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PACS. 05.20. - Statistical mechanics. 

Abstract. - Using new methods, we find that a larger class of two-dimensional Coulomb systems 
are solvable models, in the framework of equilibrium classical statistical mechanics, for the 
special value r = 2 of the coupling constant. One-component plasmas with adsorption sites, one- 
component plasmas in a periodic background, and plasmas made of two components plus a 
background are discussed. 

Matter is made of electrons and nuclei interacting through Coulomb's law; therefore, it is 
obviously of interest to obtain exact theoretical results about Coulomb systems, and even 
<<toy models* of them. The equilibrium statistical mechanics of several models of classical 
two-dimensional Coulomb systems has already been exactly worked out [l-51, at the special 
value r = 2 of the coupling constant T = ,Be2, where k e is the charge of a particle and ,B is the 
inverse temperature (the Coulomb interaction potential between two particles of charge e at 
a distance r from one another is - e2 In (r/L), where L is an arbitrary length scale). In this 
letter, we describe new methods which allow us to compute explicitly the n-body densities 
for a larger class of models, besides retrieving known results in a simpler and more 
systematic way. 

For the onelcomponent plasma OCP (a system of particles of charge e embedded in a 
continuous background of opposite charge), we are now able to deal with a variety of 
nonuniform backgrounds, and especially a background density having the periodicity of a 
two-dimensional crystal. At I' = 2, the Boltzmann factor for N interacting particles with 
coordinates ri = (xi, yi) has the same structure in terms of a Slater determinant as the 
squared wave function of a system of noninteracting fermions, i.e. 

where C is a constant, e2V(ri) is the background potential acting on the i-th particle and 
xi = xi + iyi. For a constant background density &, V(r)  can be chosen as (112) X & r 2 ,  the 
functions exp [- V(r)]  d are mutually orthogonal; to deal with the Slater determinant is a 
standard problem, and it is easy to perform the integrals which define the n-particle 
densities and to take their thermodynamic limits [l]. In the general case of a nonuniform 
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background, the functions exp [- V(r)] z j  are no longer orthogonal. However, we can follow 
the same steps as above in terms of a new basis js&) for the entire functions, chosen in such 
a way that the functions +Ar) = exp [- V(r)] j s k ( x )  are orthogonal, since the Slater 
determinant is invariant under such a change of basis. In terms of the projector 

the n-particle-truncated densities are 

where the summation runs over all cycles (il i2 ... in) built with { 1, 2, ..., n}. Thus, the 
problem is reduced to computing the projector P on that subspace of Hilbert space which is 
spanned by the entire functions times exp [- V(r)]; this amounts to diagonalizing the matrix 
formed by the scalar products Sdr.8 exp [- 2V(r)] z j .  

As a first application, we can quickly retrieve all the known results [2] about the case 
where the background potential depends only on one coordinate: V(r) = V(x). Since V is 
translationally invariant along y, it is convenient to choose the functions +k as 
exp [- V(x) + k ( x  + iy)], with k E R; they are indeed orthogonal because of the plane-wave 
factor exp [ i k y ] .  When the particles are confined to the half-space x > 0 by an impenetrable 
wall, the range of k must be restricted to k > 0 ,  as it can be seen by reaching this case 
through a suitable limiting procedure. 

When the background potential is periodic along y, with a period b,  we can start with the 
same p-functions exp [ k ( x  + iy)], writing k = 2;r(< + n)/b, < E [0, 11, n integer; the scalar- 
product matrix is of the form 

Thus, as a second application, we are able to revisit a model for localized adsorption, 
which has been previously studied [3] by a tour de force of expansion resummations; we now 
obtain more general results in an easier way. The model is a line of equidistant adsorption 
sites located along the y-axis, creating a potential Vads of the Baxter type, i.e. such that 
exp [- 9 V&l= 1 + M ( x )  2 d(y - mb) . The continuous background density pb(x) is assumed 

to depend only on x, creating a potential chosen as  V&). Thus e2V(r) = e2Vo(x) + Vads. This 
is, for instance, a model for an electrode with adsorption sites. The matrix A:(%, n’) is found 
to be, up to a multiplicative constant, of the form dnzt + f<(n) fr(n’); thus, the 
diagonalization can be easily completed. We find 

m 
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where S is a normalization factor: 

S (< + n) = b dx exp [4r(< + n) xlbl exp [- 2Vo(x)l . 1 ,  I-' 
The summations on n, m, are on Zif the system occupies the whole plane, on N if the system 
is confined to the half-plane x>O. 

Lastly, we can deal with a background density having the double periodicity of a two- 
dimensional crystal. This model can be understood as made of mobile .electrons. interacting 
between themselves and with a lattice of extended fixed .ions.; this classical caricature of a 
metal (or perhaps of a ionic superconductor) has already been studied by compu:?r 
simulation [6] .  The background potential is of the form e2V(r) = e2[Vo(x) + #(x, y ) ] ,  where 
the potential e2Vo(x) created by the average background density po can be taken such that 
Vo(x) = zpo x2 and e2 +(x, y) is a doubly periodical potential: +(x + nu, y + mb) = +(x, y); since 
there is one ion per lattice cell, po = (ab)-'. As a consequence of the symmetries of V(r),  an 
orthogonal basis is formed by the Bloch-type functions 

+q (r)  = exp [2iris;n] [S (< + n)]'" exp [- V ( r )  + 2% (i + n) xlbl , 
n 

with C, r; E [0 ,  11. The two-body correlation function is found to obey the Stillinger-Lovett 
sum rule [7]  which characterizes a conducting phase. The detail will be published elsewhere; 
triangular lattices are also tractable. Here, we only quote a result for the simplest choice: a 
square lattice with a = b = 1, and exp [- 25.1 = 1 + A(cos 2 z x  + cos 27;y). Then, the one- 
particle density is 

We are also able to generalize known results [5,8-101 about the two-component plasma TCP 
(a system of positive and negative particles of charges k e ) .  At I' = 2 ,  the TCP is equivalent 
to a free-fermion field. The system is unstable against collapse, unless some short-distance 
cut-off is introduced; however, if the cut-off is removed at constant fugacity, although the 
one-particle densities diverge, the n-particle-truncated densities (n 2 2 )  have well-defined 
limits. We are able to consider a generalized TCP, made of positive particles, negative 
particles and a charged positive background. The background potential can be taken into 
account by introducing position-dependent fugacities m,(r) = m, exp [2sV(r)l, where 
s = + 1 ( -  1 )  if the particle at r is positive (negative). The n-particle densities are again of the 
form ( l ) ,  where now ( rl IP 1 r2)  is a 2 x 2 matrix in charge space (its s1 s2 element corresponds to 
a particle of charge s l e ( s ze )  at r1(r2)); this matrix is no longer a projector but the Green 
function 

where g,, g,, crz are the Pauli matrices. These matrix elements can be re-expressed in terms 
of the isoscalar operators A = 8, + id, + d,V + id,V and A+ = - d, + id, + d,V - id,V as 

where m2 = m ,  m- . 
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In the case of a uniform background of charge density ep, we can choose V(r)  = (In) rpr’’. 
The inversion of m2 + A+A and m2 + AA+ is easily done by solving a simple differential 
equation if we take rz at  the origin; this is enough for computing pf) which depends only on 
r= Ir, - r z / .  We find 

( r l P l o ) - -  = , ~ T ( X  + l ) ( ~ , ~ r ~ ) - ~ ~ W ~ ~ , ~ ) - ~ , ~ ( x p r ~ ) ,  

( r  ]PI 0) + = ~ C Z ( C X  + 1) ( z , o T ‘ ) - ~ ’ ~  W- 

where a = m2/4n,c and W is a Whittaker function; the (+ -) and (- +) matrix elements can be 
obtained by acting with the operator A. 

In the limit ,c + 0, we recover the usual TCP without a background. In the limit m, -+ 0, 
the positive particles disappear and we are left with an OCP of negative particles in a 
positive background. In this limit, (2) becomes the projector on the solutions $ of A$ = 0, and 
these solutions are indeed of the form of an entire function of z = x + iy times exp [- VI. 
Thus, the OCP appears as a limiting case of our generalized TCP. 

- z,o(xprz) ) 

Y * *  

We are indebted to A. ALASTUEY and L. BLUM for stimulating discussions. The 
Laboratoire de Physique Theorique et  Hautes Energies is a Laboratoire Associe au Centre 
National de la Recherche Scientifique. 
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