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Abstract

The kinetic theory description of collisionless propagation of a particle through a homogeneous
static medium composed of randomly distributed hard spheres (Lorentz’s model with overlap-
ping) is derived. Both free motion and the motion accelerated by an external 8eld are consid-
ered. The relevant virtual collision operator is given a clear physical interpretation. A rigorous
solution to the corresponding virtual BBGKY hierarchy is found based on an exact reduction
of the in8nite hierarchy to a system of two coupled equations. In the case of two-dimensional
cyclotron motion induced by a uniform magnetic 8eld the 8nite, non-zero probability of
unperturbed everlasting circling is derived from the hierarchy. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Our object here is to develop an eBcient kinetic theory approach for studying
the probability of collisionless motion for a point particle, called hereafter particle e,
propagating among hard sphere scatterers of radius a, in d-dimensional space Rd, with
d= 2 (the spheres are disks) and d= 3. The spheres are at rest, randomly distributed
(including overlapping con8gurations) with a constant number density n. Such a system
with scatterers of in8nite mass is called the d-dimensional Lorentz model.
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Notice that evaluating the probability of collisionless motion is equivalent to
solving the problem of annihilation dynamics. Indeed, the annihilation problem consists
in evaluating the survival probability for a particle supposed to propagate only up to
its 8rst encounter with a scatterer [1]. At the moment of impact it disappears instan-
taneously from the system. The survival probability is thus equal to the probability of
collisionless propagation.
Suppose that, starting at the initial moment t =0 from the point r0 with velocity v0,

particle e follows the unperturbed trajectory

� → r(�; r0; v0); 06 �6 t ; (1)

up to time t ¿ 0. This event can occur if and only if for any �∈ [0; t] the sphere Sd(�)
of radius a de8ned as the set of points R satisfying the condition

|r(�; r0; v0)− R|¡a (2)

is void of scatterer centers. The probability of collisionless motion Pd(t) is thus equal
to the probability of 8nding unoccupied the volume Ad(t) covered owing to the motion
of the sphere Sd(�). Initially we have Pd(0) = 1, as the motion is known to start from
a point lying outside all hard spheres, while by de8nition Ad(0) = 0.
The assumed complete randomness of the scatterer distribution around particle e with

some constant number density n implies the applicability of the Poisson formula

Pd(t) = exp[− nAd(t)] : (3)

Eq. (3) will serve as a basis for determining Pd(t) in the 8rst part of the paper
(Section 2) where we start with a geometric derivation of the time evolution followed
by Ad(t).
In the second part of the paper, the problem of determining Pd(t) is translated into

the language of the kinetic theory. To begin with, we present the detailed derivation
of the appropriate two-body collision operator by considering the annihilation problem
for a simple system composed of particle e, submitted in general to an external 8eld,
and a single hard sphere (Section 3). Written mostly for pedagogical reasons, this
section should provide a clear physical interpretation of the so-called virtual collision
operator, used in the kinetic theory of hard sphere Ouids. The results of Section 3
permit one to write down the corresponding virtual BBGKY hierarchy describing the
annihilation dynamics in the Lorentz model (Section 4). The main results of Section 4
are the proof that the derived hierarchy can be rigorously reduced to a system of two
coupled equations (for any value of the volume fraction nad), and the resolution of
these equations. The solution for Pd(t) is consistent with the result of the geometric
analysis of Section 2.
Our general considerations are applied throughout the paper to the case of free

collisionless propagation and to the two-dimensional Lorentz model in which the point
electric charge e performs the cyclotron motion induced by a constant and homoge-
neous external magnetic 8eld perpendicular to the plane R2. We point out that the
cyclotron case is of particular interest because, in contradistinction to the free propa-
gation dynamics, one 8nds here a non-zero long-time limit for the probability Pd(t)
of collisionless motion. This fact, occuring exclusively for d = 2, has been noticed
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and taken into account in recent studies of the kinetic equation for two-dimensional
magnetotransport leading to the occurence of the so-called “circling electrons” [2]. In
Section 4 we provide an original derivation of this phenomenon based on the proven
reduction of the virtual BBGKY hierarchy. Our results for the cyclotron case, con-
sidered in the Grad limit [3] (de8nition recalled in Section 2), can be looked upon
as the 8rst step toward the systematic derivation of the so-called “generalized Boltz-
mann equation” (see Ref. [2]) from the BBGKY hierarchy, the problem left open in
Ref. [4]. The paper ends with concluding comments (Section 5).

2. Geometric derivation of Pd (t)

2.1. Free motion

Consider 8rst the free motion trajectory

� → r(�; r0; v0) = r0 + v0�; 06 �6 t : (4)

The volume of the region covered by the moving sphere (2) (without Sd(0)) equals

A0
d(t) =

{
2avt for d= 2 ;

�a2vt for d= 3 ;
(5)

where v=|v0|. So, the probability of free motion during time t through the homogeneous
hard sphere medium with number density n is exponentially decaying according to the
formula:

Pd(t) = exp(−nA0
d(t)) = exp(−vt=�d) ; (6)

where

�d =

{
1=2an for d= 2 ;

1=�a2n for d= 3
(7)

is the mean free path.

2.2. Cyclotron motion

Consider now the qualitatively diRerent case of the two-dimensional cyclotron
motion. Under the action of magnetic 8eld B particle with charge e moves with a
constant angular velocity ! = e|B|=m, where m denotes its mass. The center of the
cyclotron orbit is situated at the point

rc = r0 +
R(�=2) · v0

!
; (8)

where the tensor R(�) denotes the rotation of angle �. The radius ac of the cyclotron
circle equals

ac =
v
!

: (9)
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Fig. 1. a¡ac: contact con8guration at t = tct .

In order to evaluate the probability of collisionless motion we have thus to calculate
the area Ac

2(t) of the region covered by the moving disc (two-dimensional sphere)
S2(�) of radius a whose center follows the circular cyclotron orbit

� → r(�; r0; v0) = rc − R(!�+ �=2) · v0
!

; 06 �6 t : (10)

It is important to remember that the initially occupied area �a2 should not be counted.
Denote by Tc = 2�=! the period of the cyclotron motion. Clearly, for times t ¿Tc

particle e does not explore new regions on the plane any more, so Ac
2(t) stays constant,

equal to Ac
2(Tc). Thus the probability of collisionless motion takes the form:

Pc
2(t) = �(Tc − t) exp[− nAc

2(t)] + �(t − Tc) exp[− nAc
2(Tc)] : (11)

The explicit calculation of Ac
2(t) for t ¡Tc requires the distinction between two cases,

depending on whether the radius of scatterers a is smaller or greater than that of the
cyclotron orbit ac = v=!.

a¡ac: When a¡ac 8rst the disc S2(�) moves away from S2(0), then it comes back
in its circular motion and there exists a time of contact tct at which it reaches again
the boundary of the initially occupied region S2(0) (see Fig. 1). At this moment the
distance between the centers of S2(0) and S2(tct) equals 2a, preceding the occurence
of overlapping between both discs. The angle 2� of the arc of the cyclotron circle
separating the centers of S2(0) and S2(tct) satis8es the equation:

sin � =
a
ac

: (12)

The renewal of the contact with the initial disc S2(0) occurs thus at time

tct =
2(� − �)

!
= Tc

(
1− Arcsin(a=ac)

�

)
: (13)
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Fig. 2. a¡ac: overlapping con8guration for tct ¡ t ¡Tc.

When t ¡ tct , no overlapping occurs between the visited region and the initial disc
S2(0). The relevant area Ac

2(t) reduces then to that of a region in a sector of angle !t,
contained between the arcs of two circles with radii (ac+a) and (ac−a) and common
center point rc. The calculation yields the result

Ac
2(t) =

!t
2
[(ac + a)2 − (ac − a)2] = 2avt:

Hence, for 0¡t ¡ tct the probability of collisionless motion equals

Pc
2(t) = exp(−vt=�2) ; (14)

which coincides with Eq. (5) describing the free case for d= 2.
When tct ¡ �¡Tc, the disc S2(�) overlaps the initially occupied region S2(0). In

order to calculate the area relevant for the probability of collisionless motion we have
thus to subtract the area I(t) of the intersection of discs S2(0) and S2(�) from the
value 2avt, obtained when no overlapping occured. The area Ac

2(t) which must be free
of scatterer centers to permit collisionless motion up to times tct ¡ t ¡Tc equals

Ac
2(t) = 2avt − I(t) : (15)

Geometric considerations (see Fig. 2) yield the formula

I(t) = [2�t − sin 2�t]a2 ; (16)

where

cos �t =
ac

a
sin

!t
2

: (17)
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Fig. 3. Permanent overlapping during the cyclotron motion for a¿ac.

Combining Eqs. (16) and (17) we get

I(t) = 2

[
Arccos

(ac

a
sin

!t
2

)
− ac

a
sin

!t
2

√
1−

(ac

a
sin

!t
2

)2]
a2 : (18)

Eqs. (16) and (17) are consistent with the fact that at the moment of contact t = tct
the area of intersection is zero. Indeed, using relation (13) we 8nd cos �tct =1, so that
�tct = 0. When a complete cyclotron rotation is accomplished

Ac
2(Tc) = 2avTc − �a2 : (19)

Eventually, when a¡ac the probability of collisionless motion corresponding to
random distribution of scatterers outside the initial disc S2(0) is given by

Pc
2(t) = �(Tc − t) exp(−2anvt)[1 + �(t − ttc) exp(nI(t))]

+ �(t − Tc) exp[− 2anvTc + �na2] ; (20)

where � is a unit step function.
a¿ac: When the scatterer radius is larger than that of the cyclotron circle the

rotating disc S2(�) (see De8nition (2)) is always overlapping the initial region S2(0)
(See Fig. 3). A complete cyclotron rotation is possible provided the disc of radius
(a+ ac) is free of scatterer centers. Taking into account the assumed absence of hard
discs within S2(0) we 8nd

Ac
2(Tc) = �[(ac + a)2 − a2] : (21)

The area Ac
2(t) for 0¡t ¡Tc—area of the spotted region in Fig. 3—may be

calculated as the diRerence between Ac
2(Tc) and the area of the hatchured domain in

Fig. 3. The evaluation of the latter area requires solving the geometric problem shown
in Fig. 4. Denote the area of a sector of a disc by D(a; �), where a is the radius
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Fig. 4. a¿ac: geometrical elements used in evaluating the area relevant for the collisionless motion.

and � the angle, respectively. We 8nd

Ac
2(t) = Ac

2(Tc)− 2
[
D
(
ac + a; � − !t

2

)
− D(a; �)− 1

2
aac sin �

]
(22)

together with

ac sin
!t
2

= a sin
(
−� + �+

!t
2

)
: (23)

The explicit formula for Ac
2(t) corresponding to the above relations reads

Ac
2(t) = J (t) =

(
aac +

1
2
a2c

)
!t − 1

2
a2csin(!t)

+ a2Arcsin
(ac

a
sin

!t
2

)
+ aac sin

!t
2

√
1−

(ac

a
sin

!t
2

)2
; (24)

which is valid for times 0¡t ¡Tc when ac ¡a.
Eventually, when ac ¡a the probability of collisionless motion reads

Pc
2(t) = �(Tc − t) exp(−nJ (t)) + �(t − Tc) exp[− n�(a2c + 2aac)] : (25)

2.3. Everlasting unperturbed circling

As it has been noticed in the introduction, the cyclotron motion in two dimensions
is expected to be characterized by a non-zero long-time limit of Pc

2(t). In the present
approach one 8nds from Eqs. (20) and (25) that for t ¿Tc

Pc
2(t) = Pc

2(Tc) =

{
exp[− �an(4ac − a)] for ac ¿a ;

exp[− �acn(2a+ ac)] for ac ¡a :
(26)
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Owing to the 8nite length of the cyclotron circle there is thus a 8nite probability for
particle e to continue for all times collisionless motion.
This phenomenon remains present in the Grad limit,

lim
Grad

≡
{

a → 0; n → ∞ ;

�2 = 1=2an =const ;
(27)

where Eq. (26) reduces to

lim
Grad

Pc
2(t) = exp (−2�ac=�2) : (28)

Already the fact that Pc
2(t) remains larger than zero in the long-time limit suBces

to realize that the Boltzmann equation cannot be obtained in the Grad limit for the
two-dimensional Lorentz gas in the presence of a magnetic 8eld. This unusual situation
has been studied extensively and the so-called “generalized Boltzmann equation” has
been derived instead on intuitive grounds [2] and also from the Liouville equation [4].

3. Virtual collision operator Tv(e;R)

In order to prepare the formulation of the collisionless motion problem in the frame-
work of the kinetic theory we study in this section the corresponding two-body problem.

3.1. Survival probability in the two-body problem

Consider a system composed of particle e and a single hard sphere of radius a
located at point R. Our aim is to determine the joint probability density f2(r; v;R; t)
for the occurence of con8guration (r; v;R) with |r − R|¿a at time t by collisionless
motion. The reasoning presented below generalizes the method described in Ref. [5] to
the case where the particle trajectories are not necessarily the free-motion straight lines.
In fact, to assure that particle e did not touch the scatterer, we have to study its motion
backward in time up to the initial moment t = 0. The state (r; v) plays the role of the
initial state for the backward propagation. The position and velocity attained from it
by unperturbed motion at time (−�) will be denoted by re(−�; r; v) and ve(−�; r; v),
respectively. The abbreviated notation re(−�) = re(−�; r; v) and ve(−�) = ve(−�; r; v)
will be also used, when not leading to confusion. The probability density f2(r; v;R; t)
can be written as

f2(r; v;R; t) = �(|r− R| − a)[1− $(r; v;R; t)]f2(re(−t); ve(−t);R; 0) : (29)

The step function �(|r−R|−a) ensures that particle e lies (at time t) outside the hard
sphere, while $(r; v;R; t) denotes the characteristic function de8ned by

$(r; v;R; t) =

{
1 if a collision occurs within [0; t] ;

0 for collisionless motion within [0; t] :
(30)
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The characteristic function $ has the product form

$(r; v;R; t)

=�
(
a−min

�
| re(−�)− R|

)
�(t − �∗(r; v;R))�(ve(−�∗) · (re(−�∗)− R)) :

(31)

The 8rst �-factor represents the geometric constraint requiring that the particle trajectory
crosses the scattering sphere of radius a (the minimal distance of points re(−�) from
the center R of the sphere must be less than a).
The argument of the second step function contains time �∗ ¿ 0 de8ned as the moment

at which particle e touches the surface of the sphere for the 8rst time in its backward
motion. �∗ is thus the solution of the equation

(|re(−�)− R|)�=�∗ = a (32)

satisfying the condition ve(−�∗) · (re(−�∗)−R)¿ 0. Clearly, the free backward motion
is possible only up to time (−�∗). Notice that at � = �∗ the velocity of the particle
encountering the scatterer surface for the 8rst time points out of it.

3.2. Evolution of the two-body survival probability

The generator of the backward unperturbed motion Le is the 8rst-order diRerential
operator determining the trajectory through(

@
@t

+ Le

)
re(−t; r; v) = 0 : (33)

The operator Le describes in general free motion combined with the eRect of acceler-
ation due to an external 8eld. The generator of free motion has the form

L0
e = v ·

@
@r

; (34)

whereas the acceleration eRects involve the gradient in velocity space. In the case of
the cyclotron motion

Lc
e = v ·

@
@r

+ !
[
R
(�
2

)
· v
]
· @
@v

: (35)

One can show that the evolution of the characteristic function $ is governed by the
equation(

@
@t

+ Le

)
$(r; v; t) = 0 : (36)

Indeed, Le is the generator of the motion along the unperturbed trajectory. As the
step function in (31) representing the geometric constraint for crossing the scatterer is
constant along a given trajectory (satisfying (33)) the equation

Le�
(
a−min

�
| re(−�)− R|

)
= 0 (37)
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holds. Moreover, applying Le to Eq. (32), which de8nes �∗ as an implicit function of
variables (r; v;R), we 8nd

0 = Le[|re(−�∗(r; v;R); r; v)− R|]

= [Le(|re(−�; r; v)− R|]�=�∗ +
[

@
@�

|re(−�; r; v)− R|
]
�=�∗

Le�∗

=
(

@
@�

|re(−�; r; v)− R|
)

�=�∗
(−1 + Le�∗) : (38)

Eq. (38) implies the relation

Le�∗(r; v;R) = 1 : (39)

The derived relations (37) and (39) prove the validity of the evolution Eq. (36).
Let us now apply the collisionless motion generator to the two-particle distribution

(29). The relations (33) and (36) lead to the evolution equation(
@
@t

+ Le

)
f2(r; v;R; t)

=[1− $(r; v;R; t)]f2(re(−t); ve(−t);R; 0)Le�(|r− R| − a− 0+) : (40)

The notation (a + 0+) has been used when writing the argument of the �-function to
account for the fact that the surface of the scatterer can be reached from outside only.
In Le only the part L0

e acts on �(|r− R| − a− 0+) yielding

Le�(|r− R| − a− 0+) =
1
a
[v · (r− R)]'(|r− R| − a− 0+) : (41)

The '-distribution selects points r lying at distance (a+0+), just outside the sphere. In
the case of free motion, the condition for the absence of collisions within [0; t] when
|r−R|=a reduces to the requirement that particle e goes away from the sphere moving
backward in time. This de8nes the orientation of its velocity which must point inside
the sphere at contact

1− $0(r; v;R; t)||r−R|=a = �(−v · (r− R)) : (42)

In the case of the cyclotron motion the above requirement must be completed by a
supplementary condition

t ¡ �∗∗(v; v̂ · (r− R)=a) ; (43)

where �∗∗ is the time needed to cover the arc of the cyclotron circle lying outside the
sphere (particle e starts at the surface with the velocity pointing inside the sphere and
moves backward in time). We 8nd

1− $c(r; v;R; t)||r−R|=a = �(−v · (r− R))�(�∗∗ − t) : (44)

The free motion case (42) can be looked upon as the limiting case of Eq. (44) for
�∗∗ → ∞.
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Inserting the above results into Eq. (40) we make appear in the right-hand side the
product

�(�∗∗ − t)f2(re(−t); ve(−t);R; 0) ; (45)

which can be identi8ed with f2(r; v;R; t), as no collision could occur within the time
interval [0; t]. From now on we introduce the notation e ≡ (r; v) and we rewrite (40)
in the 8nal form as(

@
@t

+ Le

)
f2(e;R; t) = Tv(e;R)f2(e;R; t) ; (46)

de8ning the so called virtual collision operator by

Tv(e;R) = v · (r− R)�(−v · (r− R))'(|r− R| − a)=a : (47)

Notice that the operator Tv(e;R) selects velocities v which point inside the scatterer at
its surface.

3.3. Explicit virtual two-body propagator

The above results permit us to give a precise meaning to the virtual two-body
propagator exp{−t[Le − Tv(e;R)]}, used to write a formal solution to the evolution
Eq. (46). De8ne the space of initial probability distributions by requiring that they
give a non-zero weight only when particle e is outside the sphere centered at R, so
that

f2(e;R; 0) = �(|r− R| − a)f2(e;R; 0) : (48)

Then the time evolution of f2(r; v;R; t) can be written as

f2(t) = exp{−t[Le − Tv(e;R)]}f2(t = 0) : (49)

We have shown that

[exp{−t[Le − Tv(e;R)]}f2(t = 0)](r; v;R)

≡ �(|r− R| − a)[1− $(r; v;R; t)]f2(re(−t; r; v); ve(−t; r; v);R; 0) : (50)

The characteristic function $ can be explicitly written in the cases of free or cyclotron
motion. For that purpose one must 8rst determine the geometric conditions for the
existence of an intersection between the unperturbed trajectory and the scattering sphere
and then determine the 8rst collision time �∗.
In the case of the free motion (in dimension d= 2 or 3) the characteristic function

$0 reads (see Ref. [5])

$0(e;R; t) = �(t−�∗0 (e;R))�(v · (r−R))�
(
va−

√
v2|r−R|2−[v · (r− R)]2

)
;

(51)
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where the collision time �∗0 is given by

v2�∗0 (e;R) = v · (r− R)−
√

v2a2 − v2|r− R|2 + [v · (r− R)]2 : (52)

In the case of the two-dimensional cyclotron rotation $ takes the form

$c(e;R; t) = �(t − �∗c (e;R))�(a+ ac − |rc − R|)�(|rc − R| − ac + a) : (53)

The last two �-factors in (53) represent the geometric constraints for the existence
of intersection between the cyclotron circle and the scatterer. The very last �-factor
equals everywhere 1 when a¿ac. The determination of the collision time �∗c requires
the evaluation of the length of the arc which particle e has to cover when moving
backward in time before it encounters the surface of the hard disc. This geometric
problem can be solved in a straightforward way. The analytic expression for �∗c will
not be needed in the following.

4. BBGKY virtual hierarchy

The evolution law (46) can be directly used to write down the equation of motion
for collisionless propagation of particle e between N scatterers distributed within a vol-
ume ). Denote by f)

e;N (e; 1; : : : ; N ; t) the (N + 1)-body probability density for the oc-
curence of con8guration (r; v;R1; : : : ;RN ) at time t (the shorthand notation j ≡ Rj; j=
1; 2; : : : will be used hereafter). The collisionless propagation followed by instantaneous
disappearance of the particle at its 8rst encounter with a scatterer is described by the
equation

 @
@t

+ Le −
N∑

j=1

Tv(e; j)


f)

e;N (e; 1; : : : ; N ; t) = 0 : (54)

The complete sum of the virtual collision operators is needed to check when and where
the collision occurs, and to annihilate particle e at this moment. We consider here the
normalized initial state of the form

f)
e;N (e; 1; : : : ; N ; 0) = fe(r; v; 0)

N∏
j=1

[
�(|r− Rj| − a)

) − |Sd|
]

; (55)

where |Sd| is the volume of a d-dimensional sphere.
Denoting the thermodynamic limit by

lim∞ ≡
(
N → ∞; n=

N
)

= const
)

; (56)

we de8ne the reduced distributions Fe;s representing the densities of (s + 1)-particle
states (e; 1; : : : ; s) as

Fe;s(e; 1; : : : ; s; t) = lim∞ )s
∫

d(s + 1) : : :
∫

dNf)
e;N (e; 1; : : : ; s; s + 1; : : : ; N ; t) :

(57)
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In particular Fe;0(e; t) denotes the probability density for the occurence of one-particle
states e at time t. By standard methods (see e.g. Ref. [6]) one can derive from (54)
the virtual BBGKY hierarchy satis8ed by the reduced distributions Fe;s. One 8nds an
in8nite hierarchy of the form(

@
@t

+ Le

)
Fe(e; t) = n

∫
d1Tv(e; 1)Fe;1(e; 1; t) ;


 @

@t
+ Le −

s∑
j=1

Tv(e; j)


Fe;s(e; 1; : : : ; s; t)

=n
∫

d(s + 1)Tv(e; s + 1)Fe;s+1(e; 1; : : : ; s; s + 1; t); s = 1; 2; : : : : (58)

In the 8rst equation the simpli8ed notation Fe(e; t) = Fe;0(e; t) has been used. We
turn now to the construction of the solution of the initial value problem for the above
hierarchy, corresponding to the assumed initial state (55).

4.1. Reduction of the hierarchy

From Eqs. (55) and (57) we 8nd that the state of the system at time t=0 is described
by the reduced distributions of the form

Fe;s(e; 1; : : : ; s; 0) = Fe(e; 0)
s∏

j=1

F(j; 0|e) ; (59)

where

F(j; 0|e) = �(|r− Rj| − a); j = 1; : : : ; s (60)

represent the conditional density of scatterers at point j=Rj when particle e is known
to be at point r with a velocity v.

We now prove that the virtual hierarchy (58) does not create additional dynamic
correlations and propagates the factorized structure (59) of the reduced distributions in
the course of time. To this end we insert into (58) the conjecture

Fe;s(e; 1; : : : ; s; t) = Fe(e; t)
s∏

j=1

F(j; t|e) : (61)

Eliminating (@=@t + Le)Fe(e; t) with the help of the 8rst equation of the hierarchy we
8nd the relation

 s∏
j=1

F(j; t|e)

 n

∫
d1′Tv(e; 1′)Fe(e; t)F(1′; t|e)

+Fe(e; t)


 @

@t
+ Le −

s∑
j=1

Tv(e; j)


 s∏

j=1

F(j; t|e)
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=n
∫

d(s + 1)Tv(e; s + 1)Fe(e; t)
s+1∏
j=1

F(j; t|e) : (62)

The 8rst term on the left-hand side and the term on the right-hand side cancel out.
The whole in8nite hierarchy (58) reduces thus to the system of two coupled equations(

@
@t

+ Le

)
Fe(e; t) = nFe(e; t)

∫
d1Tv(e; 1)F(1; t|e) ; (63)

[
@
@t

+ Le − Tv(e; 1)
]
F(1; t|e) = 0 : (64)

As we have already noticed, this remarkable rigorous reduction of the virtual hierar-
chy reOects the fact that the annihilation dynamics of a single particle does not cre-
ate dynamical correlations of some new kind diRerent from that present in the initial
state (59).

4.2. Solving the hierarchy equations

In order to solve Eq. (64) we use our main result (50) concerning the two-particle
annihilation dynamics. We obtain

F(j; t|e) = [exp{−t[Le − Tv(e; j)]}F(t = 0)](j; e)

= �(|r− Rj| − a)[1− $(r; v;Rj; t)]F(Rj; 0|re(−t; r; v); ve(−t; r; v))

= �(|r− Rj| − a)[1− $(r; v;Rj; t)]�(|re(−t; r; v)− Rj| − a) : (65)

In writing the last equality the explicit form of the initial reduced distributions (59)
has been used.
Then, by inserting (65) into (63) and using the de8nition (47) of Tv(e; 1), we 8nd

a closed equation for the one-particle distribution Fe. It reads(
@
@t

+ Le

)
Fe(e; t)

=nFe(e; t)
∫

dR�(−v · (r− R))[v · (r− R)]1
a
'(|r− R| − a)

×[1− $(r; v;R; t)]�(|re(−t; r; v)− R| − a) : (66)

By de8nition (see (31)) the factor (1−$) is diRerent from zero only up to the moment
of the 8rst contact with the scatterer. Hence, the last step function in the right-hand
side of (66) multiplied by (1 − $) equals identically 1. The delta distribution in (66)
restricts the integration to the surface of the sphere of radius a. And the 8rst �-factor
restricts it further to the hemisphere v · (r − R)¡ 0. With the use of (44) Eq. (66)
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can be thus rewritten as(
@
@t

+ Le

)
Fe(e; t) =−nFe(e; t)

∫
d,d(n̂)�(−v · n̂)|v · n̂|�(�∗∗(v; v · n̂)− t) :

(67)

In (67) there appears time �∗∗ which has already been de8ned in equation (43), and
a unit vector perpendicular to the surface of the absorbing sphere n̂ = (r − R)=a.
d,d(n̂) = ad−1dn̂ denotes the measure of the surface area with orientation n̂ on a
d-dimensional sphere of radius a and center at r. The integral in the right-hand side
of (67) yields a function of variables v and t only. So, putting

Wd(v; t) =
∫

d,d(n̂)�(−v · n̂)|v · n̂|�(�∗∗(v; v · n̂)− t) ; (68)

we 8nd that the solution of (67) has the form

Fe(r; v; t) = exp
[
−n

∫ t

0
d�Wd(v; �)

]
Fe(re(−t; r; v); ve(−t; r; v); 0) : (69)

The consistency with the results of our geometric considerations in Section 2 requires
that

Wd(v; t) =
@
@t

Ad(v; t) : (70)

The validity of the above relation can be checked by an explicit evaluation of Wd(v; t).
We shall not present these calculations here. Let us just notice that the product
|v·n̂|d,d(n̂) restricted in (67) to the hemisphere v·n̂¡ 0 represents exactly the measure
of the volume covered by a moving surface element of the sphere Sd(t) per unit time
(see Section 2). In the case of the free motion �∗∗ is in8nite so that �(�∗∗ − t) = 1,
and the derivation of (70) is straightforward. In the case of the cyclotron motion �∗∗

is 8nite (see (43)), depending on the orientation n̂ of the surface element with respect
to the particle velocity. The role of the �(�∗∗ − t)-factor in (68) is then to introduce a
cutoR for the volume covered by a given surface element in its backward motion once
it touches the surface of the initially occupied spherical volume.
The important identi8cation (70) permits us to write 8nally the solution of (67) as

Fe(r; v; t) = exp (−nAd(v; t))Fe(re(−t; r; v); ve(−t; r; v); 0) : (71)

The explicit form of the one-particle density Fe can be thus obtained with the help of
the results established in the geometric considerations of Section 2.
In particular, in the case of the cyclotron motion with ac ¿a, we get the solution

Fe(r; v; t) = {�(Tc − t) exp[− 2anvt + �(t − ttc)nI(t)]

+ �(t − Tc) exp[− 2anvTc + �na2]}Fe(re(−t); ve(−t)); 0) : (72)

Eq. (72) contains information about the so-called “circling electrons”, discussed in
Ref. [2]. Indeed, the norm of the one-particle distribution evolves only during one
cyclotron period, and acquires then a constant value exp[−2anvTc+�na2], representing
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the probability weight for the presence of particle e performing unperturbed cyclotron
rotation at any time.

5. Concluding comments

The most important result of our study is the rigorous solution of the BBGKY
hierarchy (58) for the annihilation dynamics of a point electric charge e propagating
among immobile hard spheres (the Lorentz model). Both the presence and the absence
of an external magnetic 8eld have been considered. By de8nition, the annihilation
dynamics lets the particle propagate up to the moment of its 8rst encounter with a
scatterer. At this moment the particle instantaneously disappears from the system. The
surface of the scattering spheres can be thus looked upon as an absorbing manifold.
As a pedagogical introduction to the subject we presented in Section 2 a simple

geometric argument which suBced to calculate the probability of collisionless motion
by relating it to the volume covered by a sphere moving along the unperturbed particle
trajectory. However, our real goal was to develop an approach based on the kinetic
theory. We thus considered the probability of collisionless motion in the two-body
system (particle and a single absorbing sphere) in order to clarify the meaning of the
so-called virtual collision operator Tv, known from the kinetic theory of hard-sphere
Ouids [7]. 2 We showed that the action of the associated virtual propagator (50) on
physically admissible initial states did faithfully represent the eRect of annihilation
dynamics. This result seems to us useful, especially for further studies of the mean
free path eRects in the kinetic theory of hard-sphere systems.
Once the appropriate collision operator has been derived, we could consider the

corresponding virtual BBGKY hierarchy (58). The main observation about the hierar-
chy was the fact that it propagated the initial factorization (59) (see also (61)) of the
reduced distributions without creating additional correlations. Owing to this remark-
able property, the hierarchy could be rigorously reduced to the system of two coupled
Eqs. (63) and (64). Using then the previously derived action of the virtual propagator
we made appear in Eq. (63) the geometric factor evaluated in Section 2, arriving in
this way at a complete solution (65) and (71) of the hierarchy (58).
The reduction of the hierarchy could be applied in the present study owing to the

fact that the state of the system possessed already the required factorized structure
(61) at the initial moment. Were a diRerent type of correlations present at t = 0, we
could not use the two coupled Eqs. (63), (64) to write down the solution of the
hierarchy. However, it is probable that in the long-time limit the dynamics builds up
dynamical correlations consistent with the factorization (61), whereas all deviations
from it disappear. Whether the reduced densities asymptotically factorize into products
of two particle conditional densities remains here an open very interesting question.
In the case of the two-dimensional cyclotron motion, we found a 8nite probability for

an endless unperturbed rotation, a phenomenon never derived to our knowledge from
the BBGKY hierarchy. Our result (72), considered in the Grad limit (27), represents

2 In this article the notation UTv
− is used to denote the virtual collision operator Tv of the present paper.



272 F. Cornu, J. Piasecki / Physica A 308 (2002) 256–272

a step toward a systematic derivation of the kinetic equation for magnetotransport—
studied in Refs. [2,4]—from the hierarchy equations.
It would be certainly interesting to extend the analysis of this paper to the Lorentz

model with non-overlapping absorbing spheres. However, the presence of spatial cor-
relations between the spheres rules out the factorized structure of the initial state (59)
assumed here, which makes the problem qualitatively diRerent. Also the generalization
to the case of an inhomogeneous absorbing medium would be of interest.
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