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mathématiques et applications, 75005 Paris, France

E-mail: Francoise.Cornu@u-psud.fr

Received 9 December 2022
Accepted for publication 15 March 2023 
Published 20 April 2023

Online at stacks.iop.org/JSTAT/2023/043206
https://doi.org/10.1088/1742-5468/acc72c

Abstract. We construct a new duality for two-dimensional discrete Gaussian
models. It is based on a known one-dimensional duality and on a mapping,
implied by the Chinese remainder theorem, between the sites of an N ×M torus
and those of a ring of NM sites. The duality holds for an arbitrary translation-
invariant interaction potential v(r) between the height variables on the torus. It
leads to pairs (v, ṽ) of mutually dual potentials and to a temperature inversion
according to β̃ = π2/β. When v(r) is isotropic, duality renders an anisotropic ṽ.
This is the case, in particular, for the potential that is dual to an isotropic nearest-
neighbor potential. In the thermodynamic limit, this dual potential is shown
to decay with distance according to an inverse square law with a quadrupolar
angular dependence. There is a single pair of self-dual potentials v⋆ = ṽ⋆. At the
self-dual temperature β⋆ = β̃⋆ = π the height–height correlation can be calculated
explicitly; it is anisotropic and diverges logarithmically with distance.
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1. Introduction

The discrete Gaussian (DG) model is a particular lattice model belonging to the class
of the so-called solid-on-solid (SoS) models, which aim to describe the fluctuations of
a crystal surface. The most usual versions of SoS models are two-dimensional (2D). In
such a model a surface is described as a collection of integer-valued height variables
{hi} associated with the sites i of a 2D lattice. The interaction between two height
variables hi and hi ′ is some function of their difference |hi−hi ′ |, and in the case of
the DG model it is a simple quadratic form. When v(r) represents an isotropic nearest
neighbor coupling, the DG model is dual to the XY model in its Villain version [1], and
therefore it undergoes a phase transition in the Kosterliz–Thouless universality class.
This phase transition has been the main motivation for the interest in this short-ranged
2D DG model.

The DG Hamiltonians of interest to us in this work take the form

H=
1

2

∑

i

∑

i ′

v(i− i ′)(hi−hi ′)
2, (1)

where the coupling constants v(r) constitute a translation-invariant pair potential. We
may impose without loss of generality the symmetry v(r) = v(−r) under parity trans-
formation. We consider a toroidal lattice of N ×M sites, which for M =1 also includes
the one-dimensional (1D) case. The partition function associated with Hamiltonian (1)

reads
∑ ′

{hi}
exp[−βH] in which the hi are summed over all integer values except for

the condition, indicated by the prime on the summation sign, that one height, say hi0 ,
should be kept fixed, say hi0 = 0. This ‘global gauge’ condition eliminates a trivial infin-
ite factor in the partition function, which is due to H being invariant under the global
translation hi #→ hi+h. After this trivial factor has been removed, the only further
condition on v(r) is that (1) defines a positive definite quadratic form.

The 1D DG model with arbitrary interaction potential v(r) at inverse temperature
β was studied by Kjaer and Hilhorst (KH) [2], who found that it is dual to another
such model but with a dual potential ṽ and a dual inverse temperature β̃ = π2/β,
whereas, in general v ̸= ṽ, there is a unique and explicitly known self-dual potential
v⋆ for which v⋆ = ṽ⋆. In the thermodynamic limit N →∞ the self-dual potential v⋆(r)

tends toward 1/[π (r2− 1
4)]. The temperature β⋆ such that β⋆ = β̃⋆ is a candidate for a

critical temperature of this model.
In this work, we combine the 1D KH results with a mapping between 1D and 2D

lattices that occurs in number theory in the context of the Chinese remainder theorem.
This theorem suggests representing the 1D ring lattice geometrically as a helix wound
around the 2D torus in such a way that the helix returns to its origin after having
passed through all sites on the torus. The theorem requires that N and M be coprime,
that is, have no common prime factor.

The result is a new duality relating the 2D DG model with arbitrary potential v to
another such model but with a different potential ṽ and, again, with inverse temperature
β̃ = π2/β. More precisely, the partition function on the torus is shown to obey the duality
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ZN,M [βv] =
1

β(MN−1)/2
cN,M [v] ZN,M

[
π2

β
ṽ

]
, (2)

where the constant cN,M [v] is a functional of v, and where the relation between the
potentials v(r) and ṽ(r) is given in section 4.2 in terms of their Fourier transforms.
Again, there is a self-dual potential v⋆ and a candidate critical temperature.

This paper is organized as follows. In section 2, we establish our notation for the
1D and 2D DG models, and we recall the results about the duality on the ring. In
section 3, by using the Chinese remainder theorem we introduce and discuss the map-
ping between a 1D and a 2D lattice and the corresponding transformation of periodic
functions. In section 4, we show how for the 2D DG Hamiltonian this mapping leads
to a duality relation. In section 5, we consider the special case of the self-dual poten-
tial v⋆. In section 6, we consider the well-known 2D DG Hamiltonian with isotropic
nearest-neighbor interaction. In section 7 we point out the main features of the new
duality.

2. DG models

In this section, we establish some notation and review some results on the 1D DG model
that will be fundamental in the sections hereafter. The length of the ring will be denoted
by N , a coordinate difference by R, and the potential by V (R).

2.1. DG model on a ring

For a ring of length N we shall write H1 for the DG Hamiltonian (1). The lattice site i
becomes a scalar i that may take the values i = 0,1, . . . ,N − 1. In a slightly more formal
notation, we then have

H1 =
1

2

∑

i∈ZN

∑

i ′∈ZN

V (i− i ′)(hi−hi ′)
2, (3)

where i ∈ ZN is the equivalence class of all integers equal to i up to a multiple of N .
Symmetry of the interaction under parity transformation is expressed as

V (R) = V (−R). (4)

Since the labels i and i+N refer to the same site, the potential V (R) must be
N -periodic,

V (R) = V (R+N ). (5)

The two equations (4) and (5) together imply the reflection symmetry

V (R) = V (N −R). (6)
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We define the partition function with the global gauge mentioned in the introduction,
namely

ZN [βV ] =
∑ ′

{hi|i ̸=0}

exp[−βH1], (7)

where the prime indicates the constraint h0 = 0. This restriction implies that the mean
height at any site i vanishes at any temperature.

We observe that Hamiltonian (3) is independent of the value of V (0). In the Fourier
transforms below we shall consider that V (0) has been assigned an arbitrary value,
knowing that the results cannot depend on it.

Fourier transformed variables are defined as

ĥK =
1√
N

∑

j∈ZN

e−iKj hj , (8)

and the Fourier transformed potential is

V̂ (K) =
∑

R∈ZN

e−iKRV (R), (9)

where K = 2πp/N with p ∈ ZN . Then Hamiltonian (3) takes the form

H1[V ] =
∑

K ̸=0

W (K)ĥKĥ−K (10)

in which

W (K)≡
N−1∑

R=1

[1− cos(KR)]V (R) = V̂ (0)− V̂ (K), K ̸= 0. (11)

The last equality in (11) comes from the symmetry (6). Equation (10) shows, incid-
entally, that in order for the partition function (7) to exist we must have that W (K)> 0
for all K ̸=0; we impose this condition throughout the remainder of this paper.

Equation (9) is the usual Fourier transform in the space of N points with inverse

V (R) =
1

N
∑

K

eiKR V̂ (K), R= 0,1, . . . ,N − 1. (12)

Equation (11) transforms only the subset {V (1),V (2), . . . ,V (N − 1)}, which excludes
the nonphysical variable V (0), and its inverse is

V (R) =− 1

N
∑

K ̸=0

eiKRW (K), R= 1,2, . . .N − 1. (13)
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The symmetries (4)–(6) lead for V̂ (K) to the corresponding symmetries

V̂ (−K) = V̂ (K), V̂ (K +2π) = V̂ (K), V̂ (2π−K) = V̂ (K), (14)

of which only two are independent. Clearly W (K ) satisfies the same symmetries as
V̂ (K).

2.2. Duality in 1D

It was shown in [2] that the 1D DG model with arbitrary potential V (R) obeying
the symmetries (4)–(6) is dual to a similar 1D DG model with a potential Ṽ (R). In
particular, the partition functions of the two models are related by

ZN [βV ] =
1

β(N−1)/2
CN [V ] ZN

[
β̃Ṽ
]
, (15)

where β̃ = π2/β and

CN [V ] =
√
N
√∏

K ̸=0

π

W (K)
(16)

with K = 2πp/N , p ∈ ZN , and W (K ) defined in (11)5. The relation between V (R) and

Ṽ (R) takes its simplest form in terms of W (K ) and W̃ (K), namely

W̃ (K) =
4sin2(K/2)

W (K)
, K ̸= 0. (17)

When expressed in terms of V̂ (K) and
̂̃
V (K), this relation becomes

̂̃
V (0)− ̂̃V (K) =

2[1− cosK]

V̂ (0)− V̂ (K)
, K ̸= 0, (18)

and leaves
̂̃
V (0) undefined. The real-space expression Ṽ (R) of the dual potential may

be obtained by inverse Fourier transformation of (17) according to (13) with the result

Ṽ (R) =− 1

N
∑

K ̸=0

eiKR 4sin2(K/2)

W (K)
=− 1

N
∑

K ̸=0

eiKR 2[1− cosK]

V̂ (0)− V̂ (K)
, R= 1, . . . ,N − 1. (19)

This equation leaves Ṽ (0) undefined. Furthermore, neitherW (K ) nor W̃ (K) appears
in the transformations with argument K =0.

5 The partition function of the dual model depends on β̃Ṽ and in [2] the normalizations of the potential Ṽ and the inverse
temperature β̃ are such that β̃ = 1/β.

https://doi.org/10.1088/1742-5468/acc72c 6

https://doi.org/10.1088/1742-5468/acc72c


New duality relation for the Discrete Gaussian SOS model on a torus

J.S
tat.

M
ech.(2023)

043206

Figure 1. Three examples of a potential V (R) and its dual Ṽ (R) on a ring
of N =100 sites. (a) Open black circles: The power law potential V (R) =
π−1N 3/[R(N −R)]3, appropriately symmetrized to satisfy equation (6); for N →∞
it tends to V (R) = 1/(πR3). (a

′
) Its dual (filled black circles); for N →∞ it tends

to a potential that decays with distance as ∼ 1/R. (b) Open blue squares: the
exponential potential Vexp(R) of equation (22) for α=0.25. (b

′
) Its dual (filled

blue squares), equations (23) and (24). (c) Red stars: the self-dual potential
V (R) = Ṽ (R) = V ⋆(R), equation (72).

We also notice that, according to (14) and (18),
̂̃
V (K) obeys the same reflection

symmetry as V̂ (K), namely

̂̃
V (2π−K) =

̂̃
V (K). (20)

As a consequence Ṽ (R) obeys the same reflection symmetry as V (R),

Ṽ (R) = Ṽ (N −R). (21)

In figure 1, we have represented two examples of a potential V (R) and its dual.
In general, the relation between V (R) and Ṽ (R) cannot be made more explicit than
equation (18) or equivalently (19). Among the exceptions is the exponentially decaying
potential, appropriately symmetrized to satisfy equation (6),

Vexp(R) =
e−αR +e−α(N−R)

e−α+e−α(N−1)
, (22)

whose dual is

Ṽexp(R) =A(δR,1 + δR,N−1)+N−1B (23)
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with

A=
cosh α(N−2)

2 sinh α
2

sinh αN
2 cosh α

2

, B = 4Asinh2 α

2
. (24)

For future use we introduce an auxiliary potential U (R),

U(R) =− 1

N
∑

K ̸=0

1− cos(KR)

V̂ (0)− V̂ (K)
, R= 0,1,2, . . . ,N , (25)

in which V̂ (0)− V̂ (K)> 0. It is easily checked that Ṽ (R) may be derived from U (R)
by

Ṽ (R) = U(R+1)+U(R− 1)− 2U(R), R= 1,2, . . . ,N − 1, (26)

a relation that appears in [2] (but with another normalization). This U (R) arises
through the well-known correspondence between a DG model and a lattice model in
which the Hamiltonian reads 1

2

∑
i∈ZN

∑
i ′∈ZN

U(i− i ′)qiqi ′ and the configurations of
integer qi ’s obey the neutrality constraint

∑
i qi = 0. Therefore, the integer-valued qi are

called ‘charges’ and their interaction potential U the ‘charge potential.’ Consequently,
equation (26) shows that Ṽ (R) is the potential created by a quadrupole of charges 1 ,−2,
and 1 located on the sites R=−1, R=0, and R=1, respectively. We shall therefore
sometimes refer to Ṽ (R) as the ‘quadrupolar interaction.’

2.3. DG model on a torus

In the special case of an N ×M lattice with toroidal boundary conditions we shall write
the DG Hamiltonian (1) asH2. Sites will be labeled by i= (i, j), where i = 0,1, . . . ,N − 1
and j = 0,1, . . . ,M − 1. The Hamiltonian (1) then becomes

H2 =
1

2

∑

(i,j)∈ZN×ZM

∑

(i ′,j ′)∈ZN×ZM

v(i− i ′, j− j ′)(hi,j −hi ′,j ′)2. (27)

Parity symmetry is now expressed as

v(r,s) = v(−r,−s). (28)

Since the labels (i, j ), (i+N,j), and (i, j+M) refer to the same site, the potential
v must have the periodicity properties

v(r+N,s) = v(r,s), v(r,s+M) = v(r,s). (29)

As a consequence of (28) and (29), we have the reflection symmetry

v(N − r,M − s) = v(r,s). (30)

For M =1 this system reduces to the ring model described above.

https://doi.org/10.1088/1742-5468/acc72c 8

https://doi.org/10.1088/1742-5468/acc72c


New duality relation for the Discrete Gaussian SOS model on a torus

J.S
tat.

M
ech.(2023)

043206

Again, the Hamiltonian (27) is independent of the value of the interaction constant
v(0,0). The partition function is defined as in (7),

ZN,M [βv] =
∑ ′

{hi,j |(i,j) ̸=(0,0)}

exp[−βH2], (31)

where the prime denotes the gauge condition h0,0 = 0.
We shall consider in this work only functions on the ring and on the torus that have

the symmetry properties (4)–(6) and (28)–(30), respectively.

3. Mapping between a torus and a ring

In this section we show how, under the condition that N andM are coprime, the Chinese
remainder theorem allows us to introduce a mapping between the ring ZNM and the
torus ZN ×ZM for both coordinates and periodic functions. For the Chinese remainder
theorem at an elementary level see [3] and for more advanced topics see [4].

3.1. Mapping for spatial coordinates

3.1.1. Chinese remainder theorem. For any bijection of the sites (r, s) of the torus
ZN ×ZM onto the integers R of the ring ZNM the Hamiltonian (27) becomes formally
a 1D Hamiltonian. We wish, however, to apply a bijection that preserves the group
law (i.e. translation and inversion). The Chinese remainder theorem provides such a
bijection at the condition that N and M be coprime, that is, that their only positive
common divisor be unity. We shall henceforth take M and N such that this condition
is met.

In the case of two integers N,M > 1, the Chinese remainder theorem may be stated
as follows. For any given pair of integers (r, s) the set of equations with unknown R,

r =R (mod N), s=R (mod M), (32)

where x= y (mod N) means that x and y differ by a multiple of N, has a solution given
by

R= aNs+ bMr (mod NM), (33a)

in which the pair of integer Bézout coefficients (a, b) is, in turn, a solution of

aN + bM = 1. (33b)

Bézout’s theorem guarantees that there exists a pair (a, b) satisfying (33b), which
may be found by the so-called extended Euclidean algorithm. The linear combination
in (33a) is readily shown to satisfy the set of equation (32) as follows. By construc-
tion aNs+ bMr = bMr (mod N); then according to the identity (33b), bMr can be
rewritten as r− aNr and r− aNr = r (mod N). As a result aNs+ bMr = r (mod N).
A similar argument leads to aNs+ bMr = s (mod M).
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Figure 2. The sites of an N ×M toroidal lattice with N =6 and M =5. The fun-
damental domain is the region inside the dashed red rectangle, which must be
considered as periodically repeated; in particular, A and A

′
are identical sites, and

so are B and B
′
. The path described in the text starts at the origin O and moves

at each step diagonally in the direction (1,1), as indicated by the black dots. When
it steps to site A

′
, it leaves the fundamental domain but in fact arrives at A. Its

subsequent step in the (1,1) direction then takes it to B
′
, but in fact it arrives at

B. Upon continuing it will visit all lattice sites until at its NM th step it returns to
O.

We notice that from the definition (33b) of the Bézout coefficients it immediately
follows that another pair of the form (a+ cM,b− cN), where c is any integer, is also
a solution. We may make the solution of (33b) unique by imposing, for example, that
0< a <M and −N < b < 0, or, alternatively, that −M < a < 0 and 0< b <N . With
the constraint 0< a <M and −N < b < 0, we give the solutions for various special
cases of N and M. For N > 1 and M =2, the solution is a =1 and b= (1−N)/2; for
N > 2 and M =N − 1 one gets a =1 and b=−1; and for M > 1 and N = qM +1, where
q = 2,3, . . ., one finds a =1 and b=−q.

3.1.2. Geometrical interpretation. The Chinese remainder theorem may be interpreted
as a helicoidal mapping of a 1D path around the N ×M torus in the following way.
We refer to figure 2. We let R take the successive values R= 0,1,2, . . . ,NM and con-
sider the path traced out on the torus by the pair (r, s) parameterized by R according
to equation (32). At R=0 the path starts in the origin (r,s) = (0,0), and as long as
R< min(N,M) we have (r,s) = (R,R), that is, the path follows the main diagonal,
undergoing at each step an increment (1,1). For larger R the path continues to undergo
increments (1,1), but the N,M -periodicity of the lattice has to be taken into account.
This leads to a path that winds around the torus until it returns to the origin. The
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condition that N and M be coprime guarantees that this return will occur only after
the path has visited all sites of the torus.

3.1.3. Another mapping and corresponding helicoidal winding. In section 3.2, we shall
show that the functions F (R)≡ f(r,s) defined with the mapping (33a) are periodic
with period MN. We notice that we could have chosen another helix that winds around
the torus while also preserving the periodicity of the lattice, so that the corresponding
mapping (r,s) #→R ′ leads to the same periodicity NM for functions F ′(R ′)≡ f(r,s).

For instance another proper helix is built by again mapping the origin (r,s) = (0,0)
onto the integer R=0 and then by incrementing the position on the N ×M lattice by
steps of (−1,1), while at the same time increasing R by one unit. After R′ steps on the
helix the corresponding coordinates on the torus are

r =−R ′ (mod N), s=R ′ (mod M). (34)

A simple argument similar to that presented for the derivation of the Chinese the-
orem (33) shows that the linear combination

R ′ = aNs− bMr (35)

is a solution of (34), because a and b are the solutions of (33b). We shall see in section 4.3
how the results of interest in the present paper depend on the choice of one among the
two mappings R= aNs+ bMr or R ′ = aNs− bMr.

3.2. Mapping for periodic functions

3.2.1. Periodicity on the torus and on the ring. Let f(r,s) be a given biperiodic func-
tion on the N ×M torus obeying the symmetry properties (28)–(30).

f(r+N,s) = f(r,s+M) = f(r,s) (36)

and

f(N − r,M − s) = f(r,s). (37)

We define a corresponding function F (R) on the ring of length NM by

F (R) = f(r,s) with R= aNs+ bMr (mod NM). (38)

We shall show that the symmetries of f imply those of F and that the reciprocal is
also true.

The pairs (r+N,s) and (r,s+M) are associated with R+ bNM and R+ aNM,
respectively. The periodicity properties (36) then lead to F (R+ bMN) = F (R+
aMN) = F (R). It follows that F (R) = F (R+N(aNM)+M(bNM)), whence, with the
use of (33b), we find that

F (R+NM) = F (R). (39)
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Similarly, by virtue of (33b), the reflected point (N − r,M − s) is associated with
aN(M − s)+ bM(N − r) =NM −R, and the symmetry property (37) leads to

F (NM −R) = F (R). (40)

As a consequence we also have the third symmetry, F (−R) = F (R); that is, F obeys
the symmetries (28)–(30) for a ring of NM sites. We point out that similar arguments
show that the periodicity (39) and the reflection symmetry (40) are also valid for the
second mapping (35).

Let conversely F (R) be given and satisfy (39) and (40); then f(r+N,s) = f(r,s+
M) = f(r,s) and f(N − r,M − s) = f(r,s) . Indeed if F (R+NM) = F (R) then F (R+
aNM) = F (R), and R+ aNM corresponds to (r,s+M). Similarly if F (NM −R) =
F (R) then F ((a+ b)NM −R) = F (R), and (a+ b)NM −R corresponds to (N − r,
M − s).

3.2.2. Mapping Fourier transforms from the torus to the ring. The Fourier transform
of an NM -periodic function F (R) on the ring of length NM is

F̂ (K) =
∑

R∈ZNM

e−iKRF (R) (41)

with the wavenumbers

K =
2π

NM
p, (42)

where p ∈ ZNM . Similarly, the Fourier transform of an N,M -biperiodic function f(r,s)
on the torus is

f̂(k1,k2) =
∑

r∈ZN

∑

s∈ZM

e−i(k1r+k2s) f(r,s) (43)

with the wavenumbers

k1 =
2π

N
n, k2 =

2π

M
m, (44)

where n ∈ ZN and m ∈ ZM . We now investigate the relation that results between these
two Fourier transforms in the case F (R) = f(r,s).

The Chinese remainder theorem allows us to establish a bijection between the index
p of the wavenumber on the ring and the index pair (n,m) on the torus,

p= aNm+ bMn (mod NM), (45)

which is analogous to R= aNs+ bMr (mod NM). Hence the wavenumber on the torus
may be expressed in terms of those on the ring as

K = bk1 + ak2. (46)
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After some rewriting and use of identity (33b), we find

e−iKR = e−i(bk1r+ak2s). (47)

When we substitute (46) in (41) and identify F (R) = f(r,s), we obtain

F̂ (K) =
∑

r∈ZN

∑

s∈ZM

e−i(bk1r+ak2s)f(r,s) = f̂(bk1,ak2). (48)

The Fourier transform F̂ (K) on the ring is proven to coincide with a scaled Fourier
transform on the torus. Relation (48) allows us to determine the Fourier transform
F̂ (K) on the ring when the Fourier transform f̂(k1,k2) on the torus is given.

3.2.3. Mapping Fourier transforms from the ring to the torus. We shall now see how to
determine the Fourier transform f̂(k1,k2) on the torus when the Fourier transform F̂ (K)
on the ring is given. We first write f(r,s) = F (R) = 1

MN

∑
K eiKRF̂ (K), and from (46)

and (47) we get

f(r,s) =
1

MN

∑

(k1,k2)

ei(bk1r+ak2s)F̂ (bk1 + ak2). (49)

where (k1,k2) is related to a pair of integers (n,m) through (44).
We then notice that, according to (33b), the coefficient b is coprime with N (because

if b and N had a common divisor different from 1 or −1 then aN + bM could not be
equal to 1). By virtue of Gauss’s lemma, the fact that there exists no common divisor
of b and N entails that if b(n−n ′) is a multiple of N, then n−n ′ is also a multiple
of N. Equivalently n ̸= n ′ (mod N) implies bn ̸= bn ′ (mod N) and n #→ bn is a one-to-
one correspondence from ZN to ZN . Similarly, according to (33b), the coefficient a is
coprime with M and m #→ am is a one-to-one correspondence from ZM to ZM . As a
result, if the function A(n,m) is N,M -periodic, then

∑

(n,m)∈ZN×ZM

A(bn,am) =
∑

(n,m)∈ZN×ZM

A(n,m). (50)

Hence the sum in (49) can be rewritten without the coefficients a and b, and even-
tually

f(r,s) =
1

MN

∑

(k1,k2)

ei(k1r+k2s)F̂ (k1 + k2). (51)

Upon Fourier transforming both members of this equation we find

f̂(k1,k2) = F̂ (k1 + k2), (52)

which is the desired relation that yields f̂(k1,k2) when F̂ (K) is given.
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4. New duality for 2D DG models

4.1. Mapping between torus and ring Hamiltonians

In the preceding section, we have defined a mapping between the sites of the torus and
those of the ring, and an identification of functions defined on the torus with functions
defined on the ring. Now, we consider how a Hamiltonian given on the torus transforms
into one defined on the ring.

Let the Hamiltonian H2 of equation (27) be given. A mapping of this Hamiltonian,
defined on the torus ZN ×ZM , onto a Hamiltonian on the ring ZNM is constructed as
follows. We relabel the height variables hr,s according to

hR = hr,s , (53)

where R is given by (33) and we define the potential V (R) by

V (R) = v(r,s). (54)

According to section 3.2, the periodicity properties (29) and the reflection sym-
metry (30) of v(r,s) imply that

V (R) = V (R+MN) (55)

and

V (R) = V (MN −R). (56)

When we express the 2D DG Hamiltonian H2 defined in (27) in terms of the new
quantities V (R) and hR, we find that H2 becomes a 1D DG Hamiltonian of type (3),

H1[V ] =
1

2

∑

i∈ZMN

∑

R∈ZMN

V (R)(hi−hi+R)
2, (57)

and the partition functions of the two models are identical,

ZN,M [βv] = ZNM [βV ] . (58)

Hence, we have identified the partition function on the torus with a partition function
on the ring.

4.2. Duality on the torus

Relation (58) embodies the mapping of a given 2D system with potential v onto a 1D
one with related potential V. We may now apply, without recalling all the intermediary
steps, the mechanism of section 2.2 whereby V (R) is related to a dual 1D potential
Ṽ (R). Subsequently, we return to a dual 2D potential ṽ(r,s) by means of the relation
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ṽ(r,s) = Ṽ (R). (59)

Because of (21) the dual potential also has the reflection property on the torus

ṽ(r,s) = ṽ(N − r,M − s). (60)

The corresponding DG partition function is given by the identity (58),

ZN,M [β ṽ ] = ZNM

[
β Ṽ
]
. (61)

By combining the duality relation (15) between the partition functions on the ring
with (58) and (61) we obtain the 2D duality

ZN,M [β v] =
1

β(MN−1)/2
CNM [V ] ZN,M

[
π2

β
ṽ

]
. (62)

In the relation (62) the constant CNM [V ], given in (16), is still a functional of the
intermediate 1D potential V. We re-express it as follows as a functional cN,M [v] of v.

Indeed, W (K) = V̂ (0)− V̂ (K) and, according to (48) a Fourier transform on the ring
is equal to a scaled Fourier transform on the torus. Hence we have

CNM [V ] =
√
NM

⎡

⎣
∏

(n,m)∈ZN×ZM\(0,0)

π

v̂(0,0)− v̂(2π bn/N,2πam/M)

⎤

⎦
1/2

=
√
NM

⎡

⎣
∏

(k1,k2) ̸=(0,0)

π

v̂(0,0)− v̂(k1,k2)

⎤

⎦
1/2

≡ cN,M [v] (63)

where to arrive at the second line we have used the property (50), and we used the
notation k1 = 2πn/N and k2 = 2πm/M . Eventually, the duality relation (62) between
partition functions on the torus reads in terms of functions defined on the torus

ZN,M [βv] =
1

β(NM−1)/2
cN,M [v] ZN,M

[
π2

β
ṽ

]
. (64)

This achieves the purpose of establishing a duality relation for partition functions
on the torus.

The relation between the given potential v(r,s) and its dual ṽ(r,s) may be rendered
more explicit. As in the 1D case, ṽ(r,s) may be re-expressed in terms of the Fourier
transform of v(r,s) as follows. According to (52) the Fourier transform on the torus for

ṽ(r,s) is given in terms of the Fourier transform on the ring for Ṽ (R) by ̂̃v(k1,k2) =
̂̃
V (k1 + k2), while the expression for Ṽ (K) in terms of V (K ) is given by (18). As a result
̂̃v(k1,k2)− ̂̃v(0,0) = 2[1− cos(k1 + k2)]/[V̂ (k1 + k2)− V̂ (0)]. By again using relation (52)
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to go back from the ring to the torus, namely V̂ (k1 + k2) = v̂(k1,k2), we find that the
Fourier transform of the dual potential on the torus takes the simple form

̂̃v(k1,k2)− ̂̃v(0,0) =−2[1− cos(k1 + k2)]

v̂(0,0)− v̂(k1,k2)
. (65)

Subsequently the expression of the dual potential ṽ(r,s) in terms of v(r,s) is given
by the inverse Fourier transform on the torus, for (r,s) ̸= (0,0)

ṽ(r,s) = − 1

MN

∑

(k1,k2) ̸=(0,0)

ei[k1r+k2s] 2[1− cos(k1 + k2)]

v̂(0,0)− v̂(k1,k2)
(66)

with v̂(0,0)− v̂(k1,k2)> 0 for (k1,k2) ̸= (0,0). An explicit example of the duality embod-
ied by equation (65) will be considered in section 6.

Finally, we may check that the square of the duality transformation is
the identity. Indeed, iteration of the duality relation (64) leads to ZN,M [βv] =

(1/π)NM−1 cN,M [v]cN,M [ṽ]ZN,M

[
β˜̃v
]
, where ˜̃v = v according to (65), while the identity

∏
K ̸=0 2|sin(K/2)|=NM implies that cN,M [v]cN,M [ṽ] = cN,M [V ]cN,M [Ṽ ] = πNM−1.
We notice that for a given mapping the expressions for the constant cN,M and

the dual potential are independent of the Bézout coefficients (a, b) according to (63)
and (66). As a result, we could have chosen the pair of Bézout coefficients (a,b) such
that −M < a < 0 and 0< b <N with the mapping R= aNs+ bMr (mod NM) without
changing the duality relation between the partition functions nor the expression of the
dual potential ṽ in terms of the potential v.

4.3. Dependence of the dual potential upon the choice of the mapping

As noticed above, the constant cN,M as well as the relation between the Fourier trans-
forms of the dual potentials on the torus prove to be independent of a and b for a given
mapping. However the dependence upon the choice of the mapping can be exemplified
by the comparison of the two mappings presented in sections 3.1.2 and 3.1.3.

With the mapping R= aNs+ bMr, the coordinates R and R± 1 correspond to (r, s)
and (r± 1, s± 1), respectively. Then the relation (26) between Ṽ (R) and U (R) implies
that ṽ(r,s) = V (aNs+ bMr) may be rewritten as

ṽ(r,s) = u(r+1, s+1)+u(r− 1, s− 1)− 2u(r,s), (67)

where, by using (25),

u(r,s) =
1

MN

∑

(k1,k2) ̸=(0,0)

[cos(k1r+ k2s)− 1]
1

v̂(0,0)− v̂(k1,k2)
. (68)

(The latter relation may also be directly derived from the inverse Fourier transform
representation (66) for ṽ(r,s), as was done to derive (25) and (26) from (19).) With
the other mapping the coordinates R ′ = aNs− bMr and R ′± 1 correspond to (r, s)
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and (r∓ 1, s± 1), respectively. Then relation (26) on the ring implies that ṽ ′(r,s) =
V (aNs− bMr) and may be rewritten as

ṽ ′(r,s) = u(r+1, s− 1)+u(r− 1, s+1)− 2u(r,s), (69)

with the same potential u(r,s) as in relation (26) for the first mapping.
With the terminology introduced after (26), in the case of the first mapping ṽ(r,s)

appears as a quadrupolar charge interaction, with charges (1,−2,1) aligned at points
(−1,−1), (0,0), and (1,1), respectively, along the direction of the first mapping helix.
For the second mapping ṽ ′(r,s) still appears as a quadrupolar charge interaction with
the same charge triplet, but the charges are located at different points, namely (−1,1),
(0,0), and (1,−1), respectively, along the direction of the second mapping helix at a
given point.

The interaction u is definitely independent of the mapping by virtue of (25). How-
ever, the above discussion shows that the dual potential ṽ depends on the mapping
since it is a quadrupolar interaction (involving the charge-charge interaction u) and the
locations of the charges in the quadrupole depend on the mapping.

This investigation ultimately proves that the different options presented in section 3
for the choice of the path in figure 1 amount to carrying out reflection symmetries with
respect to the r and/or s axes. They do not result in any essentially new dualities.

5. Self-duality

5.1. Self-dual potential and self-dual temperature

As shown in [2], the relation between the potentials V (R) and Ṽ (R) on the ring, which
is given by relation (18) between their Fourier transforms, leads to the existence of a
self-dual potential V ⋆(R) such that for any R ̸=0

Ṽ ⋆(R) = V ⋆(R). (70)

Indeed, according to (18), if for K ̸=0

V̂ ⋆(K)− V̂ ⋆(0) =−2|sin(K/2)|, (71)

then
̂̃
V ⋆(K)− ̂̃V ⋆(0) = V̂ ⋆(K)− V̂ ⋆(0), namely W̃ ⋆(K) =W ⋆(K) = 2|sin(K/2)|. The

expression for V ⋆(R) when R ̸=0 is obtained by inserting (71) in (13). The poten-
tial V ⋆(R) is periodic in R with period MN and it may be written in various forms. For
the following discussion we write

V ⋆(R) =
1

MN sin π
MN

sin2( π
MNR)− sin2( π

2MN )
. (72)

For the corresponding self-dual potential on the torus, v⋆(r,s) = V ⋆(R) with R=
aNs+ bMr. Moreover cN,M [v⋆] = CNM [V ⋆] = π(NM−1)/2 according to definition (16) and
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the identity
∏

K ̸=0 2|sin(K/2)|=NM . Therefore, when v = v⋆ the duality relation (64)
for partition functions becomes

ZN,M [βv⋆] =

(
β⋆

β

)(NM−1)/2

ZN,M

[
β⋆2

β
v⋆
]

(73)

with β⋆ = π. This equation shows that there is a self-dual (inverse) temperature β =
β⋆ = π at which (73) becomes a trivial identity. In the next two sections, we shall first
investigate the self-dual potential v⋆ and then the height–height correlation function for
this potential when the system is at the dual temperature β = β⋆.

5.2. Self-dual potential for large N

We now investigate some of the properties of this 2D self-dual potential. We wish to
consider its limit for a strip of infinite length and finite width, N →∞ with M fixed,
and for an infinite lattice, N →∞ and M →∞. By virtue of (72) the explicit expression
of v⋆(r,s) = V ⋆(R) is in fact a function of R/(NM). In order to study the large-N limit
of v⋆(r,s) it is convenient to make the change of variables (r,s) #→ (r, t) with

t= s− r, (74)

which, with the use of the identities (33), leads to rewriting R as R= aNt+ r. Then
R/(NM) becomes

R

MN
=

at

M
+

r

MN
, (75)

and, according to (72), the self-dual potential v⋆(r,s) becomes the function

v⋆(r,r+ t) =
1

MN sin π
MN

sin2π
(
at
M + r

MN

)
− sin2

(
π

2MN

) . (76)

For coordinate differences (r, r) we have that t =0 and

v⋆(r,r) =
1

MN
π

MN

sin2π
(

r
MN

)
− sin2

(
π

2MN

) , (77)

which depends only on MN. Therefore, when N goes to infinity, and whether or not M
remains finite, equation (77) gives

lim
N→∞

v⋆(r,r) =
1

π
[
r2− 1

4

] . (78)

For coordinate differences (r, s) with s ̸= r we have to distinguish betweenM remain-
ing finite or tending to infinity, and we must know the Bézout coefficient a as a function
of N and M. We shall choose to take

N = qM +1, (79)
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with q an arbitrary positive integer, which ensures that N and M are coprime. In
this case a =1 and b=−q. Then, by virtue of (76), v⋆(r,r+ t) becomes a function of
t
M + r

MN .
In order to study strips of finite width M we consider the scaling (79) with M

fixed and q →∞, whence N →∞. For M =2 the torus is the ladder lattice with each
interchain bond counting twice, and for M =4 it is a beam with a square section. Then
for r and t ̸=0 fixed, t/M remains finite while r/(MN) vanishes. Upon inserting this
limit behavior in equation (76) and restoring the original coordinates r and s we find

v⋆(r,s)≃ π

M 2N 2 sin2π
(
r−s
M

) , N →∞, Mfixed. (80)

A 2D infinite lattice is obtained when both M and N go to infinity with q fixed. For
r and t fixed, r/MN and 1/(2MN) vanish faster than t/M , and expression (76) tends
to the limit

v⋆(r,s)≃ 1

N 2π (r− s)2
. (81)

In all of the cases considered above

lim
N→∞

v⋆(r,s) =
δr,s

π
[
r2− 1

4

] . (82)

This says that in the limit N →∞ each height variable on a given site (i, j ) interacts
only with the height variables on the diagonal (i+ r,j+ r) passing through that site in
the direction (1,1), and we recover the large distance behavior of the potential (72) on
the 1D chain of length MN in the limit MN →∞.

5.3. Self-dual height-height correlation at β⋆

Let hi+r−hi be the difference between two height variables at sites i and i+ r in either
dimension 1 or 2. By symmetry, we have that ⟨hi+r−hi⟩β = 0. However, the correlation

g(r;β)≡ ⟨(hi+r−hi)
2⟩β (83)

is a nonvanishing and interesting function of r.
For the DG model on a ring it was shown in [2] that, although the correlation

G(R;β)≡ ⟨(hi+R −hi)2⟩β is not known for a generic potential V (R) at any inverse
temperature β, the duality relation (15) for the partition functions implies that this
correlation can be explicitly determined in the case of the self-dual potential V ⋆(R) at
the dual temperature β⋆ = π defined after (73). It reads

G⋆(R;β⋆) =− 1

2π
U ⋆(R), (84)

where the superscript ⋆ of the correlation G signals a statistical average with the
potential V ⋆(R) and where U ⋆(R) is the periodic potential associated with V ⋆(R)
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by (26) and which vanishes at R=0. Relation (26) can be seen as a finite difference
equation to be solved for R in the set {0,1, . . . ,MN} with the boundary conditions
U ⋆(0) = U ⋆(NM) = 0. By rewriting expression (72) for V ⋆(R) as a difference of cotan-
gents with arguments proportional to R+1 and R, we find that for R= 0,1, . . . ,NM

U ⋆(R) =− 1

NM

R∑

R ′=1

cot π

NM

(
R ′− 1

2

)
, (85)

with the understanding that for R=0 the sum is empty. The expression for U ⋆(R)
when R=−NM,−NM +1, . . . ,−1,0 is obtained by using the periodicity property
U ⋆(−|R|) = U ⋆(NM − |R|) derived from (25) and rewriting the sum for U ⋆(NM − |R|)
by taking into account the value U ⋆(NM) = 0. The result is that forR=−NM,−NM +
1, . . . ,NM we have

U ⋆(R) =− 1

NM

|R|∑

R ′=1

cot π

NM

(
R ′− 1

2

)
. (86)

For the DG model on a torus an argument similar to that presented in [2] shows that,
for the potential v⋆(r,s) = V ⋆(R) at the inverse dual temperature β⋆, the correlation
g⋆(r,s;β⋆) = ⟨(hi+r,j+s−hi,j)2⟩⋆β⋆ can be determined as

g⋆(r,s;β⋆) =− 1

2π
u⋆(r,s) (87)

in which

u⋆(r,s) = U ⋆(R). (88)

Since for the model on the ring U ⋆(R) is known, equations (87) and (88) allow us to
determine the explicit expression for g⋆(r,s;β⋆) on the torus. This will be the subject
of the next subsection.

5.4. Height-height correlation in the thermodynamic limit for N = M +1

In the present section, we consider the thermodynamic limit where N =M +1 and N
goes to infinity. Then M and N are coprime, a =1, and R= r+N(s− r). Before taking
the limit, we consider the variables r and s in intervals centered at (0,0). If, for instance,
M is even, the intervals read

−M

2
! r ! M

2
and − M

2
< s! M

2
. (89)

5.4.1. Fixed coordinate differences. In the case of r = s fixed we have that u⋆(r,r) =
U ⋆(r) where U ⋆(r) is the sum up to |r| given in (86). In the thermodynamic limit the
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argument of every cotangent in this sum is at least of order O(1/N 2) so that we can
replace cotx by 1/x and u⋆(r,r) becomes

u⋆(r,r) =− 1

π

|r|∑

r ′=1

1

r ′ − 1
2

+O
(

1

N 4

)
. (90)

Therefore, when r = s the correlation given by (87) is a nonvanishing function in the
thermodynamic limit. It is denoted as g⋆∞(r,r;β⋆) and reads

g⋆∞(r,r;β⋆) =
1

2π2

|r|∑

r ′=1

1

r ′ − 1
2

. (91)

For large r it behaves as

g⋆∞(r,r;β⋆) =
1

2π2

[
ln |r|+A0 +O

(
1

r2

)]
(92)

with A0 = C +2 ln2 where C denotes Euler’s constant.
In the case r ̸= s, it is more convenient to make the change of variables (r,s) #→ (r, t)

with s= r+ t and to consider

g⋆(r,r+ t;β⋆) =− 1

2π
U ⋆(Nt+ r). (93)

The expression for U ⋆(Nt+ r) is the sum given in (86) with M =N − 1 and |t|<N
according to (89). When r and s are kept fixed while N and M =N − 1 become very
large, t is fixed and |r+Nt|≃N |t| with N !N |t|≪N 2. Therefore, the argument of
every cotangent in the sum is at least of order O(1/N) and one can again replace
cotx by 1/x, while the upper bound of the sum is of order N. As a result, in the
thermodynamic limit the leading contribution in the correlation g⋆(r,r+ t;β⋆) is the
large distance behavior (92) of expression (91), where the argument r is to be replaced
by Nt=N(s− r),

g⋆(r,s;β⋆) =
r ̸=s

1

2π2
[ln(N |s− r|)+A0 + o(1)] , (94)

in which o(1) denotes a contribution that vanishes in the limit N →∞. Equation (94)
expresses that when N =M +1, according to (81), two height variables on parallel
diagonals have an interaction whose coupling constant decreases with N so that the
variance of their difference increases with N.

5.4.2. Coordinate differences scaled with the lattice size. Whereas in the preceding
subsection we investigated the height-height correlation g⋆(r,s;β⋆) =−(1/2π)U ⋆(R) in
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the regime of fixed r and s with N =M +1 and N →∞, it is also interesting to study
the nature of this correlation at the scale of the system, that is, for fixed values of

ξ =
r

N
, η =

s

N − 1
(95)

where, according to (89), −1
2 < ξ < 1

2 , −
1
2 < η ! 1

2 and N →∞. Then

R= (η− ξ)N(N − 1) (mod N(N − 1)) (96)

with −1< η− ξ < 1. Equation (86) now leads to

U ⋆ ((η− ξ)N(N − 1)) =− 1

N(N − 1)

|η−ξ|N(N−1)∑

R ′=1

cot
π (R ′ − 1

2)

N(N − 1)
,≡ U ⋆(η− ξ). (97)

with U ⋆(0) = 0 according to (85). Since only the absolute value |η− ξ | appears in the
upper limit of the sum in (95), it suffices to calculate U ⋆(η− ξ) with 0< η− ξ < 1.
Moreover, according to expression (25) for U ⋆(R) as an inverse Fourier transform, and
as can be checked on its explicit R-dependence given in (86), U ⋆(R) has the symmetry
U ⋆(N(N − 1)−R) = U ⋆(R). Therefore, U ⋆(η− ξ) takes the same value for η− ξ and
1− (η− ξ) and we may further restrict ourselves to 0< η− ξ < 1/2, which we shall do
now.

With the present scaling, when 0< η− ξ < 1/2, the argument π(R ′ − 1
2)/(N(N − 1))

of the cotangent increment in the sum runs up to values of order π/2 and for every R
′

all terms in the large-N(N − 1) expansion of the cotangent contribute. Therefore, we
shall write U ⋆ = I0 + I1, where I 0 and I 1 are the sums of the contributions of the first
term and of all remaining terms, respectively, in the full expansion. This gives

I0 =− 1

π

(η−ξ)N(N−1)∑

R ′=1

1

R ′− 1
2

=− 1

π

[
ln
(
(η− ξ)N(N − 1)

)
+A0

]
+O

(
1

N 4

)
, (98)

where we have used (92), and

I1 =− 1

N(N − 1)

(η−ξ)N(N−1)∑

R ′=1

[
cot

π (R ′ − 1
2)

N(N − 1)
− N(N − 1)

π (R ′ − 1
2)

]

=− 1

π

ˆ (η−ξ)π

0
du

[
cotu− 1

u

]
+ o(1)

=− 1

π
ln

sin
(
(η− ξ)π

)

(η− ξ)π
+ o(1). (99)

We obtain U ⋆ by adding (98) to (99). When doing so, a factor η− ξ in the argument
of the logarithm cancels against its inverse, so that the only dependence on η− ξ occurs
through sin

(
(η− ξ)π

)
. We have assumed 0< η− ξ < 1

2 , but as already noticed U ⋆(η−
ξ) = U ⋆(1− (η− ξ)) = U ⋆(|η− ξ|). By using sin(1−α)π = sinαπ we arrive at the result
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g⋆(ξN,η(N − 1);β⋆) =
ξ ̸=η

1

2π2

[
ln
(
N(N − 1)

sin
(
|η− ξ |π

)

π

)
+A0 + o(1)

]
, (100)

valid for all −1< η− ξ < 1 except η− ξ = 0, that is, for all (ξ,η) ∈]− 1
2 ,

1
2 [×]− 1

2 ,
1
2 ]

except the values η = ξ. It so happens that if in (100) we again put ξ = r/N and
η = s/(N − 1), and expand the resulting expression in powers of N, now at r and s
fixed, we obtain equation (94).

6. 2D DG model with nearest-neighbor interaction

In this section, we consider the standard DG model with homogeneous isotropic nearest-
neighbor interaction vnn(r,s) on the N ×M torus, that is,

vnn(r,s) = J
[(
δr,−1 + δr,1

)
δs,0 + δr,0

(
δs,−1 + δs,1

)]
. (101)

In this case, we do not have a simple formula for the height-height correlation even
at a specific temperature and we shall therefore limit ourselves to studying the dual
potential.

6.1. Dual potential on the N ×M torus

The Fourier transform of the nearest-neighbor interaction (101) reads

v̂nn(k1,k2) = 2J [cosk1 + cosk2] . (102)

The Fourier transform of the corresponding dual potential is readily found by means
of the general relation (65),

̂̃vnn(k1,k2) =− 1

J
× 1− cos(k1 + k2)

2− cosk1− cosk2
, (103)

where we have set ̂̃vnn(0,0) = 0.
The 2D lattice Laplacian of a function f(r,s) is defined as

∆2f(r,s) = f(r+1, s)+ f(r− 1, s)+ f(r,s+1)+ f(r,s− 1)− 4f(r), (104)

and its Fourier transform reads

∆̂2f(k1,k2) =−2[2− cosk1− cosk2] f̂(k1,k2). (105)

Let us now consider the 2D lattice Coulomb potential with toroidal periodicity
created by a neutral charge distribution ρ(r,s), that is, the solution UC

[ρ](r,s) of the
Poisson equation

∆2U
C
[ρ](r,s) =−ρ(r,s). (106)
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It has the Fourier transform

ÛC
[ρ](k1,k2) =

ρ̂(k1,k2)

2[2− cosk1− cosk2]
. (107)

By comparing this expression with (103) and by identifying 2[cos(k1 + k2)− 1] as the
Fourier transform of

ρquad(r,s) = δr,1δs,1 + δr,−1δs,−1− 2δr,0δs,0 , (108)

we interpret J × ṽnn(r,s) as the 2D lattice Coulomb potential created by the quadrupolar
charge distribution (1,−2,1) located at sites (−1,−1), (0,0), and (1,1), respectively. In
other words

ṽnn(r,s) =
1

J

[
uC(r+1, s+1)+uC(r− 1, s− 1)− 2uC(r,s)

]
, (109)

where uC(r,s) denotes the periodic 2D Coulomb potential created by the neutral dis-
tribution of a single unit charge at the origin and a negative uniform background with
charge −1/(MN) at each site. A priori the solution of the lattice Poisson equation (106)
is defined up to an additive constant. The potential uC(r,s) is chosen to vanish at the
origin and reads

uC(r,s) =− 1

NM

∑

(k1,k2) ̸=(0,0)

1− cos(k1r)cos(k2s)
2[2− cosk1− cosk2]

. (110)

When substituted in (109) this expression yields the interaction ṽnn(r,s) dual to the
nearest neighbor interaction (101).

6.2. Dual potential in the thermodynamic limit for N = M +1

We are now interested in the large-distance behavior of the quadrupolar potential (109).
In the thermodynamic limit, where N =M +1 and N goes to infinity with r and s fixed,
the Coulomb potential uC(r,s) of equation (110) tends to a function uC

∞(r,s) still given
by the same expression (110) but with the sums replaced with the appropriate integrals.
Next, we expand uC

∞(r,s) for large r and s and obtain [5, 6]

uC
∞(r,s) =− 1

2π
ln
√
r2 + s2 + cst+O

(
1

r2 + s2

)
. (111)

When (111) is substituted in (109), the constant cancels out on the RHS and the
result is

ṽnn
∞ (r,s) ≃√

r2+s2≫1

2

πJ

rs

(r2 + s2)2
. (112)
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We may still set r =X cosφ and s=X sinφ, after which expression (112) becomes

ṽnn
∞ (X cosφ,X sinφ)≃ sin2φ

πJX2
, X →∞, (113)

where the factor sin2φ in the numerator brings out the quadrupolar character of the
interaction.

7. Conclusion

We have constructed a new duality for the DG model on a torus with arbitrary
translation-invariant interactions. The duality inverts the temperature and the inter-
actions are in general anisotropic. There is a self-dual interaction potential, which we
have studied in particular at its self-dual temperature. We have also considered the
well-known DG model with isotropic nearest-neighbor interactions. Our work is exact
for an N ×M torus with finite N and M which should be coprime. This condition has
its origin in the Chinese remainder theorem, which we invoke to transpose known 1D
results to the 2D torus. The mapping avoids the appearance of any kind of seam on
the torus. One simple way to satisfy the coprime condition is to set M =N − 1, where
N is an arbitrary integer. At several points in our discussion we have taken the ther-
modynamic limit N →∞. Another similar duality can be derived for a neutral charge
system corresponding to the DG model and will be discussed elsewhere.

We have not in this paper attempted to be fully general. Indeed the same method
may be used to construct dualities in arbitrary dimension d on a hypertorus of N1×
N2× . . .×Nd sites, provided the N j are all mutually coprime. Moreover this work relates
partition functions, hence free energies, as well as correlation functions, in dual pairs
of models. In the case of the self-dual potential v⋆(r,s) and at the self-dual inverse
temperature β⋆ the relation allows us to determine the spatial correlation as discussed
in section 5. The study of the possible critical regimes requires further investigations.
However the present paper contributes to the large body of exact results, in particular
for duality relations, in lattice models.
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