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In classical equilibrium statistical mechanics, the two-dimensional two-component Coulomb 
gas is exactly solvable at the special value of the reduced inverse temperature r = 2. This is 
used for building an exactly solvable model of the electrical double layer. A charged hard wall 
(primitive electrode), a polarizable interface, an ideal conductor electrode, a semipermeable 
membrane are studied: the density profiles and correlation functions are computed. The 
differential capacity and the surface tension are also obtained. 

I. INTRODUCTION 

The electrical double layer is that arrangement of 
charges which forms at the interface between two conduct
ing media 1 (for instance, at an electrode-electrolyte inter
face). Given some microscopic model (more and more so
phisticated ones are being introduced), it can be studied by 
statistical mechanics, either by numerical simulation, or 
analytically; in the latter case, it is usually necessary to resort 
to some approximation method. 

In recent years, a very simplified class of (two-dimen
sional) models has been considered, with the special feature 
of being exactly, analytically solvable. In these models, a 
conducting medium is represented by a two-dimensional 
classical one-component plasma, i.e., a system of point 
charges of one sign embedded in a continuous background of 
the opposite sign. At the special value ofthe coupling param
eter (or reduced inverse temperature) r = 2, the part~cle 
density and all the correlation functions can be obtained ex
actly.2-B Models ofthe electrical double layer, based on the 
one-component plasma, have been studied. 

It has now been found that the two-dimensional classi
cal two-component plasma (the standard Coulomb gas), i.e., 
a system' of positive and negative particles of opposite 
charges, is also a solvable model9

-
11 at r = 2. In the present 

paper, we study models of the electrical double layer, based 
on the two-dimensional two-component plasma at r = 2. 

Admittedly, a real electrical double layer is a complicat
ed three-dimensional system with finite-size ions, a solvent 
which has a molecular structure, etc., and we do not expect 
our two-dimensional model of almost point particles to pic
ture every detail of reality. However, many features of a 
Coulomb system essentially stem from the screening effect, 
which is itself a consequence of the harmonicity of the Cou
lomb potential. Therefore, we believe that our model can 
provide an insight into salient properties of electrical double 
layers. Also, our exactly solvable model can be used as a test 
bench for approximate methods. 

In Sec. II, we define the model and we review the general 
method of solution. In Sec. III, we apply the general method 
to the calculation of density profiles and correlation func
tions in electrified interfaces. In Sec. IV, we study the differ
ential capacity and the electrocapillarity. In Sec. V, we dis
cuss the influence of the reduced dimensionality. 

a) Laboratoire associe au Centre National de la Recherche Scientifique. 

II. MODEL AND METHOD OF SOLUTION 

The model is a two-dimensional system of particles of 
charges ± e. In two dimensions, the Coulomb interaction 
potential between two particles of charge e at a distance r 
from one another is logarithmic, of the form - e2 1n(rIL), 
where L is some irrelevant length scale. We use classical 
equilibrium statistical mechanics. The dimensionless cou
pling constant is r = {3e2

, where {3 is the inverse tempera
ture. At r = 2, the model is exactly solvable. For the sake of 
completeness, we shall review the method of solution9

-
11 

(now avoiding some unnecessary complications of the origi
nal papers). 

For r;;~2, the point-particle model is unstable. against 
the collapse of pairs of oppositely charged particles. This 
collapse can be prevented by introducing some short-dis
tance cutoff, for instance, by representing the particles as 
charged hard discs of diameter R, and it will be seen that it is 
possible to obtain exact results near the limit R ...... O. Actually, 
if we take the correlation length as the control parameter, 
and keep it at some fixed value, the nobody (n>2) correla
tion functions have well-defined limits as R ...... 0; as to the 
one-body densities, they diverge as R ...... 0, but their small-R 
behavior can be explicitly obtained. 

We represent the position r of a particle by the complex 
number z = x + iy, where (x, y) are the Cartesian compo
nents of r. For a system of N positive and N negative parti
cles, the complex coordinates of which are uj and Vj' respec
tively, the Boltzmann factor is, at r = 2, 

exp {2 ~J In 1 U
j ~ U j 1 + In 1 Vj ~ v j I] 

- 2 t; In 1 U j ~ v j I} 

= L 2N 1 Ilk j (U j - U j )(Vj - v j) 12 
Ilj,j(uj-v j ) 

=L2NI[detu.~v.] .. ,12, (2.1) 
I } l,}= I, ... ,N-

where the last equality stems from an identity of Cauchy .12 It 
is convenient to start with a discretized model (for which 
there are no divergences). Two interwoven sublattices U and 
Vare introduced. The positive (negative) particles sit on the 
sublattice U( V); each lattice site is occupied by no or one 
particle. A possible external potential is described by posi-
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tion-dependent fugacities A (u i ) and A (Vi)' Then, the grand partition function (here defined as a sum including only neu
tral systems) is 

Z = 1 + L 2 ~ A(U)A.(V) / U ~ V /2 + L 4 u,~u A(UI )A.(U2 )A(VI )A(V2 ) 1 [det U
i 
~ V j Lj= 1.21

2 
+ ... (2.2) 

veV 

[the sums in Eq. (2.2) are defined with the prescriptions that configurations which differ only by a permutation of identical 
particles are counted only once]. It can be easily seen that this grand partition function is the determinant of an anti
Hermitian matrix involving all the lattice sites: 

o LA(U.) LA(U I ) 

U.-V. UI - V2 

0 1 
LA(U2 ) LA(U2 ) 

U2 - VI u2 - V2 

Z=det 
LA(V I ) LA(V I ) 

0 v.-u l v. - u2 

LA(V2 ) LA( v2 ) 
0 v2 - ul v2 - u2 

A more compact notation can be used: each lattice site is 
characterized by its complex coordinate z and an isospinor 
which is (~) if the site belongs to the positive sublattice U 
and (?) if the site belongs to the negative sublattice V. The 
position dependent fugacities will be called A+ (z) for posi
tive sites, A_ (z) for negative sites. We define a matrix Mby 

U + iu L U - iu L (zIMlz') = x y + x y __ (2.4) 
2 z-z' 2 z-z" 

where the o's are 2X2 Pauli matrices operating in the iso
spinor space. Then, Eq. (2.3) can be written as 

{ [ 
1 + U z 

Z=det 1 + A+(Z) -2-

l-U] } +A_(Z) -T (z IMI z') . (2.5) 

Ignoring the possible appearance of divergences for the 
time being, we now approach the continuum limit, letting 
the area S per lattice site become very small, and we show 
that Eq. (2.5) can be reexpressed in terms of a simple differ
ential Dirac operator. Indeed, Eq. (2.4) can also be written 
as 

(2.6) 

and, since V2ln r = 2,1Tt5(r), it is obvious that the inverse 
operator M - I is 

M-I=~(uxax +uyay ) (2.7) 
21TL 

(S appears when discrete sums are replaced by integrals). 
Thus, an alternative form ofEq. (2.4) is 

(2.8) 

where m ± = (21TL IS)A ± is a rescaled fugacity. Equation 
(2.8) expresses a well-known (7) equivalence between the 
two-dimensional Coulomb gas at r = 2 and a free Fermi 

(2.3 ) 

I 
field. 13 

From Eq. (2.8), 

and the one-particle densities and n-particle truncated densi
ties can be obtained in the usual way by taking functional 
derivatives of Eq. (2.9) with respect to the fugacities 
m ± (r). Marking the sign of the particle at r i by an index 
Si = ± 1, and defining the matrix 

[ 
1 + Uz 

Gs,s, (rl,r2) = (rlsll uxax + Uyay + m+(r) --2-

l-u]-I + m_(r) -2-
z 

Ir~2)' (2.10) 

we obtain the one-particle densities 

(2.11 ) 

the truncated two-body densities 

p~,~~T(rl,r2) = - m s, (rl)ms, (r2) Gs,s, (r l,r2) Gs,s, (r2,r l ), 

(2.12) 

and more generally the truncated nobody densities 

(n)T ( ) 
PSIS2 ... $11 r 1,r2,···,r n 

(2.13 ) 

where the summation runs over all cycles (i.i2 ••• in) built 
with {1,2, ... ,n}. 

Therefore, the calculation of the one-body and nobody 
densities reduces to obtaining the Green function (2.10). 
This Green function G is the solution of a system of four 
coupled partial differential equations, which are, in a 2 X 2 
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(2.14 ) 

By using the formal expansion ofEq. (2.10) in powers 
of uxox + UyOy , it is easy to derive the useful symmetry rela
tions 

Gss (r l ,r2) = Gss (r2,r l ), 

Gs_ s(r"r2 ) = - G_ ss (r2,r,). 

It is convenient to define mer) and V(r) by 

ms(r) = m(r)exp[ - 2sV(r»). 

(2.15) 

(2.16) 

This allows to take into account some external electrical po
tential: se2 V(r) is the energy of a particle of sign s in this 
potential'4; if there is also a nonelectrical potential acting in 
the same way on particles of both sign, it is described by the r 
dependence of mer) (this will be a way of taking into ac
count impenetrable walls for instance). It is also convenient 
to introduce the functions 

gs,s, (r"r2 ) = exp[ - SI V(r,») Gs,s, (r"r2 )exp[ - S2 V(r2 )] 

(2.17) 

[they obey symmetry relations similar to Eq. (2.15)]. Then, 
in terms of the operators A = 0 + io + 0 V(rl ) 

XI Yl XI 

+ ioy,v(r , ) and A + = - ox, + ioy, + ox, Veri) 
- ioy, Veri)' by combining the components ofEq. (2.14), 
one obtains decoupled equations for g + + and g __ , 

{mer,) +A +[m(rl »)-'A}g++(rl ,r2 ) =8(r l -r2 ), 

(2.18a) 

{m(rl) +A [m(r,)]-IA +}g __ (rl,r2 ) =8(r, -r2 ), 

(2.18b) 

while 

g_+(rl,r2 ) = - [m(rl)]-'Ag++(rl ,r2 )· (2.18c) 

The simplest case of a uniform TCP is described by tak
ing constant fugacities m + = m _ = m [thus, V( r) = 0]. In 
that case G++ = G __ , and Eqs. (2.17) and (2.18a) be
come 

(m2 
- vi )G++(rl,r2 ) = m 8(rl - r2 ), 

with the solution 

m 
G++(rl,r2 ) =-Ko(m Ir, -r2 1)· 

2rr 

From Eq. (2.I8c), one obtains 

G_+(r.,r2 ) 

(2.19) 

(2.20a) 

= m (XI - x2) + i(YI - Y2) K ( 1 _ I) 
2 1 1

1 m r. r2 • 
rr r l - r 2 

(2.20b) 

Ko and Klare modified Bessel functions. These functions 
decay at large distances, on a characteristic length scale 
m - I: the rescaled fugacity m is an inverse correlation length. 
As announced in the above, for a given value of the correla
tion length m- I

, the n-body (n;;>2) truncated densities 
(2.12) and (2.13) are well-defined quantities for the point
particle system; the two-body truncated densities, for in-

stance, have the simple forms 

p~)r (r) = - (~y[Ko(mr)]2, (2.2Ia) 

p~)~ (r) = (;:Y[KI (mr)]2. (2.2Ib) 

The one-body densities, however, as given by Eqs. (2.11) 
and (2.20a), are infinite since Ko(mr) diverges logarithmi
cally as r ..... O. This divergence can be suppressed by a short
distance cutoff R: we replace the point particles by small 
charged hard discs of diameter R and use a regularized form 
ofEq. (2.11), 

m
2 

m
2 

[ 2 ] P± =-Ko(mR)-- In---r, 
2rr 2rr mR 

(2.22) 

where r = 0.5772 is Euler's constant. Near the limit mR ..... O 
(i.e., in the low-density limit p ± R 2 ..... 0), we can keep the 
point-particle expression for the correlation functions, for 
separations larger than R. It can be checked that this way of 
implementing the cutoff is a consistent one, in that sense that 
the perfect-screening rule 

P± = r d2r[p~)~ (r) - p~)r (r)] 
Jr>R 

(2.23) 

is satisfied. Either by integrating Eq. (2.22), or by using the 
regularized form of Eq. (2.9), one obtains for the pressure p, 

{3p = m
2 

[In _2_ - r +~] . 
2rr mR 2 

(2.24) 

The equation of state is 

1 m2 

{3P=T(P++P-)+ 4rr' (2.25) 

In the limit mR ..... 0, one finds {3p/ (p + + P _ ) ..... 1/2. This is 
the expected result for an ideal gas of collapsed neutral pairs. 

III. INTERFACES 

We want to compute the one-body and n-body densities 
near an interface. The interface is assumed to be along the Y 
axis, and the system is translationally invariant in the Y di
rection, i.e., the position-dependent fugacities m ± (r) actu
ally depend only on x. Our problem is to solve Eq. (2.14) or 
(2.18) in this geometry. The standard technique is to Four
ier-transformg(r

"
r2 ) with respect tOY2 - YI (gdepends on 

Y I and Y2 only through their difference) : 

(3.1 ) 

We also define 

Gs,s, (x l ,x2,/) = exp[sl V(xI ) 18"s,s, (X I,x2,/)exp[s2 V(x2 )]· 

(3.2) 
"'-

In terms of G or g, one obtains ordinary differential equa-
tions, in one variable X]J such as 

m+(xl)G++ (x"x2,/) 

+ C~I + 1 )G_+(xl,x2,/) = 8(x, - x2), (3.2a) 

C~I -I )G++(xl,X2,/) + m_(xl )G_+(xl ,x2,1) = 0, 

(3.2b) 
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or 

{m(x l ) - [~- V'(x l ) +/][m(XI)]-I[~ 
dX I dX I 

+ V'(x l ) -I ]}g++(XI,X2,/) =c5(XI -X2 ), (3.3a) 

g_+(x l ,x2,/) = - [m(x l )] -I[~ + V'(x l ) -I] 
dX I 

Xg++(x l ,x2,/). (3.3b) 

In general, the fugacities m ± (XI) will be discontinuous 
on the interface X.I = O. Since Eq. (3.2) is a first-order sys
tem, its solutions in the regions X I > 0 and X I < 0 must be 
connected by the conditions that G + + and G _ + be contin
uous at XI = O. 

We now consider specific models. 

A. Charged hard wall (primitive electrode) 

We assume the half-space X < 0 to be impenetrable to the 
particles: the fugacities m ± (x) vanish in that region. The 
Coulomb gas is confined to the region x> O. We want to 
solve Eq. (3.2) or (3.3), assuming the source point X 2 to be 
in the Coulomb gas region, X 2 > O. The boundary conditions 
are thatg++ andg_+ must vanish atxI = ± 00. 

In the wall region, XI <0, Eqs. (3.2) reduce to 

C~I +/)G_+(x l ,x2 ,/) =O,C~I -/)G++(x l ,x2,/) =0 

(3.4) 

with the general solution 
A A 

G++ = A (x2,l)exp(lxl ),G_+ = B(x2,/)exp( -lx l ). 

(3.5) 

The boundary conditions at XI = - 00 can be satisfied only 
by taking A = 0 if 1<0, B = 0 if I> O. There is a continuity 
requirement at X I = O. Thus the solution in the region X I > 0 
must obey the following boundary conditions at XI = 0: 
A A 

G++ (XI = 0,X2,l) = Oifl <O,G_+(XI = 0,x2,/) = Oifl>O. 
These are the boundary conditions to be satisfied at a hard 
wall. 

Let us now consider the Coulomb gas region X > O. We 
assume that the wall may carry a uniform external "surface" 
charge density, i.e., there will be a charge - eO" per unit 
length on the line X = 0; this charged wall models an elec
trode. This electrode, and another one of opposite charge 
assumed to be at X = + 00, generate an electrostatic poten
tial which is 0 for X < 0 and 21TeO"x for X > 0 (in two dimen
sions, the numerical factor is 21T rather than 41T); corre
spondingly, the fugacities are of the form m ± (x) = m 
exp( + 41To"X), i.e., m(x) = m, Vex) = 21TO"X. Equations 
(3.3) take the simple form 

[ m2 + (/ - 21T0")2 - d:] g++ (x l ,x2,/) = mc5(x I - x 2), 
dX I 

(3.6a) 

g_+(x l ,x2,/) = ~ [1- 21T0"- ~]g++(XI'X2'/)' (3.6b) 
m dX I 

This system must be solved with the boundary conditions 
g++(xI = 00,x2,/) =g_+(xI = 00,x2,!) = 0, 

g++ (XI = 0,x2,/) = 0 if I <O,g_+(xI = 0,x2,/) = 0 if I> O. 
This is easily done by adding an appropriate " reflected 
wave" to the free space Green function solution of Eq. 
(3.6a) (the calculation is facilitated by noting thatg+ + has 
to be symmetrical in X I and X2)' The result is 

g++(x l ,x2,/) =~{exp[ -K(l) IXI -x2 1] 
2K(l) 

- exp[ - K(/)(X I + X2) n, 1<0, 
(3.7a) 

g++(x l ,x2,/) =~ {exp [ -K(l) IXI -x2 1] 
2K(l) 

+ K(I) - 1+ 21T0" 

K(I) + 1- 21T0" 

Xexp[ - K(I)(XI + X2)]}, I> 0, 

(3.7b) 

where 

K(I) = [m2 + (1_ 21T0") 2] 1/2. (3.8) 

g_+ is given by Eq. (3.6b). By a similar calculation, one 
obtains 

g __ (x I,x2,/) =~ {exP[ -K(I) Ix l -x2 1] 
2K(I) 

+ K(I) + 1- 21T0" 

K(I) - 1+ 21T0" 

Xexp[ - K(I)(XI + X2)]}, 1<0, 

(3.7c) 

g __ (x I,x2,/) =~ {exp[ -K(I) Ix l -x2 1] 
2K(/) 

-eXP[-K(/)(XI +X2)]}' 1>0. 

(3.7d) 

Using Eq. (3.7) in Eq. (3.1) gives an integralrepresentation 
for g(rl,r2 ); one can obtain the n-body correlations by Eqs. 
(2.13) and (2.17). 

The first term on the right-hand side of Eqs. (3.7) gives 
to mgss (r l ,r2 ) a contribution (m2/21T)exp[i21T0"(YI 
- Yz) ]Ko(m Irl - r2 1), which is the bulk result, except for 

an irrelevant phase factor. For calculating the one-body den
sities 

Ps (x) = mgss (r,r), (3.9) 

one must use for the bulk contribution the regularized form 
Eq. (2.22). After the change of variable 1- 21T0" = t, rear
rangements, and the explicit calculation of some integrals, 
one obtains 

(3.10) 
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mx 

FIG. 1. The density profiles near a hard wall. For an uncharged wall 
(u = O),p+ (x) = p_ (x) (black circles). For a charged wall (21TU = m), 
p+(x) (crosses) andp_ (x) (white circles). The cutoff is mR = 0.01. 

where p± is the bulk density (2.22). In the limit x ..... O, 
Ko (2mx) must be replaced by its regularized form Ko( mR); 
the other terms in Eq. (3.10) have finite limits. One finds for 
the contact densities 

1 m
2 

m2 
[ • -I 21TU 

p± (0) =-p± +-+- ±smh --
2 81T 41T m 

± 21TU (1 + 4ru2)112 + 4ru2]. (3.11) 
m m2 m2 

The density profiles are shown in Fig. 1, in the two cases 
U = 0 and 21TU = m. 

It is easy to check that Eq. (3.10) obeys the screening 
rule . 

Loo [p+ (x) - p_ (x)] dx = u. (3.12) 

Also from Eqs. (2.25) and (3.11), one checks that the con
tact theorem 

(3.13) 

is satisfied; this relation expresses the balance between the 
bulk pres~ure on one side and the kinetic plus electrostatic 
pressures at the wall on the other side. 

(i) if X I ,X2 > 0, 

B. Polarizable interface 

The model is a Coulomb gas separated into two regions 
(a) (the half-plane x> 0) and (b) (thehalf-planex<O) by 
a membrane (the line x = 0) impermeable to the particles. 
In the grand canonical formalism, this membrane can be 
described by using different fugacities on each side.5

•
s In gen

eral, the densities have different given values far away on 
each side of the interface, and the potential drop across the 
interface is also a given quantity. Here, we take as our con
trol parameters different constant fugacities on each side: In 
the general notation (2.16), the fugacities of the particles of 
sign s are ma exp( - 2sVa) in region (a) and 
mb exp( - 2sVb) in region (b); it will be seen that the phys
ical quantities depend on Va and Vb only through their dif
ference Va - Vb' 

We want to solve Eq. (3.3). If, for instance, the source 
point X 2 is in region (a) (x2 > 0), g + + obeys 

= m a t5(xl - x 2), X I ,X2 > 0, 

(m~ +12-~)g++(XI'X2,1) dxf 

= 0, X I < 0, X2> O. 

(3.14a) 

(3.14b) 

We look for a solution, vanishing at x I = ± 00, of the form 

+ A exp[ - Ka (XI + x 2 )], x l 'x2> 0, (3.15a) 

g++ = Bexp(KbxI -KaX2), XI <0,x2> 0, (3.15b) 

where 

(3.16) 

The constants A and B are determined by the conditions that 
G++ and G_+ be continuous at XI = 0, i.e., that 
exp( V)g++ andexp( - V)m- I [1- (d /dx l ) ]g++ be con
tinuous at X I = 0. The same method applies to X2 < 0 and to 
g __ . The results are 

g++(x l ,x2,1) = ma {exp[ -Ka Ix l -x2 l] + 
2Ka 

[(Ka -l)/ma ] - exp[2( Va - Vb )][ (Kb -l)/mb] 

[(Ka + l)/ma] + exp[2( Va - Vb)] [(Kb -l)/mb] 

Xexp[ -Ka(XI +x2)]}; (3.17a) 

(ii) ifx l ,x2 <0, 

A mb { I [(Kb + l)/mb) - exp[2( Vb - Va)][ (Ka + I)/ma] 
g + + (X I,X2,l) = - exp [ - Kb X I - x2 1] + --"-~----.:...::....-----=--!:....-~---::....-.::...!:.----=-------=...::... 

2Kb [(Kb -l)/mb] + exp[2( Vb - Va)] [(Ka + l)/ma ] 

Xexp[Kb(XI +x2 )]); (3.17b) 

(iii) ifx lx 2 <0, 

A ( I) _ exp[ - KI IxIi - K 2 1x2 1] 
g++ X I ,X2' - , 

exp( Vb - Va) [(Ka + l)/ma] + exp( Va - Vb) [(Kb - l)/mb] 
(3.17c) 
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where K j = Ka if Xj > 0, K j = Kb if Xj < O. One obtains 
g--(x l ,x2,/) by changing the signs of Va,Vb,1 in the above 
expressions for g + +. One obtains g _ + by 

g_+(x),x2,l) = _1_ [I-~] g++ (x),x2,/), (3.17d) 
m l dX l 

where m) = ma if x»O, m l = mb if Xl <0. Using Eq. 
(3.17) in Eq. (3.1), one obtains an integral representation 

one obtains p_ (x) by changing the signs of Va and Vb in the 
above expressions for p+ (x). When x ..... O, the integrals in 
Eq. (3.18) diverge at 1= + 00, and we must regularize 
them. We did it by introducing an ultraviolet cutoff 10 , This 
cutoff must be such that the first term on the right-hand side 
of Eq. (3.17a) or (3.17b) correctly gives the regularized 
bulk densities (2.22); this requirement determines 

(3.19) 

In general, the densities are discontinuous at x = O. They are 
shown in Fig. 2, for mb = O.Sma and 
exp [2 (Va - Vb)] = 4. 

Without a cutoff, p ± (X) - p ± diverges only logarith
mically; thus, relevant integrals on X can be calculated with 
the cutoff removed. With some algebra, one can check that 
the total charges on each side of the interface have opposite 
values: 

U= 1"0 dx[p+(x) -p_(x)] 

= - [00 dx[p+(x) -p_(x)]. (3.20) 

t2 

:g 
7Q. 

EO 0.8 

0.4 

0.0 -+----.---r---..---+---r-----.----r-~ 
-to -0.5 0.0 0.5 to 

FIG. 2. The density profiles near a polarizable interface, for mb = O.Sma 
andexp[2(Va - Vb>] =4:p+(x) (crosses) andp_(x) (white circles). 
The cutoff is mR = 0.01. 

which gives the nobody correlations by Eqs. (2.13) and 
(2.17). . 

For the calculation of the one-body densities mag .. (r,r) 
or mbg .. (r,r), the first term on the right-hand side of Eq. 
(3.17a) or (3.17b) gives the bulk density P"-± or pb± ' for 
which we must use the regularized expression (2.22) with 
m = ma or m b. From Eq. (3.1), after some rearrangements, 
one obtains the integral representations 

(3.18b) 

Furthermore, one can compute explicitly the potential drop 
t/la - t/lb across the interface [t/la (t/lb) is the electrical poten
tial at x = + 00 ( - 00)]: 

!:J.t/l=t/la -t/lb =21Te f:oo dxx[p+(x) -p_(x)]. 

(3.21 ) 

After some algebra, one finds 

(3.22) 

This very simple result is not unexpected. Since the physical 
quantities depend on Va and Vb only through their differ
ence, we can choose eVa = - t/la and eVb = - t/lb' There
fore, if we define bulk chemical potentials /-la and /-lb by 
ma = mo exp({3/-la) and mb = mo exp({3/-lb) (where mo is 
some inverse length), in region (a), for instance, the fuga
city ma exp ( - s{3e2 Va ) of the particles of sign s can be writ
ten as mo exp [{3( /-la + set/l a )]. This means that the total 
chemical potential/-la + set/la actually is an electrochemical 
potential, which includes the eleci1;rical part set/l a in addition 
to that part/-la which governs the bulk properties; the electri
cal part plays a role only in the surface region. 

One can also check the contact theorem which expresses 
the balance between the bulk pressures Pa and Pb' and the 
kinetic pressures on the membrane: 

{3Pa -{3Pb =p+(O+) +p_(O+) -p+(O-) -p_(O-). 

(3.23 ) 

c. Ideal conductor electrode 

If, in the results for the impermeable membrane, we take 
the limit mb ..... 0, we retrieve the hard-wall expressions. 

Another interesting limit is mb ..... 00. Then, the correla
tion length mb-) in region (b) vanishes, and region (b) be
comes an ideal conductor.6 From Eq. (3.17a), we obtain in 
region (a) [we now omit the index a, and use the notation 
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(3.22) ] 

g++(x l ,x2,1) = m {exp [ -K IXI -x2 1] 
2K 

K -1- me-Pef.t/> 
+------

K + 1+ me-Pef.t/> 

Xexp[ -K (XI +x2)]}, 

and from Eq. (3.18a), 

(3.24) 

p+(x)=p± +~ r/<>dl{_m 
21T Jo K 

Ke2Pef.t/> + m } + exp( - 2KX) ; 
m cosh (2{3et::.¢J ) + K 

(3.25) 

one obtains p _ (x) by changing t::.¢J into - t::.¢J. Without the 
cutoff 10 in Eq. (3.25), P ± (x) would diverge at small x like 
l/x; this effect comes from the strong attraction of each par
ticle by its image. 

In the special case t::.¢J = 0, one finds the explicit expres-
sion 

D. Semipermeable membrane 

As a special case of the impermeable membrane, we can 
obtain a solvable model of a membrane permeable to one 
species, say the positive particles, and impermeable to the 
other species. Now, there are only two control parameters, 
which can be chosen as the bulk fugacities on each side, ma 
and m b • We expect the electrochemical potential of the posi
tive particles to be the same on both sides, since these posi
tive particles can freely cross the membrane; this condition, 
ma exp({3 e¢Ja) = mb exp({3 e¢Jb)' then determines 
t::.¢J = ¢Ja - ¢Jb which is no longer a free parameter. 

From Eq. (3.18) where now 
exp[2( Va - Vb)] = malmb' it is easy to check that the 
density of the positive particles is indeed continuous at 

~ 
c-I: 

'i' EO 

1.0 

0.5 

00000000000099~~QQQ 
XXXXXX)o< 

XX 
X 

X 

0.0 +--..,..--..,..--..,..--+--.,---.,----r---, 
-1.0 -0.5 0.0 0.5 to 

FIG. 3. The density profiles near a semipermeable membrane (permeable to 
the positive particle only), for mb = O.Sm.: p+ (x) (crosses) and p_(x) 

(white circles). The cutoff is mR = 0.01. 

x = 0, as it should since the membrane is permeable to them. 
On the contrary, the density of the negative particles has a 
jump at x = 0 (at least in the nontrivial case ma =/=mb)' 

The density profiles are shown in Fig. 3, for 
mb = 0.5ma· 

IV. DIFFERENTIAL CAPACITY AND SURFACE TENSION 

These quantities are of central interest in experimental 
electrochemistry. They are related by the Lippmann equa
tion. 15 We shall study them for our charged hard wall model 
and our polarizable interface model. Compared to previous 
work on the one-component plasma,5.16 the present results 
for the two-component plasma are rather simpler and more 
explicit. 

A. Charged hard wall 

A given external surface charge density - eu on the 
wall induces a surface charge density eu in the Coulomb gas 
[see Eq. (3.12)]. From Eq. (3.10), it is easy to compute the 
potential drop across the interface: 

t::.¢J = 21Te dx x[p+(x) - p_(x)] = - smh 1 __ • Loo e . - 21TU 

o 2 m 

(4.1 ) 

Therefore, the differential capacity C, defined by 
C = a(eu)lat::.¢J, is 

C = m cosh 2t::.¢J . (4.2) 
1T e 

The shape of the curve C( t::.¢J) is in qualitative agreement 
with the usual experimental results. 

For studying the surface tension, we first consider the 
general case of a Coulomb gas of volume V bounded by a 
surface of area A; the surface carries a total external charge 
- Q with a uniform surface charge density - eu = - Q I 

A, and the Coulomb gas has a surface charge density eu near 
its boundary. In the grand-canonical formalism, besides the 
temperature which here will be kept fixed, we use as indepen
dent variables V, A, Q, and the fugacity m which governs the 
bulk properties. In terms of the grand potential 
n = - (3 -I In Z, the surface tension is defined as I5

-
17 

r=(an) . 
aA m.V.Q 

(4.3) 

n is the sum of a volume part and a surface part: 

n = - Vp(m) + AlUs(m,u). (4.4) 

Therefore, 

r = (1 - u :J lUs (m,u), (4.5) 

and we can compute the surface tension r if we know the 
function lU s (m,u) . 

Rather than computing lUs (m,u) directly from the 
grand partition function, here we find more convenient to 
start with its derivatives. The total number of particles is 
N = - 13m (ani am), and for the present semiinfinite ge-
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ometry, the surface part of this relation gives 

a{J) i"" -f3m-' = dx[p+(x) +p_(x) -2p±]. 
am 0 

(4.6) 

On the other hand, since the interaction between - u and a 
particle of charge ± e, at a distance x from the wall, gives to 
the Boltzmann factor in Z a contribution 
exp [13 21T( v-I )ue2x] for a v-dimensional system 
(v = 2,3), it is easy to show that 

~=21T(V-1)ei"" dxx[p+(x) -p_(x)] =fl.¢. 
a(eu) 0 

(4.7) 

Equations (4.6) and (4.7) are of quite general validity, and 
do not depend on the detail of the present model. Equation 
( 4. 7) can also be obtained by a thermodynamical argument. 
By combining Eqs. (4.5) and (4.7), one obtains the Lipp
mann equation 

ar = _ eu. (4.8) 
afl.¢ 

Incidentally, by writing a 2{J).1 auam = a 2{J).1 amau, one 
obtainsfromEqs. (4.6) and (4.7) a relation of the Maxwell 
type. 

For our present model, with the densities of Sec. III A, 
Eqs. (4.6) and (4.7) become 

a{J). m 1 
13m -- = - - - [m2 + (21Tu)2] 1/2 (4.9) 

am 4 21T 

and 

13 a{J). = sinh-I 21TU. (4.10) 
au m 

Starting from the values m = 0, u = 0, for which obviously 
(J). = 0, we can integrate Eqs. (4.9) and (4.10), first at con
stant u = 0, and afterwards at constant m; the result is 

f3{J). = m + u sinh-I 21TU __ 1_ [m2 + (21Tu)2] 1/2. 
4 m 21T 

Finally, the surface tension (4.5) is obtained as 

mIl f3r = - - - [m2 + (21TU)2] I 2 
4 21T 

= m _..!!!:.... cosh 2fl.¢ . 
4 21T e 

(4.11 ) 

(4.12) 

Qualitatively, the electrocapillarity curve r(fl.¢) has the 
usual shape. Since here the wall is a rigid one, r is not neces
sarily positive. 

The very derivation ofEq. (4.12) implies thatthe Lipp
mann equation (4.8) must be satisfied, and indeed it is. 

It is amusing to consider the limit m --+ ° for a fixed non
zero value of u. In this limit, the bulk densities p ± vanish, 
while however near the wall, for say a negatively charged 
wall (u> 0), the densities (3.10) become 

p_(x) = 0, 

1 
p+(x) =--2 [1- (1 + 41TUX) exp( -41TUX)]. 

41TX 
(4.13) 

Thus, the system becomes a negatively charged plate attract
ing in its neighborhood u positive particles per unit "area"; 
indeed 

f" p+ (x)dx = u. (4.14 ) 

The limiting behavior of Eq. (4.11), as m --+ 0, is 

[ 
41TU ] f3{J). -u In -;;;- - 1 (4.15 ) 

and the limit of f3r is - u. This peculiar one-component 
plasma (without a background) has been previously studied 
in the canonical ensemble,18 and Eq. (4.13) was derived in 
this ensemble. Using the method of Ref. 18, one easily finds 
the free energy per unit area J. and the grand potential per 
unit area (J)., such that 

f3{J). =f3J. -f3,uu=u[ln 2~2U -l- f3,u], (4.16) 

where A is the thermal de Broglie wavelength, L the length 
scale of the logarithmic Coulomb potential, and,u the chemi
cal potential. It is easy to see that our rescaled fugacity m is 
related to,u by m = (21TL / A 2) exp (f3,u) , and therefore Eqs. 
( 4.15) and (4.16) are identical, as they should. 

B. Polarizable Interface 

Now, the control parameter is the potential drop fl.¢ 
rather than the charge; the surface charge density is defined 
by Eq. (3.20) as a function of fl.¢. In general, u can be ex
pressed only in terms of elliptic integrals. In the special case 
of equal bulk densities on each side of the interface, i.e., equal 
fugacities ma = mb = m, things are much simpler and one 
obtains from Eq. (3.18) [remembering Eq. (3.22)] 

i"" m fl.¢ 
U= dx[p+(x) -p_(x)] =-sinh-; 

o 4 e 
( 4.17) 

the differential capacity is 

( 4.18) 

For computing the surface tension, we can follow the 
same kind of approach as above. However the replacement 
of Q by fl.¢ as one of the independent variables brings some 
changes: For some given configuration, let N a+ be the num
ber of positive particles in region (a), etc .... Then, each term 
in the grand partition function Z depends on ¢a and ¢b by 
the factor exp[f3e¢a (N a+ - N a-)] 
X exp [f3e¢b (N b+ - N b)] = exp [f3efl.¢(N a+ - N a- )]. 
As usual, Z can be replaced by its maximum term, and there
fore the grand potential ii = - 13 - I In Z has a term 
- Qfl.¢. Had we used Q as an independent variable, the 
grand potential would have been fi; now it is ii = fi - Q!l.¢. 
As a result of this Legendre transformation, 

( 4.19) 

Therefore, the surface part of ii simply is Ar(ma,mb'fl.¢). 
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The structure of Z gives the derivatives of r as 

-13ma :J r = dx[p+(x) +p_(x) _2pa±], a i OO 

uma 0 

( 4.20) 

-13mb aar =[ dx[p+(x) +p_(x) _2pb±], 
mb -00 

(4.21) 

plus the Lippmann equation (4.8). 
For our model, we can, in principle, compute r by start

ing from ma = mb,!1t/J = 0, in which case r = 0, and inte
grating Eqs. (4.20), (4.21), and (4.8) to arbitrary values of 
the variables. However, for the sake of obtaining explicit 
results in terms of elementary functions, we shall content 
ourselves with sticking to equal bulk densities on each side of 
the interface, i.e., to ma = mb = m. Then, we obtain simply 
from Eqs. (4.8) and (4.17) 

m ( !1t/J ) 13r= - 2" cosh--;--1 . (4.22) 

Here too, r is not positive, but this is not a problem for a rigid 
membrane. 

It is remarkable that, except for numerical factors, the 
results (4.2) and (4.12) for the primitive electrode on one 
hand, and the results (4.18) and (4.22) for the polarizable 
interface (with equal bulk densities) on the other hand, have 
the same form. 

v. CONCLUSION 

In this paper, we have discussed at length the density 
profiles and the thermodynamics of several versions of our 
model for an electrified interface. 

We can try to compare our two-dimensional exact re
sults with the computer simulations19.2o which have been 
performed in the three-dimensional case, for instance, for 
the density profiles near a charged hard wall. In both our 
two-dimensional case (Fig. 1) and the three-dimensional 
case, one sees the same qualitative feature: the counterions 
are attracted by the charged wall, while the coions are re
pelled. The detailed profiles, however, look different; in par
ticular, as the wall is approached, the two-dimensional coun
terion density shows a maximum and then drops, while the 
three-dimensional counterion density rises monotonical
ly.19,20 We believe that these behaviors are different not be
cause the dimensionality is different, but because the hard 
core is vanishingly small in our two-dimensional model. In
deed, in the zero hard core limit, the pressure has half the 
ideal gas value, and, from the contact theorem (3.13), the 

densities at the wall have to be smaller than in the bulk, at 
least for moderate values of the surface charge density ea. 
The three-dimensional calculations however, have been per
formed with sizeable hard cores, the pressure is close to its 
ideal gas value,21 and there need not be a density drop near 
the wall. 

Therefore, we consider that the main imperfection of 
our model is the absence of a hard core. On the contrary, we 
expect the reduced dimensionality to be rather unimportant, 
as long as we use, in v dimensions, a v-dimensional harmonic 
potential, i.e., a logarithmic potential in 2 dimensions. 

We have also computed correlation functions. The cor
relations of any Coulomb system are supposed to obey a 
variety of sum rules22 which are consequences of the screen
ing effect. One should be able to check explicitly these sum 
rules for our model; this is left as an exercise for the reader. 
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