually a reproducible structure, generated by the 
appearance of the new short-range length scale. This is well illustrated by the 
phenomenon that we see happening near r  =  12 for late times. Near this point, 
the black and green curves begin to develop a dip that gradually deepens (blue 
curve). Beyond a certain time (t ≈ 9000) the pair density at r  =  12 goes negative, 
as signaled by the encircled data points of the red curve. The associated oscil-
lating behavior in space is analogous to that of the pair correlation in a dense 
liquid; in the present case the atoms are not the individual living cells but the 
elementary static or periodic objects into which they have aggregated.

 (ii)  Secondly, for r ! 20, the randomness in the t = 20 000 curve is due to the difficulty 
of collecting good statistics. In this regime the error bars, some of which have been 

Figure 8. Truncated pair density function for four late times. The time t = 20 000 
corresponds practically to the quiescent state. Error bars are discussed in the text; 
a few typical ones have been indicated. For the quiescent state (red curve) the six 
data points where ρ2 is negative have been circled. All runs were performed for 
lattice size L  =  512.
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indicated, increase hugely with r and this part of the curve is not reproducible. 
The root cause is again the aggregation of living cells into a few types of larger 
objects; this reduces the effective number of degrees of freedom without reducing 
the computational requirements, and hence makes averaging less efficient.

The question of whether the GL quiescent state is critical, i.e. has infinite correlation 
length, is of definite interest. It is from this state that Bak et al [8] and later authors 
start in their attempts to show or disprove that the GL is self-organized critical. The 
present work provides strong indication that for t → ∞ the GL correlation length ξt 
tends to a finite value ξ∞. The state of affairs described above makes clear, however, 
that it is very hard to track ξt down in a simulation all the way to the quiescent state, 
or, in practice, to t = 20 000. We briefly return to related questions in section 5.

4. Decay time distribution

Let tq denote the random instant of time (the ‘decay time’) at which the system reaches 
its quiescent state. This random variable is of course determined by the random initial 
configuration and we will denote its distribution by PL(tq). In this section we discuss 
how the dynamic exponent z appears in this distribution.

4.1. Simulation data

For system sizes L = 128, 256 and 512 we determined the distribution PL(tq) from an 
ensemble of 900 000, 150 000 and 20 000 initial states, respectively2. In figure 9 we pres-
ent the resulting PL(tq). Our results are fully consistent with the early work by Bagnoli 
et al [21] for lattices of up to L  =  256, but present-day computational power allows 
for a much higher precision. It appears that the distribution has a ‘dead time’ during 
which there is virtually zero probability of the system reaching its quiescent state, fol-
lowed by a steep rise in this probability, which quickly attains a maximum. Finally, as 
is clear from figure 9, the curves decay exponentially for long times3. It appears that the 
decay times (that we may call τ ′L) of the exponential tails are numerically indistinguish-
able from the τL obtained in figure 3. Hence we have from this simulation

PL(tq) ≃ aL e
−tq/τL , tq → ∞, (4.1)

with decay times τL as in equation (2.4).
Bagnoli et al [21] considered the location t∗q(L) where PL(tq) peaks and found that in 

the regime of system sizes they studied it may be described by a power law t∗q(L) ∝ Lζ 
with ζ ≈ 0.7 (they denote this ζ by z). In figure 10 we show their data points, as well as 

2 To plot PL(tq) we divided the abscissa into time intervals [100(ℓ− 1), 100ℓ] with ℓ = 1, 2, 3, . . .. During the simula-
tion we determined for each time interval the minimum and the maximum number, Nmin(ℓ) and Nmax(ℓ), respec-
tively, of living cells that occurred. When at the end of the (ℓ+ 1)th interval we found that Nmin(ℓ+ 1) = Nmin(ℓ) 
and Nmax(ℓ+ 1) = Nmax(ℓ), we decided that the decay time was 100(ℓ− 1). This procedure detects quiescent states 
with density periodicities up to 100, if any should occur.
3 For a periodic square lattice of L  =  20 it was determined by Johnston [24] that the decay of the tail is exponen-
tial with very high accuracy.
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our own, for L = 128, 256 and 512. For L  =  128 and L  =  256 our values are seen to vir-
tually coincide with those of [21]. The data, however, suggest a downward curvature, 
which is reinforced by our data point at L  =  512. We investigate the large-L behavior 
of this curve in the next subsection.

4.2. Heuristic argument

We construct here for the curve t∗q(L) of figure 10 a heuristic argument valid in the 
limit of asymptotically large L, which in practice is attained when L ! ξ∞. In that limit 
we expect t∗q(L) also to tend to infinity.

At a given time t, let us imagine an L× L lattice divided up into L2/ξ2t  blocks of 
size ξt × ξt. Such blocks may be considered as statistically independent, due to not 
yet having had enough time to interact. Let the function cL(t) indicate the probability 
at time t that a ξt × ξt block is quiescent. This function is unknown but we certainly 
expect it to increase with time and be such that cL(∞) = 1. Let QL(t) be the probability 
at time t that an L× L system be quiescent. For this to be true, it is necessary that all 
its ξt × ξt blocks be quiescent, and therefore

QL(t) = cL(t)
L2/ξ2t . (4.2)

Whereas mathematically cL(t) and QL(t) are equivalent, the tacit assumption here is 
that cL(t) is only weakly dependent on L, and that we may exploit this feature.

In practice it is more convenient to work with the function f L(t) defined by

QL(t) = e−L2fL(t), fL(t) =
1

ξ2t
log

1

cL(t)
, (4.3)

and which is also expected to be only weakly dependent on L. Since cL(t) → 1 for 
t → ∞, we have that fL(t) → 0 in that limit.

Figure 9. Probability distribution PL(tq) of the decay time tq to the quiescent 
state in systems of linear size L = 128, 256 and 512. The exponential decay of the 
long-time tail is manifest.
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Using that PL(t) = (d/dt)QL(t) we get from equation (4.3) the expression

PL(t) = −L2f ′
L(t)e

−L2fL(t). (4.4)
The maximum of PL(t) is the solution of (d/dt)PL(t)|t=t∗q = 0, which gives

f ′′
L(t

∗
q) = L2f ′2

L (t
∗
q). (4.5)

We compare (4.4) with the findings of our simulation, namely equation (4.1), and 
obtain after a time integration

fL(t) = − 1

L2
log(1− aLτLe

−t/τL), L ≫ ξ∞. (4.6)

In the large-L limit τL tends to τ∞ ≈ 1800, and it appears from the simulation4 that 
the ratio aL/L2 tends to the fixed value aL/L2 ≡ A ≈ 5.2× 10−8. Upon inserting (4.6) 
in the maximum condition (4.5) we obtain

t∗q(L) = 2τ∞ logL + τ∞ logAτ∞. (4.7)
This curve, with the values of A and τ∞ as stated before, is been presented as the solid 
red line in figure 10. We see that for L ! 256 it is in excellent agreement with the two 
data points and provides a credible asymptotic expression for larger L.

It should be noted, however, that this is a lowest-order approximation, based on 
the empirical input formula (4.1). We have not pursued the possibility of improving the 
result by adding higher-order correction terms to that formula.

Figure 10. Time t∗q for which PL(t) has a maximum, as a function of L. The square 
data point for L  =  20 is due to Johnston [24], the triangular ones for L = 32, 64, 128 
and 256 are due to Bagnoli et al [21] and have been connected to guide the eye, 
and the circular ones, for L = 128, 256 and 512, were obtained in this work. The red 
line is the large-L expansion (equation (4.7)) of our heuristic theory.

4 This limit appears only when considering our last two curves, the ones for L  =  256 and L  =  512.
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5. Discussion

We have considered the statistics of the GL on an L× L square lattice for sizes up 
to L  =  512. Even though we used no special programming techniques, our accuracy is 
higher than that of earlier work, which mostly dates back one or two decades.

We have studied finite size effects and established the dependence of the asymp-
totic density relaxation time τL on the system size L. We found that in an intermedi-
ate range of system sizes τL ∝ Lz with a dynamical exponent z = 1.66± 0.04; and that 
for system sizes L ! 180 the relaxation time τL saturates and approaches the constant 
value τ∞ = 1800± 50, independent of system size.

We have performed the first study, to the best of our knowledge, of correlation func-
tions in the GL. We found that when the system relaxes from a random initial state, 
the large-distance decay of the pair density may be characterized by a time-dependent 
correlation length ξt. We found that for an intermediate range of times ξt ∝ t1/z

′
, 

with z′ close to z, whereas for times t ! 6000 there is saturation at a constant value 
ξ∞ = 50± 10.

Hence there are lattice-size-independent cutoffs in space and time, exactly as one 
would expect for a non-critical system. Larger lattices have been considered by several 
investigators in the past, but sizes larger than L  =  512 are not needed to reach our 
conclusions.

We briefly add a few more comments on the relation between our results and other 
work that has been reported in the literature.

Bennett and Bourzutschky [17] obtain a correlation length of 42± 3 lattice dis-
tances, which compares favorably with our ξ∞ = 50± 10. Their value is based, essen-
tially, on the penetration length of the density into the system away from a boundary 
of cells kept alive randomly; we have independently confirmed [25] the length obtained 
by such a procedure. The relaxation time of 200± 10 time steps reported by same 
authors [17] is an average time and refers to the relaxation of external perturbations; it 
cannot be compared with the asymptotic time τ∞ of present work.

We have not explored initial densities other than the value ρin = 0.3. It appears 
in simulations [16, 21, 23, 26] that there is an interval 0.15 ! ρin ! 0.75 for which the 
density ρ∗ of the final quiescent state is constant within the accuracy of the simula-
tion. Gibbs and Stauffer [22], in particular, starting from an initial density ρin = 0.5, 
obtained the same quiescent state density ρ∗ of our equation (2.1) to an accuracy of 
within at least three decimal places. The curves ρL(t) for different initial densities 
approach each other rapidly (as it seems, exponentially fast in time). This does not 
prove, but at least suggests, that the exponents associated with this decay are univer-
sal with respect to ρin within the interval in question. We therefore speculate that the 
asymptotic relation between the length and time scales found in the present work for 
ρin = 0.3 in fact holds in this whole interval of initial densities.

The question of universality may also be asked about the exponents b (for the 
density; section 2.2) and η (for the correlation function; section 3.1). Whereas z and z′ 
concern the asymptotic exponential decay (of the density in time and of the correlation 
function in space, respectively), the exponents b and η refer to intermediate power-law 
regimes. Speculation, therefore, seems more dangerous here. We have no data on η for 
initial densities other than ρin = 0.30. As far as b is concerned, simulation of the density 
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decay for different initial densities shows that for ρin ! 0.25 and ρin ! 0.50 the power-
law regime becomes too ill-defined to extract an exponent b; but that within these limit 
values there is no obvious variation of b with ρin.

We believe that the various questions touched upon in this discussion leave much 
room for future research.
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