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Two-Dimensional Coulomb Systems: a Larger Class
of Solvable Models.

F. CorNU and B. JANCoOVICI

Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud
Bat. 211 - 91405 Orsay, France

(received 9 October 1987; accepted 28 October 1987)

PACS. 05.20. — Statistical mechanies.

Abstract. - Using new methods, we find that a larger class of two-dimensional Coulomb systems
are solvable models, in the framework of equilibrium classical statistical mechanics, for the
special value I = 2 of the coupling constant. One-component plasmas with adsorption sites, one-
component plasmas in a periodic background, and plasmas made of two components plus a
background are discussed.

Matter is made of electrons and nuclei interacting through Coulomb’s law; therefore, it is
obviously of interest to obtain exact theoretical results about Coulomb systems, and even
«toy models» of them. The equilibrium statistical mechanics of several models of classical
two-dimensional Coulomb systems has already been exactly worked out [1-5], at the special
value I' = 2 of the coupling constant I" = 8¢?, where * ¢ is the charge of a particle and 3 is the
inverse temperature (the Coulomb interaction potential between two particles of charge e at
a distance » from one another is — ¢ In(+/L), where L is an arbitrary length scale). In this
letter, we describe new methods which allow us to compute explicitly the n-body densities
for a larger class of models, besides retrieving known results in a simpler and more
systematic way.

For the one-component plasma OCP (a system of particles of charge ¢ embedded in a
continuous background of opposite charge), we are now able to deal with a variety of
nonuniform backgrounds, and especially a background density having the periodicity of a
two-dimensional crystal. At I'=2, the Boltzmann factor for N interacting particles with
coordinates r;= (x;, ;) has the same structure in terms of a Slater determinant as the
squared wave function of a system of noninteracting fermions, i.e.

C|det {exp[— V(r)] Z‘i:—l}i,j=1

.....

where C is a constant, ¢?V(r;) is the background potential acting on the i-th particle and
2;=a; + ty;. For a constant background density ¢y, V(r) can be chosen as (1/2) xg, 72, the
functions exp[— V(r)]#’ are mutually orthogonal; to deal with the Slater determinant is a
standard problem, and it is easy to perform the integrals which define the n-particle
densities and to take their thermodynamic limits {1]. In the general case of a nonuniform
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background, the functions exp[— V(r)] 2/ are no longer orthogonal. However, we can follow
the same steps as above in terms of a new basis ¢,(2) for the entire functions, chosen in such
a way that the functions ¢i(r)=exp[— V({)]¢i(2) are orthogonal, since the Slater
determinant is invariant under such a change of basis. In terms of the projector

(i Plr) = S 4 0T [ dr g P,
?
the m-particle-truncated densities are

s =(r|Plr),
o (ryr)=—[(r|P|r)?, 1
ey )= (=0 S (ry |Pry)y e (s [P

(iyig...in)

where the summation runs over all cycles (i) 75... 7,) built with {1, 2,...,n}. Thus, the
problem is reduced to computing the projector P on that subspace of Hilbert space which is
spanned by the entire functions times exp[— V(1)]; this amounts to diagonalizing the matrix
formed by the scalar products [drz exp[—2V(r)]#.

As a first application, we can quickly retrieve all the known results [2] about the case
where the background potential depends only on one coordinate: V(r) = V(x). Since V is
translationally invariant along y, it is convenient to choose the functions ¢; as
exp[— V(x) + k(x + iy)], with k € R; they are indeed orthogonal because of the plane-wave
factor exp [iky]. When the particles are confined to the half-space x >0 by an impenetrable
wall, the range of k must be restricted to k>0, as it can be seen by reaching this case
through a suitable limiting procedure.

When the background potential is periodic along y, with a period b, we can start with the
same g-functions exp [k(x + iy)], writing k =2x({+n)/b, {€[0, 1], n integer; the scalar-
product matrix is of the form

fdrexp Rr(Z+n)@Eb) -2V + 22 +n)@b)]=2(—-2)A (n,n').

Thus, as a second application, we are able to revisit a model for localized adsorption,
which has been previously studied (3] by a four de force of expansion resummations; we now
obtain more general results in an easier way. The model is a line of equidistant adsorption
sites located along the y-axis, creating a potential V,4, of the Baxter type, i.e. such that
exp[— 8Vl =1+ 23(x) T 2(y — mb). The continuous background density ¢y,(®) is assumed

to depend only on x, creating a potential chosen as V(x). Thus e V(r) = ¢*V(x) + V,qs. This
is, for instance, a model for an electrode with adsorption sites. The matrix A.(n, n) is found
to be, up to a multiplicative constant, of the form &, +f;(n)f;(n'); thus, the
diagonalization can be easily completed. We find

(r|Plre) =eXp[—V(r1)—V(rz)]JdZZS(Hn)eXp[Zn 2+ ) z/b]-

o — 2 EXRLZ2VOONS ™) | o vy 2],

1+2exp2V, (1S SE+1D)
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where S is a normalization factor:
-1
Si+n)= {b fdx exp 4= ({+n)x/blexp[— 2V, (x)]} .

The summations on «, m, are on Z if the system occupies the whole plane, on N if the system
is confined to the half-plane x> 0.

Lastly, we can deal with a background density having the double periodicity of a two-
dimensional crystal. This model can be understood as made of mobile «electrons» interacting
between themselves and with a lattice of extended fixed «ions»; this classical caricature of a
metal (or perhaps of a ionic superconductor) has already been studied by compuier
simulation [6]. The background potential is of the form e2V(r) = e®[Vo(x) + ¢(x, y)], where
the potential eV (x) created by the average background density ¢, can be taken such that
Vo(x) = meo 2 and e ¢(zx, ) is a doubly periodical potential: ¢(x + na, y + mb) = ¢(zx, y); since
there is one ion per lattice cell, ¢o = (ab)~!. As a consequence of the symmetries of V(r), an
orthogonal basis is formed by the Bloch-type functions

$r, (r) = 3 exp [2=inn] [S (£ + n)]Pexp [— V (r) + 2 (L + n) 2/b],

with £, r € [0, 1]. The two-body correlation function is found to obey the Stillinger-Lovett
sum rule [7] which characterizes a conducting phase. The detail will be published elsewhere;
triangular lattices are also tractable. Here, we only quote a result for the simplest choice: a
square lattice with a=5b=1, and exp[—24]=1+ A(cos2xx + cos2ry). Then, the one-
particle density is

2 =p0V2expl-2:1 [ dz [ dr

expl— =@ - —=(y —n)?*—2ix(x - ) (y — v)]
1+ 2 exp[— =/2](cos 2% + cos 27r) ’

We are also able to generalize known results [5, 8-10] about the two-component plasma TCP
(a system of positive and negative particles of charges £ e). At I'=2, the TCP is equivalent
to a free-fermion field. The system is unstable against collapse, unless some short-distance
cut-off is introduced; however, if the cut-off is removed at constant fugacity, although the
one-particle densities diverge, the n-particle-truncated densities (n = 2) have well-defined
limits. We are able to consider a generalized TCP, made of positive particles, negative
particles and a charged positive background. The background potential can be taken into
account by introducing position-dependent fugacities m4(r) =m, exp[2sV(r)]l, where
s =+ 1(—1) if the particle at r is positive (negative). The n-particle densities are again of the
form (1), where now (r,|P|r,) is a 2 X 2 matrix in charge space (its s, s, element corresponds to
a particle of charge s;e(sse) at ri(ry)); this matrix is no longer a projector but the Green
function

1+ s
(ry 1P|rz>slsz=[msl(rl)]“2<r1l{sxar+cy8y+ > ms(r) * 5o

-1
2 } |r2 > 818 [?%32 (rZ)]l/z 3
s=x1

where o,, 5, 7, are the Pauli matrices. These matrix elements can be re-expressed in terms
of the isoscalar operators A =23, +1i9,+3,V+19,V and A™ =—-9,+19,+3,V -1,V as

(N |Plr)y__={r|m*m?*+ AT Al '|r,),
(ri|Piry) o= (ry|mP[m?+ AA™] Hry) 2)
1 (ri|P|r) .= —=(r|Plr)) _. = — (r;mA[m?+ AT AT |rp)

where m2=m,m_.
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In the case of a uniform background of charge density ec, we can choose V(r) = (1/2) mer.
The inversion of m®+ A" A and m?+ AA™ is easily done by solving a simple differential
equation if we take r; at the origin; this is enough for computing ¢¢’ which depends only on
r=|r—ry]. We find

<r |P’ 0> = pF (oc + 1) (:rprz)_ 12 W(l/g) _ayo(ﬂp'rz) y
(rlP|0), . = el (& + 1) (mer ) BW_ 1), olme?)

where a = m?/4xe and W is a Whittaker function; the (+ —) and (- +) matrix elements can be
obtained by acting with the operator A.

In the limit ¢ — 0, we recover the usual TCP without a background. In the limit m, — 0,
the positive particles disappear and we are left with an OCP of negative particles in a
positive background. In this limit, (2) becomes the projector on the solutions ¢ of Ay =0, and
these solutions are indeed of the form of an entire function of z =x + iy times exp[— V1.
Thus, the OCP appears as a limiting case of our generalized TCP.

We are indebted to A. ALASTUEY and L. BLUM for stimulating discussions. The
Laboratoire de Physique Théorique et Hautes Energies is a Laboratoire Associé au Centre
National de la Recherche Scientifique.
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