
Available online at www.sciencedirect.com

Physica A 326 (2003) 88–104
www.elsevier.com/locate/physa

Magnetotransport in the two-dimensional
Lorentz model: non-markovian Grad limit

of the BBGKY hierarchy
F. Cornua ;∗;1, J. Piaseckib

aLaboratoire de Physique Th�eorique, Bâtiment 210, Universit�e Paris-Sud, 91405 Orsay, France
bInstitute of Theoretical Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
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Abstract

We consider the classical two-dimensional Lorentz model of non-interacting charged point
particles acted upon by a perpendicular uniform magnetic 5eld. Particles are elastically scattered
by hard disks randomly distributed in the motion plane. Trajectories of gas particles between
collisions are arcs of cyclotron circles. We consider the Grad limit of the corresponding BBGKY
hierarchy. The Lorentz model in magnetic 5eld provides an example where the Grad limit of
the solution for the one-particle density cannot be found by formally applying the limit to
evolution equations. The resulting non-markovian kinetic equation is shown to coincide with the
generalization of the Boltzmann equation originally proposed upon intuitive arguments.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a point mass m carrying an electric charge e, called hereafter particle e or
electron, propagating in two dimensions among hard disks of radius a. The disks play
the role of 5xed scattering centers of in5nite mass, randomly distributed in the plane
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(including overlapping con5gurations) with a uniform number density n. A constant and
uniform magnetic 5eld B perpendicular to the plane of motion acts on particle e and
makes it follow arcs of circular cyclotron orbits between elastic collisions with scat-
terers. A gas of such independent “electrons” represents the classical two-dimensional
Lorentz model submitted to a magnetic 5eld.
The magnetotransport in the Lorentz model has been studied in a series of papers

starting in 1995 [1] when it has been discovered that the model provided an example
of a dynamic system for which the Boltzmann kinetic equation was not valid in the
Grad limit [2] for two reasons: the existence of unavoidable recollision processes and
a 5nite probability of collisionless motion. The intuitive derivation of the adequate
non-markovian kinetic equation, called by the authors the generalized Boltzmann equa-
tion (GBE), originally presented in Ref. [1] has been then described in a detailed way
in Ref. [3] together with its analytic solution. However, two questions have been left
open at this time:

1. How to construct a mathematically rigorous derivation of the GBE?
2. How to derive the GBE from the BBGKY hierarchy?

The answer to the 5rst question can be hopefully found in the future along the
lines described in Ref. [4]. The derivation presented therein, based on the Liouville
equation, is as yet not complete from the mathematical point of view, as a number of
assumptions still need to be proved.
The object of the present paper is to answer the second question by explaining clearly

the connection of the GBE with the BBGKY hierarchy. In fact, the 5rst step in this
direction has been already made in Ref. [5] where the dynamics of the so-called “cir-
cling electrons”, characterized by everlasting collisionless motion, has been rigorously
derived from the hierarchy. Here, we show that the non-markovian GBE conjectured
in Ref. [1] follows from the BBGKY hierarchy in the Grad limit

lim
Grad

≡
{

a → 0; n → ∞ ;

an= const: and anRc = const: ;
(1)

where Rc = vm=(e|B|) is the cyclotron radius. Although the scatterers shrink to points
in this limit, their number density increases in such a way that the mean free path of
the electron �= 1

2na remains constant. Moreover, the ratio Rc=� is kept to a nonzero
5nite value in order to cancel the probability that electrons might be trapped around a
5nite cluster of scatterers [1]. The role of the dimensionless parameter tending to zero
is played by the volume fraction � occupied by the scatterers

�= na2 → 0 : (2)

In Section 2, we introduce the BBGKY hierarchy equations and we present the Grad
limit of results derived in Ref. [5] for the “virtual” hierarchy for any value of �. In
Section 3 we discuss the speci5city of the Grad limit in the case of the cyclotron
motion: we argue why the Lorentz model in a magnetic 5eld provides an example
where one cannot obtain the solution for the one-particle density by formally taking
the Grad limit in BBGKY equations according to a dimensional analysis (more details
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are given in Appendix A). Section 4 contains the complete derivation of the kinetic
equation from the BBGKY hierarchy in the Grad limit, before and after the cyclotron
period. In the 5nal Section 5, the derived equation is shown to be identical with the
GBE equation of Ref. [1] (details are presented in Appendix B).

2. BBGKY hierarchy

2.1. Equations for elastic collisions with hard disks

The aim of the kinetic theory is to determine the one-particle density Fe(e; t) of
electrons in the microscopic state e ≡ (r; v) at time t, where r and v denote the
position and velocity vectors, respectively. The evolution of Fe(e; t) is coupled with
that of the reduced distributions Fe;s(e; 1; : : : ; s; t); s= 1; 2; : : :, representing the density
of (s+ 1)-particle phase–space con5gurations in which the electron occupies the state
e and the s disks are located at the points j ≡ Rj; j = 1; : : : ; s. The in5nite system of
coupled equations called the BBGKY hierarchy takes the form (see e.g. Ref. [6])(

9
9t + Le

)
Fe(e; t) = n

∫
d1T (e; 1)Fe;1(e; 1; t) ; (3a)

(
9
9t + Le − T (e; 1)

)
Fe;1(e; 1; t) = n

∫
d2T (e; 2)Fe;2(e; 1; 2; t) ; (3b)


 9
9t + Le −

s∑
j=1

T (e; j)


Fe;s(e; 1; : : : ; s; t)

= n
∫

d(s+ 1)T (e; s+ 1)Fe;s+1(e; 1; : : : ; s; s+ 1; t) s= 2; : : : : (3c)

On the l.h.s of the equations there appears the generator of the free cyclotron motion

Le = v · 99r + !
[
R
(�
2

)
· v
]
· 99v : (4)

The matrix R(�=2) rotates the velocity v by angle �=2. The frequency ! is given by

!= 2�=Tc = e|B|=m ; (5)

where Tc denotes the period of the cyclotron motion.
The inPuence of elastic collisions on the state of the electron is taken into ac-

count in the hierarchy (3a)–(3c) by the hard-sphere collision operator [7] 2 (see also
Refs. [6,8])

T (e; j) = T r(e; j) + Tv(e; j); j = 1; 2; : : : : (6)

2 In this article the notations QTr− and QTv− are used to denote the collision operators Tr and Tv of the
present paper.
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The expressions of T r(e; j) and Tv(e; j) involve the unit vector

�̂j ≡ r− Rj

|r− Rj| (7)

which is oriented from the center Rj of disk j toward the point occupied by the electron
at the impact moment. The virtual part

Tv(e; j) =−�(|r− Rj| − a− 0+)|�̂j · v|�(−�̂j · v) (8)

describes the encounters with (incoming) pre-collision velocity v. It is responsible for
the disappearance of states with that velocity. The real part

T r(e; j) = �(|r− Rj| − a− 0+)|�̂j · v|�(�̂j · v)b�̂j (9)

takes into account the collisions with pre-collisional velocity v−2(v · �̂j)�̂j which, after
collision, restore the states with (outcoming) velocity v. Indeed, T r(e; j) contains the
rotation operator b�̂j describing the elastic collision law,

b�̂jf(r; v)≡f(r; v − 2(v · �̂j)�̂j)
=f(r;R(− j) · v) ; (10)

where  j denotes the scattering angle and R(− j) is the rotation operator of angle
− j. We notice that, according to de5nitions (9) and (10), the eSect of T r(e; 1) can
be rewritten as

{T r(e; j)f}(r; v) = �(|r− R1| − a− 0+)|�̂j · v′|�(−�̂j · v′)f(r; v′) ; (11)

where v′ is the incoming precollisional velocity v − 2(v · �̂j)�̂j. As a consequence of
(8) and (11), the support of {T (e; j)f}(r; v) is centered on the border of disk j in the
position space while the velocity argument of f is an incoming velocity.

2.2. Grad limit of the one-particle density in the virtual hierarchy

In our previous work [5] we found the rigorous solution to the complete “virtual”
hierarchy, obtained from the BBGKY equations (3a)–(3c) by retaining only the virtual
parts Tv(e; j)’s of collision operators T (e; j)’s. From the physical point of view, solving
the virtual hierarchy is equivalent to the determination of the probability of collisionless
motion (see also the related problem of annihilation dynamics [9]). The very possibility
of getting a rigorous solution was due to a remarkable property of the virtual hierarchy:
it propagates in time the factorized structure (A.1) of the reduced distributions recalled
in Appendix A.
After the Grad limit (1) has been taken, the exact probability density of collisionless

motion Fv
e (e; t) derived in Ref. [5] takes the simple form

Fv
e (e; t) = �(Tc − 0+ − t)e−�tFe(re(−t); ve(−t); t = 0)

+ �(t − Tc + 0+)e−�TcFe(re(−t); ve(−t); t = 0) : (12)
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In (12), � stands for the unit Heaviside step function and

�= 2nav=−n
∫

d1Tv(e; 1) (13)

denotes the constant collision frequency for a given velocity modulus v = |v|. re(−t)
is the free cyclotron motion of an electron which starts at point r with velocity v at
time 0 and then evolves backward in time till instant −t,

(re(−t); ve(−t)) = (e−tLer; e−tLev) : (14)

The evolution contained in (12) is the following. During the 5rst cyclotron period
(t ¡Tc), the electron performs the free cyclotron motion with exponentially decreasing
probability exp(−�t). For t¿Tc the continuation of the free circling becomes certain,
and the probability factor is stabilized at the value exp(−�Tc). It is quite remarkable
that this kind of evolution is contained in the hierarchy equations.
The distribution (12) represents only a component of the full solution of the BBGKY

hierarchy. Adopting the terminology of Ref. [3], for t¿Tc we shall call it the distri-
bution of circling electrons and denote it by Fc

e (e; t). What remains to be determined
is the distribution Fw

e (e; t) of electrons scattered by hard disks and wandering among
them through the plane.

3. Speci�city of the Grad limit for cyclotron motion

For the Lorentz model in the absence of external >eld, Le is replaced by the free
straight-line propagator L0

e = v · 9=9r and the Grad limit of the exact solution for the
one-particle density F0

e (e; t) in the BBGKY hierarchy coincides with the solution for
FB
e (e; t) in the so-called Boltzmann hierarchy [10,11] for straight-line motion. The

Boltzmann hierarchy is a limit of the BBGKY hierarchy which is obtained by the fol-
lowing argument based on dimensional analysis. One notice that on the r.h.s. of the hi-
erarchy equations (3a)–(3c), the collision operators are multiplied by n, whereas on the
l.h.s. the number density does not appear. In the Grad limit (1), as the scattering cross
section (proportional to a) vanishes while the scatterer density n becomes in5nite, one
neglects the collision operators on the l.h.s. of the BBGKY equations. (In Appendix A
we recall the factorized solution of the Boltzmann hierarchy, which is diSerent from
the factorized solution propagated by the virtual hierarchy.) In the present section, we
show why, in the case of cyclotronic motion, such a procedure would lead to erroneous
results.

3.1. Grad limit of the >rst equation in the virtual hierarchy

In the case of the virtual hierarchy for cyclotronic motion, the Grad limit (12) of
the exact solution Fv

e (e; t) obeys the kinetic equation(
9
9t + Le

)
Fv
e (e; t) =−��(Tc − 0+ − t)Fv

e (e; t) : (15)
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In Appendix A we show how the closed equation (15) can be retrieved directly from
the 5rst virtual hierarchy equation(

9
9t + Le

)
Fv
e (e; t) = n

∫
d1Tv(e; 1)Fv

e;1(e; 1; t) (16)

by properly handling the Grad limit of correlation eSects. We exhibit that (15) arises
from (16) as a consequence of the exact relation

lim
Grad

�(−�̂1 · v)Fv
e;1(e; 1; t)

∣∣∣∣
|r−R1|=a+0+

=

{
limGrad �(−�̂1 · v)Fv

e (e; t)||r−R1|=a+0+ if t ¡Tc;

0 if t¿Tc:
(17)

The crucial diSerence between the cyclotron and straight-line free motions lies in the
two-body electron/hard-disk problem: a free trajectory starting from the surface of a
hard disk brings the particle back to this surface in the case of the cyclotron evolution,
whereas the particle following the free straight-line motion can never encounter the
disk again. As discussed in Appendix A, this implies that the limit of an in5nite Tc

is to be taken in (17) when Le is replaced by L0
e . Then the r.h.s. of (15) is equal

to −�Fv
e (e; t) at any time: in the Grad limit Fv0

e (e; t) obeys the “virtual” Boltzmann
equation ,(

9
9t + L0

e

)
Fv0
e (e; t) =−�Fv0

e (e; t) : (18)

The solution of (18) is equal to exp(−�t) × Fe(r0e(−t); v0e(−t); t = 0) for all times,
contrary to the Grad limit (12) for cyclotron motion, where the latter evolution is valid
only during the time interval [0; Tc]. ((r0e(−t); v0e(−t)) is de5ned as (re(−t); ve(−t)) in
(14) with L0

e in place of Le.)

3.2. Failure of Boltzmann hierarchy for cyclotron motion

The very reason why, contrary to the case of straight-line motion, the Grad limit
of Fe(e; t) for the cyclotron motion cannot be obtained by formally taking the Grad
limit in BBGKY equations (by neglecting collision operators on their l.h.s.) is the
following. As can be seen for instance in a binary collision expansion [8], eras-
ing collision operators on the l.h.s. of the BBGKY hierarchy is equivalent to ne-
glecting two kinds of events in the r.h.s. of the 5rst hierarchy equation (3a) obeyed
by Fe(e; t):

(a) recollisions with the same disk after free-motion evolution;
(b) recollisions with the same disk after scattering by another disk.

In the Grad limit events (b) give vanishing contributions to the r.h.s. of (3a) at any
time (as recalled in Section 4 these contributions are of relative order na2).
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However, though recollisions (a) are forbidden by kinematics in the case of the
straight-line free motion, in the case of circular cyclotron motion they become possible
after a cyclotron period has elapsed. As a consequence, in the case of the virtual
hierarchy, it is only for times shorter than the cyclotron period that the Grad limit (15)
of the 5rst equation coincides with the “virtual” Boltzmann equation (18) written in
Appendix A for L0

e .

3.3. Dynamical corrrelation e@ects

In other words, after the cyclotron period, two-body correlations arising from rec-
ollision with the same scatterer after free evolution play a role. The 5rst hierarchy
equation (3a) can be rewritten in terms of the two-body electron-scatterer correlation
function,

Ge;1(e; 1; t) = Fe;1(e; 1; t)− Fe(e; t) (19)

as (
9
9t + Le

)
Fe(e; t) = n

∫
d1T (e; 1){Fe(e; t) + Ge;1(e; 1; t)} : (20)

In the case of the virtual hierarchy, Gv
e;1(e; 1; t) contributes to the r.h.s. of the 5rst

hierarchy equation after Tc, as indicated by (17). For the hierarchy with full collision
operators, we show in Section 4 that Ge;1(e; 1; t) also gives a non-vanishing contribution
to the r.h.s. of (20).
Moreover, we notice that the inPuence of dynamical correlations upon the equation

obeyed by Fe(e; t) after Tc involves correlations with an arbitrary number of scatterers,
as it is already the case in the virtual hierarchy. In particular, the contribution from
correlations to the r.h.s. of the 5rst hierarchy equation (20) cannot be calculated in the
the so-called “ring approximation”, where one cancels the contribution from correla-
tions of order higher than 2. More precisely, in the ring approximation Gring

e;1 (e; 1; t) is
calculated from the second hierarchy equation (3b) in which one neglects the contribu-
tion to the r.h.s. from the three-body correlation de5ned by the cluster decomposition
(see e.g. Ref. [8])

Ge;2(e; 1; 2; t) = Fe;2(e; 1; 2; t)− Fe;1(e; 1; t)− Fe;1(e; 2; t) + Fe(e; t) : (21)

Then, by arguments similar to those used in Section 4, the Grad limit of the contribution
from Gring

e;1 (e; 1; t) to the r.h.s. of (20) is shown to read

lim
Grad

n
∫

d1T (e; 1)Gring
e;1 (e; 1; t)

= lim
Grad

n
∫

d1T (e; 1)
∫ t

0
d"e−(t−")[Le−T (e;1)+�]T (e; 1)F ring

e (e; ") : (22)

The ring approximation already fails in the case of the virtual hierarchy, because the
r.h.s. of (22) written with virtual operators vanishes, which is in contradiction with
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(15) for t¿Tc. (The cancellation is due to the property (31) written for the virtual
propagator: it is linked to the disappearance of the particle after its 5rst hit on a scatterer
in the annihilation dynamics.) In the Grad limit, we will show that the contribution from
Ge;2(e; 1; 2; t) disappears only in the r.h.s. of the equation obeyed by Fe(e; t)−Fv

e (e; t)
for t¿Tc.

4. BBGKY hierarchy: deriving the kinetic equation in the Grad limit

4.1. Evolution before Tc

First we show that within the time interval 0¡t¡Tc the probability density
Fe(e; 1; t) in the Grad limit obeys the Boltzmann equation(

9
9t + Le

)
Fe(e; t) =

0¡t¡Tc

lim
Grad

n
∫

d1T (e; 1)Fe(e; t) : (23)

The reduction of the 5rst hierarchy equation (20) to (23) is due to the relation

lim
Grad

T (e; 1)Ge;1(e; 1; t) =
0¡t¡Tc

0 : (24)

The argument is the following. In T (e; 1)Ge;1(e; 1; t), the electron arrives at time t at
the surface of scatterer 1. (The condition imposed by T (e; 1), see (8) and (9).) Besides,
the dynamic structure of Ge;1(e; 1; t) implies the appearance of at least one collisional
con5guration between the electron and the hard disk 1 in the past, i.e., within the
time interval [0; t]. Indeed, the contribution to the two-particle density Fe;1(e; 1; t) in
which particle e does not touch disk 1 is exactly the subtracted one-particle distribution
Fe(e; t) (see e.g. Chapter 11 in Ref. [8]). (Another argument is based on the represen-
tation of Ge;1(e; 1; t) in terms of the so-called irreducible n-body propagators and their
expansions, similar to those used in Appendix B, in terms of the virtual propagator and
the real part of the collision operator.) Therefore, T (e; 1)Ge;1(e; 1; t) does not vanish
only if the electron trajectory intersects disk 1 twice in the time interval [0; t]. Now,
when the radius a vanishes—as it is the case in the Grad limit—the reappearance of e
on the surface of 1 after free circling requires at least the time equal to the cyclotron
period. It follows that the events which contribute to T (e; 1)Ge;1(e; 1; t) for t ¡Tc are
only those where the electron is sent back on disk 1 by scattering with another disk.
However, such a recollision process is eliminated in the Grad limit, because it is at
least of order � = na2 for geometrical reasons (see e.g. Ref. [12] or [11]). (Indeed
the collision frequency is proportional to nav, but a collision with disk 2 at instant t
scatters the electron back to disk 1 which it has previously hit only for the fraction of
disks 2 which are hit with an incident angle in some interval with width #. # varies as
the angle $ under which disk 1 is seen from disk 2 with curved beams whose curvature
is equal to the cyclotron radius Rc. $ is equal to a=Rc times a dimensionless function
of time t.) This completes the proof of the asymptotic relation (24). We notice also
that from Eq. (17), one directly 5nds the equality T (e; 1)Gv

e;1(e; 1; t)=0 if 0¡t¡Tc,
in accordance with the 5rst part of the above argument.
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As no pre-collisional correlations between the electron and the scattering disks can
be created in the Grad limit for 0¡t¡Tc, the one-particle density Fe(e; t) of the
BBGKY hierarchy reduces in this period of time to the one-particle density of the
Boltzmann hierarchy propagating the initial molecular chaos [11]. However, after Tc

the situation becomes qualitatively diSerent, beacuse recollisions with the same scatterer
are now possible via free motion owing to the circular structure of trajectories. Their
eSect persists in the Grad limit and the correlations begin to play an important role.

4.2. Evolution after Tc

4.2.1. Circling electrons
According to (15), for t¿Tc the distribution Fc

e (e; t) = Fv
e (e; t) of freely circling

electrons satis5es the simple equation(
9
9t + Le

)
Fc
e (e; t) =

t¿Tc

0 : (25)

Eq. (25) shows that for t¿Tc both sides of the 5rst equation (16) of the virtual
hierarchy vanish.
In fact, the virtual two-particle density Fv

e;1(e; 1; t) obeys a property stronger than a
mere vanishing under the action of the virtual collision operator Tv(e; 1) for t¿Tc: it
is canceled also under the action of the full collision operator,

lim
Grad

T (e; 1){Fv
e (e; t) + Gv

e;1(e; 1; t)} =
t¿Tc

0 : (26)

Eq. (26) is a consequence of the property of {T (e; 1)f}(r; v) recalled after (11) and
of the exact relation (17). It implies that for t¿Tc collisions inPuence only wandering
electrons.

4.2.2. Wandering electrons
Let us introduce the distribution of wandering electrons Fw

e (e; t) ≡ [Fe − Fc
e ](e; t).

By using (25) and (26), the 5rst hierarchy equation (20) can be rewritten in the form(
9
9t + Le

)
Fw
e (e; t)

=
t¿Tc

n
∫

d1T (e; 1){Fw
e (e; t) + [Ge;1 − Gv

e;1](e; 1; t)} : (27)

In order to proceed, it is convenient to rewrite the second hierarchy equation (3b)
in terms of the two-particle correlation function Ge;1(e; 1; t) and of the three-particle
correlation function Ge;2(e; 1; 2; t) de5ned in (19) and (21) respectively. One 5nds(

9
9t + Le − T (e; 1) + �

)
Ge;1(e; 1; t) = T (e; 1)Fe(e; t)

+ n
∫

d2T r(e; 2)Ge;1(e; 1; t) + n
∫

d2T (e; 2)Ge;2(e; 1; 2; t) : (28)
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(The collision frequency � has been de5ned in (13).) We now subtract from (28) the
corresponding equation of the virtual hierarchy and obtain(

9
9t + Le − T (e; 1) + �

)
[Ge;1 − Gv

e;1](e; 1; t)

=T (e; 1)[Fe − Fv
e ](e; t) + T r(e; 1)Fv

e;1(e; 1; t) (29a)

+ n
∫

d2T r(e; 2)[Ge;1(e; 1; t) + Ge;2(e; 1; 2; t)] (29b)

+ n
∫

d2Tv(e; 2)[Ge;2(e; 1; 2; t)− Gv
e;2(e; 1; 2; t)] : (29c)

Since at the initial moment Ge;1(e; 1; 0)=Gv
e;1(e; 1; 0), the solution of (29) has the form

of the time convolution of the two-body propagator exp(−t[Le − T (e; 1)+ �]) with the
r.h.s. of (29). Upon inserting this solution into the r.h.s. of (27) we 5nd the following
terms:

(i) The contribution from term (29a) to the r.h.s. of (27) reads

n
∫

d1T (e; 1)
∫ t

0
d"e−(t−")[Le−T (e;1)+�]

×{T (e; 1)[Fe − Fv
e ](e; ") + T r(e; 1)Fv

e;1(e; 1; ")} : (30)

It can be analyzed by noticing that

e−(t−")[Le−T (e;1)]Tv(e; 1) = 0 : (31)

Indeed, similarly to the action (14) of the free propagator exp(−tLe), when the propa-
gator exp(−t[Le−T (e; 1)]) is applied to an initial condition (r; v), it provides a solution
of the two-body electron/hard-disk problem backward in time. In the latter motion, the
electron, constrained to lie outside the scatterer, can arrive at the surface of the disk
only with an outcoming velocity. This implies (31) in view of the de5nition (8), where
Tv(e; 1) contains the factor �(−�̂1 ·v) which is non-zero only for an incoming velocity.
Therefore, the part of the term {: : :} in (30) which gives a non-vanishing contribution
is reduced to

T r(e; 1){[Fe − Fv
e ](e; ") + Fv

e;1(e; 1; ")} : (32)

Eq. (32) can be re-expressed in terms of the one-particle distributions Fe(e; t) and
Fv
e (e; t) only, by using (11) and (17). Eventually, the contribution (30) from the term

(29a) yields

n
∫

d1T (e; 1)
∫ t

0
d"e−(t−")[Le−T (e;1)+�]

×T r(e; 1){�(Tc − 0+ − ")Fe(e; ") + �("− Tc + 0+)[Fe − Fv
e ](e; ")} : (33)
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The Grad limit of (33) is 5nite. The role of this term in the kinetic equation is discussed
in Section 5.

(ii) The term (29b) yields the contribution

n
∫

d1T (e; 1)
∫ t

0
d"e−(t−")[Le−T (e;1)+�]

×n
∫

d2T r(e; 2)[Ge;1(e; 1; ") + Ge;2(e; 1; 2; ")] : (34)

Both correlation functions Ge;1(e; 1; ") and Ge;2(e; 1; 2; ") require the occurrence of a
collisional con5guration with disk 1. Thus, the structure of (34) involves at least two
encounters with 1 separated by a scattering—real collision—by another disk 2. There-
fore, the term (34) is at least of order � = na2 and it vanishes in the Grad limit (the
argument has already been used in the derivation of (24)).

(iii) The term (29c) yields the contribution

n
∫

d1T (e; 1)
∫ t

0
d"e−(t−")[Le−T (e;1)+�]

×n
∫

d2Tv(e; 2)[Ge;2(e; 1; 2; ")− Gv
e;2(e; 1; 2; ")] : (35)

The dynamic events building the three-particle correlation functions Ge;2(e; 1; 2; ") and
Gv

e;2(e; 1; 2; ") require the occurrence of collisional con5gurations with both scatterers 1
and 2. Only real collisions with 1 and 2 contribute to the diSerence of these functions.
The inspection of the structure of expression (35) shows that it involves two encounters
with the same disk separated by a real collision with another disk. As in the case of
term (34), such events do not contribute in the Grad limit.
The result of the above analysis is that the evolution of wandering electrons after

the cyclotron period Tc is governed in the Grad limit by the kinetic equation

(
9
9t + Le

)
Fw
e (e; t)

=
t¿Tc

lim
Grad

{
n
∫

d1T (e; 1)Fw
e (e; t)

+ n
∫

d1T (e; 1)
∫ Tc−0+

0
d"e−(t−")[Le−T (e;1)+�]T r(e; 1)Fe(e; 1; ")

+ n
∫

d1T (e; 1)
∫ t

Tc−0+
d"e−(t−")[Le−T (e;1)+�]T r(e; 1)Fw

e (e; 1; ")
}

: (36)
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5. Magnetotransport in the Grad limit

The kinetic equations (23), for t ¡Tc, and (25) with (36), for t¿Tc, provide
a complete description of the evolution of the electronic density in the Grad limit.
Eq. (23) can be rewritten in terms of the scattering angle  as(

9
9t + Le

)
Fe(e; t)

=
t¡Tc

nav
∫ �

−�
d 

∣∣∣∣sin  
2

∣∣∣∣ {Fe(r;R(− ) · v; t)− Fe(r; v; t)} : (37)

In (37), the rotation R(− ) gives the pre-collisional orientation to the electron velocity
(see (10)). For times not exceeding the cyclotron period Tc the Boltzmann equation
(23) governs the dynamics, because the manifestation of pre-collisional correlations re-
quires the occurrence of recollisions with the same disk and the recollisions which sur-
vive in the Grad limit are only those which result from unperturbed cyclotron motion,
without intermediate encounters with other scatterers. Clearly, in the limit of point disks,
such dynamical events are impossible before the cyclotron period Tc is accomplished.
For times larger than Tc, Eq. (36) governs the evolution of wandering electrons

subject to scattering processes, whereas at the same time the fraction exp(−�Tc) of
the initial density is formed from electrons circling freely under the action of the
magnetic 5eld (25). The r.h.s. of Eq. (36) is entirely due to the creation of dynami-
cal correlations. The non-markovian collision operator in (36) contains the propagator
exp(−t[Le − T (e; 1) + �]). When this propagator is applied to an initial condition, it
provides a solution of the two-body electron/hard-disk problem, and, at the same time,
takes into account the probability weight exp(−�t) of collisionless motion. The physical
content of the memory term in (36) becomes thus clear once the motion of the electron
recolliding with a 5xed hard disk is understood (see e.g. Ref. [4]; see also Ref. [13]
for a related problem in the presence of an electric 5eld). The evaluation of the Grad
limit in (36) yields the kinetic equation (for a detailed calculation see Appendix B)(

9
9t + Le

)
Fw
e (e; t) =

t¿Tc

nav
∫ �

−�
d 

∣∣∣∣sin  2
∣∣∣∣

×
{

N−1∑
s=0

e−�sTc × [Fw(r;R(−(s+ 1) ) · v; t − sTc)

−Fw(r;R(−s ) · v; t − sTc)] + e−�NTc

× [F(r;R(−(N + 1) ) · v; t − NTc)− F(r;R(−N ) · v; t − NTc)]

}
; (38)

where N is the integer part of t=Tc: t = NTc + �t with 06 �t ¡Tc. In (38), rotation
angles are multiples of the scattering angle  because, when the radius a of disk 1 van-
ishes, the direction of the electron velocity just before the (n+1)th collision coincides
with its direction just after the nth collision.
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Combining the Boltzmann equation (37) with (25) and (38), we recover the GBE of
Ref. [3] where for simplicity only spatially homogeneous states have been considered.
(The GBE has been written in Ref. [3] in a compact way by introducing the notation
FG ≡ �(Tc − 0+ − t)[Fc + Fw] + �(t − Tc + 0+)Fw). The authors of Ref. [3] say that
the BBGKY hierarchy is “the royal road to every kinetic equation”. In the present
derivation of the GBE we have indicated the existence of this road. There remains an
interesting and subtle question open: the structure of leading corrections to the GBE
when the Grad parameter is small, na2�1, but 5nite.
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Appendix A

In view of the derivation of the Grad limit for the 5rst hierarchy equation with full
collisional operators in Section 4, we show how the closed equation (15) obeyed by
the Grad limit (12) of the exact solution for Fv

e (e; t) can be retrieved directly from the
5rst virtual hierarchy equation (16) by properly handling the Grad limit of correlation
eSects. The discussion leads to a comparison between the diSerent factorized solutions
for the virtual hierarchy on one hand and for the so-called Boltzmann hierarchy on the
other hand.

A.1. Factorized solutions of the virtual hierarchy

In [5] the very possibility of getting a rigorous solution to the virtual hierarchy was
due to a remarkable property of this hierarchy. Contrary to the real part T r(e; j), the
virtual collision operator Tv(e; j) does not alter the electron velocity, so that the virtual
hierarchy propagates in time the factorized structure of reduced distributions of the
form

Fv
e;s(e; 1; : : : ; s; t) = Fv

e (e; t)
s∏

j=1

Fv(j; t|e) : (A.1)

Thanks to factorization (A.1) the in5nite virtual hierarchy is reduced to a set of two
coupled equations. The conditional density Fv(j; t|e) obeys the equation(

9
9t + Le − Tv(e; j)

)
Fv(j; t|e) = 0 : (A.2)

At the initial time Fv(j; t = 0|e) = �(|r − Rj| − a− 0+) in the present Lorentz model
where scatterers are randomly distributed with possible overlapping. The resolution of
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(A.2) provides an exact closed equation for Fv
e (e; t), whose solution is calculated in

Ref. [5]. Eq. (12) is the Grad limit of the latter exact solution for Fv
e (e; t).

Now we look directly at the Grad limit of the 5rst virtual hierarchy equation (16),
where correlation eSects appear through Fv

e;1(e; 1; t) ≡ Fv
e (e; t)×Fv(1; t|e). Fv(1; t=0|e)

is equal to 1 except inside disk 1 where it vanishes. The contribution from the interior
of disk 1 to the r.h.s. of the 5rst hierarchy equation (16) is at least of order na2, and
it vanishes in the Grad limit (1). Therefore, Fv(1; t = 0|e) can be replaced by 1 on
the r.h.s. of this equation without changing the value of the integral limit. The same is
true for all equations in the virtual hierarchy. In other words, we are allowed to write

lim
Grad

Fv(j; t|e) =
{
e−t[Le−Tv(e;j)]1

}
(r; v) (A.3)

on the r.h.s. of all these equations.
The explicit form of function (A.3) is studied in Ref. [5]. It is equal to 1 at any

time t for nearly all (r; v). The exceptions are states (r; v)’s such that an electron,
starting at point r outside disk j with a velocity v, has a free motion backward in time
which leads it to the surface of disk j with an outgoing velocity after a 5nite time
"∗(r; v;Rj). For these (r; v)’s (A.3) is equal to �("∗ − 0+ − t): it vanishes for times t
larger than "∗(r; v;Rj). The virtual collision operator Tv(e; 1) on the r.h.s. of the 5rst
equation (16) in the virtual hierarchy selects evolutions where the trajectory intersects
the surface of disk 1 at point r with an incoming velocity v. In this case "∗(r; v;R)
is 5nite and tends to the cyclotron period Tc when a vanishes. This yields the exact
relation (17). When the latter relation is used in the 5rst equation (16) of the virtual
hierarchy, Fv

e (e; t) proves to obey the closed equation (15). The kinetic equation (15)
does coincide with the equation obeyed by (12).

A.2. Straight-line motion and Boltzmann hierarchy

In the absence of any external 5eld, an electron starting from the disk surface with
an incoming velocity will never hit it again under its straight-line motion backward in
time. In the case of the annihilation (or virtual) dynamics, this implies that the limit
of an in5nite Tc is to be taken in (17) when Le is replaced by L0

e . Then, at any time
t (17) becomes

lim
Grad

�(−�̂1 · v)Fv0
e;1(e; 1; t)||r−R1|=a+0+ = lim

Grad
�(−�̂1 · v)Fv0

e (e; t)||r−R1|=a+0+ :

(A.4)

As a consequence, the r.h.s. of the 5rst equation of the virtual hierarchy with L0
e in

place of Le becomes equal to −�Fv0
e (e; t): Fv0

e (e; t) obeys the “virtual” Boltzmann
equation (18), contrary to Fv

e (e; t) for the cyclotronic motion.
More generally when the full collision operators T (e; j)’s are considered, for the

Lorentz model in the absence of external 5eld, the Grad limit of the exact solution for
the one-particle density Fe(e; t) in the BBGKY hierarchy coincides with the solution
for Fe(e; t) in the so-called Boltzmann hierarchy. The latter is obtained by neglecting
collision operators on the l.h.s. of the BBGKY equations, according to the dimensional
analysis recalled at the beginning of Section 3. The corresponding Boltzmann hierarchy
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propagates in time the factorization of Fe;s(e; 1; : : : ; s; t) equal to

FB
e;s(e; 1; : : : ; s; t) = FB

e (e; t)
s∏

j=1

FB(j) : (A.5)

The conditional density FB(j; t|e) is equal to the constant FB(j): the factorization (A.5)
is diSerent from the factorization (A.1) propagated by the exact virtual hierarchy. In
the present model for hard-disk con5gurations, the conditional density FB(j) can be
replaced by 1 in the Grad limit, as already explained before (A.3). Then the two-body
reduced distribution function FB

e;1(e; j; t) coincides with the electron probability density
FB
e (e; t) for any state (r; v) and for any time t,

lim
Grad

FB
e;1(e; 1; t) = lim

Grad
FB
e (e; t) : (A.6)

As a consequence, in the Grad limit, the 5rst equation of the Boltzmann hierarchy
becomes(

9
9t + L0

e

)
FB
e (e; t) = n

∫
d1T (e; 1)FB

e (e; t) : (A.7)

Eq. (A.7) coincides with the well-known Boltzmann equation. In the case where ev-
ery collision operator T (e; j) is replaced by its virtual part Tv(e; j), (A.7) is reduced
to (18).
We stress that, for the BBGKY hierarchy with full collision operators and free

straight-line motion, property (A.4) rewritten for F0
e;1(e; 1; t) and F0

e (e; t) is suVcient
to ensure two properties: 5rst, in the Grad limit the 5rst hierarchy equation becomes
a closed equation for the Grad limit of the exact solution F0

e (e; t); second, this closed
equation coincides with the Boltzmann equation (A.7), namely with the Grad limit of
the 5rst equation in the Boltzmann hierarchy. The fact that property (A.4) exhibited for
the virtual hierarchy is also a suVcient condition for the hierarchy with full collision
operators when it is rewritten for F0

e;1(e; 1; t) and F0
e (e; t) relies on the property recalled

after (11): {T (e; 1)f} does not vanish only for position arguments of f on the border
of disk 1 and for velocity arguments of f which are incoming.
However, though the Grad limit of the exact solution F0

e (e; t) of the BBGKY hi-
erarchy coincides with the Grad limit of the exact solution FB

e (e; t) of the Boltzmann
hierarchy, this is not the case for the Grad limits of the other reduced distributions
F0
e; s(e; 1; : : : ; s; t) and FB

e;s(e; 1; : : : ; s; t) respectively. This can be checked in the case of
virtual hierarchy: the Grad-limit factorized solution (A.1) and (A.3), also valid for L0

e ,
does not coincide with the Grad-limit Boltzmann solution (A.5) and (A.6).

Appendix B

In the present appendix we calculate the Grad limit of the r.h.s. of (36). The
propagator exp(−t[Le − T (e; 1)]) describes the electron motion around the hard disk
1 in the absence of any other scatterer. Its explicit action can be retrieved from
its expansion in terms of the “virtual” propagator exp(−t[Le − Tv(e; 1)]) (studied in
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Ref. [5]) and of the real collision operator T r(e; 1),

e−t[Le−T (e;1)] = e−t[Le−Tv(e;1)]

+
+∞∑
s=1

e−t[Le−Tv(e;1)] ∗ T r(e; 1)e−t[Le−Tv(e;1)] ∗ · · · ∗ T r(e; 1)︸ ︷︷ ︸
s terms

e−t[Le−Tv(e;1)] :

(B.1)

In (B.1) the convolution is de5ned as

f(t) ∗ g(t) ≡
∫ t

0
d"f(t − ")g(") : (B.2)

In order to calculate T (e; 1) exp(−t[Le−Tv(e; 1)]), we recall that {T (e; 1)f}(r, v) is
a function which is non-zero only when the position argument of f is on the border of
disk 1, while the velocity argument of f is incoming (see (11)). If the electron starts at
t=0 at the surface of disk 1 with an incoming velocity and evolves backward in time
under the action of exp(−t[Le −Tv(e; 1)]), it touches disk 1 again (with an outcoming
velocity) at a time which coincides with Tc when a vanishes. Then, according to the
de5nition (10) of T r(e; 1),

lim
a→0

{�(−�̂1 · v)e−t[Le−Tv(e;1)]T r(e; 1)f}(r; v)||r−R1|=a+0+

= �(t − Tc + 0+){�(−�̂1 · v)e−TcLeb�̂f}(r; v)||r−R1|=0+ : (B.3)

In (B.3), {�(−�̂1 · v)exp(−TcLe)b�̂}(r; v)||r−R1|=0+ is again a state at the surface of
disk 1 with an incoming velocity. Then (B.1) and (B.3) lead to

lim
a→0

T (e; 1)e−(t−")[Le−T (e;1)]T r(e; 1)

=
+∞∑
s=1

�([t − "]− sTc + 0+)T (e; 1)e−TcLeb�̂1 · · · e−TcLeb�̂1︸ ︷︷ ︸
s terms

: (B.4)

According to (B.4), the two contributions in the r.h.s. of (36) yield

lim
a→0

T (e; 1)
∫ Tc−0+

0
d"e−(t−")[Le−T (e;1)+�]T r(e; 1)Fe(e; 1; ")

= e−�NTcT (e; 1)e−TcLeb�̂1 · · · e−TcLeb�̂1︸ ︷︷ ︸
N terms

Fe(e; t − NTc) ; (B.5)

where N is the integer part of t=Tc, and

lim
a→0

T (e; 1)
∫ t

Tc−0+
d"e−(t−")[Le−T (e;1)+�]T r(e; 1)Fw

e (e; ")

=
N−1∑
s=1

e−�sTcT (e; 1)e−TcLeb�̂1 · · · e−TcLeb�̂1︸ ︷︷ ︸
s terms

Fw
e (e; t − sTc) : (B.6)
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Moreover, under the motion backward in time during one cyclotron period, the free
propagator exp(−TcLe), makes the position come back to its initial value and the
velocity rotate with an angle 2�. The rotation angle of b�̂1 is equal to minus scattering
angle  (see (10)). Thus, the action of the s terms in the r.h.s. of (B.6) is just to
make the velocity rotate with an angle −s . According to the de5nition (6) of T (e; 1),

lim
Grad

n
∫

d1T (e; 1)e−TcLeb�̂1 · · · e−TcLeb�̂1︸ ︷︷ ︸
s terms

f(e; t − sTc)

= nav
∫ �

−�
d 

∣∣∣∣sin  
2

∣∣∣∣
×{f(r;R(−(s+ 1) ) · v; t − sTc)− f(r;R(−s ) · v; t − sTc)} : (B.7)

When (B.5) and (B.6) are used together with the latter identity, (36) becomes (38).
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