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Abstract

We derive the exact solution of the Boltzmann kinetic equation for the three-dimensional Lorentz model in the presence

of a constant and uniform magnetic field. The velocity distribution of the electrons reduces exponentially fast to its

spherically symmetric component. In the long time hydrodynamic limit there remains only the diffusion process governed

by an anisotropic diffusion tensor. The systematic way of building the Chapman–Enskog solutions is described.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The model proposed by Lorentz in 1905 [1] to describe the electrical conductivity in metals has become an
inexhaustible source of results concerning the foundations of the kinetic theory. Within the model the
electrons are considered as small hard spheres with electric charge ð�eÞ propagating among randomly
distributed immobile hard spheres representing the atoms. The electrons do not interact with each other. The
elastic electron–atom scattering is at the origin of the electric resistivity of the medium.

An excellent review of the subject up to 1974 can be found in Ref. [2]. Since then the research keeps bringing
new results. More recent applications of the model, in particular in the theory of dynamical systems, have been
described in Ref. [3]. One of the relatively recent discoveries was the non-Markovian character of the evolution
in two dimensions in the presence of a magnetic field perpendicular to the plane of motion. Even in the Grad
limit where the fraction of the volume occupied by the scattering atoms is very low the kinetic equation keeps
containing memory effects and does not reduce to the Boltzmann form [4].

We consider here the three-dimensional dynamics where the mean free path of the electron l is inversely
proportional to the number density of the scatterers n and to the scattering cross section pa2 with a equal to
the sum of the atomic and electronic radii. Keeping l fixed while the volume fraction na3 approaches zero
e front matter r 2006 Elsevier B.V. All rights reserved.
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defines the Grad limit

lim
Grad
¼

l ¼ 1=npa2 ¼ const.;

na3! 0:

(
(1)

In the absence of external fields the Boltzmann equation applies in the regime (1). Moreover, it can be
rigorously solved. This fact has been exploited in Ref. [5] to compare the evolution predicted by the Boltzmann
equation for general initial conditions with that of the special class of Chapman–Enskog solutions involving
exclusively hydrodynamic modes.

Our object is to generalize the analysis of Hauge [5] to the case where the electrons are acted upon by a
constant and uniform magnetic field B. As we consider the motion in three-dimensions the non-Markovian
effects studied in Ref. [4] do not occur and the Boltzmann equation yields an adequate description in the low
density limit (1). The electrons move between collisions under the action of the Lorentz force F giving rise to
the acceleration

F

m
¼ x� v ¼ obB� v, (2)

where B ¼ BbB, jbBj ¼ 1, m is the electronic mass, and o ¼ eB=m is the cyclotron frequency.
We denote by f ðr; v; tÞ the probability density for finding the electron at time t at point r moving with

velocity v. The Boltzmann equation applied to the Lorentz model (also called Boltzmann–Lorentz equation)
reads

q
qt
þ v �

q
qr
þ ðx� vÞ �

q
qv

� �
f ðr; v; tÞ ¼

1

t
f½Pf �ðr; v; tÞ � f ðr; v; tÞg. (3)

The collision frequency 1=t ¼ v=l is constant under the assumed dynamics. Indeed, the speed v ¼ jvj of the
electron does not change during the free cyclotron motion and is also conserved by the elastic collisions. The
gain term in the right hand side of (3) represents the effect of isotropic scattering which averages the
distribution f over all directions leaving the spherically symmetric part

½Pf �ðr; v; tÞ ¼

Z
dbv
4p

f ðr; v; tÞ, (4)

where bv ¼ v=v represents a point on a unit sphere in the velocity space so that dbv is the solid angle measure.
It turns out that the initial value problem for the kinetic equation (3) can be explicitly solved. We begin by

deriving in Section 2 the evolution of the velocity distribution which permits to calculate the diffusion tensor
via a Green–Kubo formula. The complete exact solution for the distribution f is derived in Section 3. Section 4
is devoted to the discussion of the hydrodynamic diffusion process governing the evolution in the long time
limit. In Section 5 we indicate the method of a systematic construction of Chapman–Enskog solutions whose
time dependence is entirely defined by the diffusive mode at any time scale. The final Section 6 contains
discussion and comments.
2. Velocity distribution and diffusion tensor

2.1. Approach to spherical symmetry

The evolution equation for the velocity distribution

fðv; tÞ ¼
Z

dr f ðr; v; tÞ (5)

follows by integrating (3) over the position space. One finds

q
qt
þ ðx� vÞ �

q
qv

� �
fðv; tÞ ¼ �

1

t
½fðv; tÞ � ½Pf�ðv; tÞ�. (6)
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Applying the projection P ¼ P2 to both sides of (6) yields the relation

q
qt
½Pf�ðv; tÞ ¼ 0. (7)

The spherical part ½Pf� of the velocity distribution remains unchanged in the course of time. This permits to
rewrite (6) in the form

q
qt
þ ðx� vÞ �

q
qv

� �
wðv; tÞ ¼ 0 (8)

with

wðv; tÞ ¼ expðt=tÞ½fðv; tÞ � ½Pf�ðv; 0Þ�. (9)

The solution of (8) is straightforward as it consists in propagating wðv; tÞ backward in time up to t ¼ 0 along
the free cyclotron trajectory

vð�tÞ ¼ RbBð�otÞ � v ¼ vk þRbBð�otÞ � v?, (10)

where RbB að Þ is the rotation of angle a around the axis bB. The velocity component parallel to the magnetic field

vk ¼ ðv � bBÞbB is not affected by the cyclotron rotation whereas the perpendicular component v? ¼ v� vk
rotates with constant angular velocity o. We thus have in general

wðv; tÞ ¼ wðvð�tÞ; 0Þ

which in view of (9) yields the solution

fðv; tÞ ¼ ½Pf0�ðvÞ þ e�t=t½f0ðRbBð�otÞ � vÞ � ½Pf0�ðvÞ� (11)

with

f0ðvÞ � fðv; t ¼ 0Þ. (12)

The velocity distribution becomes spherically symmetric exponentially fast with the relaxation time t ¼ l=v.
Its projection ½Pf0�ðvÞ does not change in the course of time and represents the asymptotic equilibrium state.
2.2. Diffusion tensor from a Green– Kubo formula

The complete solution of the initial value problem (11) permits to evaluate the conditional probability
Pðv; tjw; 0Þ for finding the electron with velocity vðtÞ ¼ v at time t provided it had velocity vð0Þ ¼ w at time
t ¼ 0. One finds

Pðv; tjw; 0Þ ¼
dðv� wÞ

4pw2
þ e�t=t d½RbBð�otÞ � v� w� �

dðv� wÞ

4pw2

� �
. (13)

The knowledge of Pðv; tjw; 0Þ suffices to determine the diffusion tensor Dmn through the Green–Kubo formula

Dmn ¼

Z þ1
0

dthvmðtÞvnð0Þieq, (14)

where the velocity auto-correlation function is given by

hvmðtÞvnð0Þieq ¼

Z
dv

Z
dwvmwnPðv; tjw; 0ÞfeqðwÞ. (15)

Here

feqðwÞ ¼ dðw� v0Þ=4pv20

denotes the spherically symmetric equilibrium state.
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The d-distributions greatly facilitate the evaluation of the integral in (15) which is readily reduced to

hvmðtÞvnð0Þieq ¼ v20

Z
dbv
4p
bvm½RbBð�otÞ �bv�n e�t=t ¼

v20
3
½RbBðotÞ�mn e

�t=t. (16)

Here ½RbBðotÞ�mn are the elements of the rotation matrix corresponding to rotation of angle ot around the bB-
axis. The calculation of the diffusion tensor (14) is conveniently performed in the coordinate system whose
z-axis is oriented along the magnetic field. One then finds the diffusion matrix with diagonal elements

D? ¼ Dxx ¼ Dyy ¼
1

3
v20t

1

1þ o2t2
; Dk ¼ Dzz ¼

1

3
v20t (17)

and the off-diagonal elements

Dxy ¼ �Dyx ¼ �
1

3
v20t

ot
1þ o2t2

; Dxz ¼ Dyz ¼ 0. (18)

Eqs. (17), (18) show the reducing effect of the magnetic field on the diffusion process perpendicular to the
magnetic field. The fact that the corresponding diffusion coefficient D? decays at large values of the field as
ðotÞ�2 has been well established in plasma physics [6]. The formulae (17), (18) have been also derived with the
use of the appropriate Langevin equation [7]. The physical content of expressions (17) and (18) is discussed in
detail therein.

Our main object in this paper is to exhibit the time scale separation in the evolution toward equilibrium. In
contradistinction to the rapid relaxation (11) of velocities, there also appears a by far slower hydrodynamic
spreading of the electrons in the position space governed by the diffusion tensor.
3. Solution of the Boltzmann equation

On the left hand side of the Boltzmann equation (3) we find the operator

q
qt
þ v �

q
qr
þ ðx� vÞ �

q
qv

� �
(19)

which generates collisionless trajectories in the magnetic field. The backward in time motion starting from the
phase space point (r,v) reads

rð�tÞ ¼ r� vkt�
1

o
RbB p

2

� �
� ½v?ð�tÞ � v?�,

vð�tÞ ¼ RbBð�otÞ � v ¼ vk þRbBð�otÞ � v? ð20Þ

(see Eq. (10)). The operator (19) vanishes when applied to the trajectory (20) which permits to rewrite (3) in the
integral form

f ðr; v; tÞ ¼ e�t=tf 0ðrð�tÞ; vð�tÞÞ þ
1

t

Z t

0

dt0e�ðt�t0Þ=t½Pf �ðrð�ðt� t0ÞÞ; v; t0Þ (21)

with f 0ðr; vÞ ¼ f ðr; v; t ¼ 0Þ. Applying to (21) the Fourier transformation

f̂ ðk; v; tÞ ¼

Z
dr e�ik�rf ðr; v; tÞ (22)

we find

f̂ ðk; v; tÞ ¼ expf�t=t� ik � ½vktþ xðv?; tÞ�gf̂ 0ðk;RbBð�otÞ � vÞ

þ
1

t

Z t

0

dt0 expf�ðt� t0Þ=t� ik � ½vkðt� t0Þ þ xðv?; ðt� t0ÞÞ�g½Pf̂ �ðk; v; t0Þ, ð23Þ
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where the shorthand notation

xðv?; tÞ ¼
1

o
RbB p

2

� �
� ½v?ð�tÞ � v?� (24)

has been introduced.
The way to the solution consists now in using the fact that the Laplace transformation

~f ðk; v; zÞ ¼

Z þ1
0

dte�ztf̂ ðk; v; tÞ (25)

factorizes the convolution in time present in (23). The integral form (21) of the Boltzmann equation for the
Fourier–Laplace transform ~f takes the form

~f ðk; v; zÞ ¼ ½Lf̂ 0�ðk; v; zÞ þ cðk; v; zÞ½P ~f �ðk; v; zÞ, (26)

where the direct effect of the initial state is contained in

½Lf̂ 0�ðk; v; zÞ ¼

Z þ1
0

dt exp � zþ
1

t
þ ik � vk

� �
t� ik � xðv?; tÞ

� �
f̂ 0ðk;RbBð�otÞ � vÞ (27)

whereas the function

cðk; v; zÞ ¼
1

t

Z þ1
0

dt exp � zþ
1

t
þ ik � vk

� �
t� ik � xðv?; tÞ

� �
(28)

multiplies the spherical part of the transformed distribution ~f . Owing to this factorized structure the
application of the projection P to both sides of (26) yields a closed equation for ½P ~f �ðk; v; zÞ providing the
formula

½P ~f �ðk; v; zÞ ¼
½PLf̂ 0�ðk; v; zÞ

1� ½Pc�ðk; v; zÞ
. (29)

By inserting the solution (29) into (26) we arrive at the complete solution for the Fourier–Laplace transform of
the distribution function

~f ðk; v; zÞ ¼ ½Lf̂ 0�ðk; v; zÞ þ
cðk; v; zÞ

1� ½Pc�ðk; v; zÞ
� ½PLf̂ 0�ðk; v; zÞ. (30)

The exact evolution in the course of time can be inferred from (30) by taking the inverse Laplace
transformation

f̂ ðk; v; tÞ ¼

Z
dz

2pi
expðztÞ ~f ðk; v; zÞ. (31)

The contour of integration in (31) is a line parallel to the imaginary axis lying to the right of all singularities of
the analytic function ~f ðk; v; zÞ. In order to analyze the modes of the time evolution we have thus to examine the
singularities of functions Lf̂ 0, PLf̂ 0 and c together with zeros of the function ð1� PcÞ, where

½Pc�ðk; v; zÞ ¼
1

t

Z þ1
0

dt exp � zþ
1

t

� �
t

� �Z
dbv
4p

expf�ik � vkt� ik � xðv?; tÞg (32)

with

xðv?; tÞ ¼
1

o
RbB p

2
� ot

� �
� v? �RbB p

2

� �
� v?

h i
(33)

(see definition (24)).

4. Separation of time scales: appearance of the hydrodynamic mode of diffusion

The formulae (27), (28) show that Lf̂ 0ðk; v; zÞ and cðk; v; zÞ are Laplace transforms of bounded (periodic)
functions evaluated at the point ðzþ 1=tþ ik � vkÞ whose real part equals ðRe zþ 1=tÞ. It follows that all their
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singularities in the complex z-plane are located in the half-plane Re ðzÞp� 1=t (the same holds for PLf̂ 0). The
modes of evolution related to these singularities correspond thus to a rapid decay dominated by the
exponential decrease � expð�t=tÞ.

A qualitatively different behavior comes from the singularity occurring when the denominator in (29)
vanishes. Consider the equation

½Pc�ðk; v; zÞ ¼ 1. (34)

Its explicit form is conveniently written in the coordinate frame whose z-axis is parallel to bB and where vector
k lies in the plane xOz with coordinates ðk?; 0; kkÞ. We find

1

t

Z þ1
0

dt exp � zþ
1

t

� �
t

� �Z p

0

sin ydy
2

Z 2p

0

df
2p

� exp �itkkv cos y� i
1

o
sin

ot

2

� �
2k?v sin y sinf

� �
¼ 1, ð35Þ

where ðv sin y cosf; v sin y sinf; v cos yÞ are the coordinates of the velocity vector. Denoting by zhydðkÞ the
implicit function defined by (35) one checks that at k ¼ 0 there is a unique solution zhyd ðk ¼ 0Þ ¼ 0. Upon
expanding the integrand in (35) in powers of k? and kk we find the asymptotic expansion of zhydðkÞ for k! 0
in the form

zhydðkÞ ¼ �½Dkk
2
k þD?k2

?� þ oðk2
Þ, (36)

where the diffusion coefficients Dk and D? coincide with those derived from the Green–Kubo relation (14) (see
(17)). oðk2

Þ denotes a term vanishing faster than k2.
The isolated zero at z ¼ zhydðkÞ of the analytic function ð1� PcÞ corresponds to the hydrodynamic

pole in the solution (30). Indeed, in the vicinity of z ¼ 0 and for k! 0 one finds the asymptotic re-
presentation

1

1� Pcðk; v; zÞ
ffi

1

tðz� zhydðkÞÞ
. (37)

The evaluation of the inverse Laplace transformation (31) will thus yield the contribution

f̂ hyd ðk; v; tÞ� exp½�tðDkk
2
k þD?k2

?Þ� (38)

which represents the slow diffusion process spreading the electrons in the position space. Their number density
in the Laplace–Fourier representation (at a given modulus of velocity) follows directly from (30) by applying
the projector P

~nðk; v; zÞ ¼
4p

1� ½Pc�ðk; v; zÞ
½PL ~f 0�ðk; v; zÞ. (39)

Here the hydrodynamic zero z ¼ zhyd determines entirely the evolution for long times tb1=t.
The magnetic field does not change the kinetic energy of the electrons. Eq. (39) is thus the

density of a conserved quantity which implies the appearance of the hydrodynamic mode. The
situation here is analogous to that studied in Ref. [5] in the absence of B where the existence of
Chapman–Enskog solutions holding all along the evolution has been proved by construction. In
the next section we show how to construct systematically Chapman–Enskog solutions in the presence of
the field B.

5. Chapman–Enskog solutions

The only hydrodynamic field in the dynamics of the Lorentz model is the number density (39). In order to
investigate the possibility of the existence of Chapman–Enskog solutions depending on time only via nðr; v; tÞ
we follow here the ideas developed in Ref. [5] where such solutions have been explicitly constructed. In the
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Fourier representation we thus look for distributions of the form

f̂ ðk; v; tÞ ¼ ½Pf̂ �ðk; v; tÞ þ ½ð1� PÞf̂ �ðk; v; tÞ

¼
1

4p
n̂ðk; v; tÞ þ Lðk; vjn̂ð:; tÞÞ. ð40Þ

If f̂ solves the linear Boltzmann equation

q
qt
þ ik � vþ ðx� vÞ �

q
qv

� �
f̂ ðk; v; tÞ ¼ �

1

t
½f̂ ðk; v; tÞ � ½Pf̂ �ðk; v; tÞ� (41)

then af̂ is another solution for any number a. It follows that Lðk; vjn̂ð:; tÞÞ is a linear functional of n̂

aLðk; vjn̂ð:; tÞÞ ¼ Lðk; vjan̂ð:; tÞÞ. (42)

Following Hauge [5] we assume the simplest local linear relation

Lðk; vjn̂ð:; tÞÞ ¼ F ðk; vÞn̂ðk; v; tÞ (43)

and look for the Chapman–Enskog solutions of the form

f̂ ðk; v; tÞ ¼ ½1þ F ðk; vÞ�½Pf̂ �ðk; v; tÞ. (44)

In order to derive a closed equation for the function F we insert (44) into (41). We get

ð1þ F Þ
q
qt
þ ik � vð1þ F Þ þ ðx� vÞ �

qF

qv

� �
½Pf̂ �ðk; v; tÞ ¼ �

1

t
F ½Pf̂ �ðk; v; tÞ. (45)

In view of the relations

P½F � ¼ 0; P½ik � v� ¼ 0 and P½ðx� vÞ �
qF

qv
� ¼ 0 (46)

the application of the projection P to (45) yields

q
qt
þ ½Pðik � vÞF �

� �
½Pf̂ �ðk; v; tÞ ¼ 0 (47)

which determines the evolution of the spherical part of the distribution

½Pf̂ �ðk; v; tÞ ¼ ½Pf̂ 0�ðk; vÞ expf�t½Pðik � vÞF �ðk; vÞg. (48)

The time evolution of the complete distribution (44) has been thus also determined

f̂ ðk; v; tÞ ¼ ½1þ F ðk; vÞ�½Pf̂ 0�ðk; vÞ expf�t½Pðik � vÞF �ðk; vÞg. (49)

When inserted into (45) Eq. (47) permits to derive the nonlinear equation determining the function F

1

t
þ ðx� vÞ �

q
qv

� �
F ¼ f½Pðik � vÞF � � ik � vgð1þ F Þ. (50)

Note that by putting k ¼ 0 in (47) we find

q
qt
þ lim

k!0
½Pðik � vÞF �

� �
½Pf�ðv; tÞ ¼ 0, (51)

where fðv; tÞ is the velocity distribution. Eq. (51) should coincide with the previously derived condition (7)
expressing the invariance of the spherically symmetric component of f. We conclude that

lim
k!0
½Pðik � vÞF � ¼ 0. (52)

Taking then the limit k! 0 in (49) we find that the velocity distribution f does not change in the course of
time which is possible only for spherically symmetric initial conditions (see (11)). This property of the
Chapman–Enskog solution imposes on F the condition

F ðk ¼ 0; vÞ ¼ 0. (53)
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Indeed, as the relation (44) must hold at any time, in particular at t ¼ 0

f̂ ðk; v; 0Þ ¼ ½1þ F ðk; vÞ�½Pf̂ �ðk; v; 0Þ, (54)

and the restriction of the class of initial conditions to those whose velocity distributions are spherically
symmetric enforces (53).

Coming back to the Laplace–Fourier transform ~f we get from (49) the formula

~f ðk; v; zÞ ¼ ½1þ F ðk; vÞ�½Pf̂ 0�ðk; vÞ
1

zþ ½Pðik � vÞF �ðk; vÞ
. (55)

The Chapman–Enskog distribution ~f ðk; v; zÞ has thus a single hydrodynamic pole at

z ¼ zhydðkÞ ¼ �½Pðik � vÞF �ðk; vÞ (56)

which determines entirely the evolution in the course of time.
A subtle point should be noted here. Owing to the presence of spatial gradients the Chapman–Enskog

distribution is not spherically symmetric as function of v all along the evolution towards equilibrium.
However, as a consequence of (53) its k ¼ 0 component possesses the spherical symmetry at any moment of
time.

The power series representation of the function F can be constructed in a systematic way in terms of
convenient variables (see (35))

s1 ¼ k? � v? ¼ k?v sin y cosf

s2 ¼ ðk? � v?Þ � bB ¼ k?v sin y sinf

s3 ¼ kk � vk ¼ kkv cos y. ð57Þ

We write

F ¼ F ð1Þ þ F ð2Þ þ � � � , (58)

where F ðnÞ is the nth order polynomial in variables ðs1; s2; s3Þ. The action of the operator L ¼ ðx� vÞ � q=qv
appearing in (50) on these variables is particularly simple

Ls1 ¼ �os2; Ls2 ¼ os1 and Ls3 ¼ 0 (59)

which greatly facilitates the calculations. The nonlinear equation (50) implies the chain of linear equations

1

t
þ x� vð Þ �

q
qv

� �
F ð1Þðk; vÞ ¼ �ik � v, (60)

1
t þ ðx� vÞ � qqv

	 

F ð2Þðk; vÞ ¼ ½Pðik � vÞF ð1Þ�ðk; vÞ � ik � vF ð1Þ;

:::::::::::::::::::::::::::
ð61Þ

which can be consecutively solved. For the first two terms of the expansion one finds

F ð1Þðk; vÞ ¼ �it s3 þ
1

1þ o2t2
ðs1 þ ots2Þ

� �
(62)

F ð2Þðk; vÞ ¼ t½Dkk
2
k þD?k2

?� � t2s23

� t2
1

ð1þ o2t2Þ2
½2s1s3 þ otð3þ o2t2Þs2s3�

� t2
1

ð1þ o2t2Þð1þ 4o2t2Þ
½ð1þ o2t2Þs21 þ 3ots1s2 þ 3o2t2s22�. ð63Þ

According to (56) the second order term in the expansion of the hydrodynamic pole is given by

z
ð2Þ
hyd ¼ �½Pðik � vÞF

ð1Þ�ðk; vÞ ¼ �½Dkk
2
k þD?k2

?� (64)
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which reproduces the already derived formula (36). For symmetry reasons any term F ð2nÞ in (58) is a
polynomial of even order in the variables s1, s2 and s3. Therefore, by virtue of definitions (57), F ð2nÞ is invariant
by the change v!�v and ½Pðik � vÞF ð2nÞ�ðk; vÞ ¼ 0: the small k expansion of the hydrodynamic pole contains
only terms of even orders in k.

Note that (47) is in fact the equation for the number density

q
qt
þ ½Pðik � vÞF �

� �
n̂ðk; v; tÞ ¼ 0. (65)

In the small k limit we can use here the first order approximation F ð1Þ. In the position space this gives the
diffusion equation

q
qt

nðr; v; tÞ ¼ ½DkDk þD?D?�nðr; v; tÞ (66)

Dk and D? are the Laplace operators corresponding to space variables conjugate to the wave vectors kk and
k?, respectively.

In principle, one could continue the evaluation of higher order terms going beyond the classical diffusion
(66). In fact, the determination of the nth order polynomial F ðnÞ in the series (58) is straightforward once one
knows all polynomials of lower rank. To prove the existence of Chapman–Enskog solutions there remains the
open question of convergence of expansion (58).

6. Discussion and comments

The exact solution (30) of the Boltzmann equation for the three-dimensional Lorentz model in the presence
of a constant and uniform magnetic field allows to describe precisely the dynamical evolution of the system
much like in the previously studied case [5] of free motion between collisions. The picture which emerges from
our analysis bears strong resemblance to the case with B ¼ 0. This is clearly related to the fact that by taking
the limit o ¼ eB=m! 0 in various predictions following from (30) we recover the results of Hauge [5]. We
could thus reveal the time scale separation between the rapid exponential decay (11) of the deviation from the
spherical symmetry in the velocity distribution and the slow diffusive spreading in the position space due to the
hydrodynamic pole (36). This was achieved by showing that the Laplace–Fourier transform ~f ðk; v; zÞ
contained a single pole approaching z ¼ 0 for k! 0 whereas the rest of the singularities of ~f remained within
the half-plane Re zp� 1=t. We have also checked that the Green–Kubo formula (14) gave the exact value for
the diffusion coefficients D?; Dk by identifying them independently in the small wave vector expansion of the
hydrodynamic pole (36). Of course, there is here a new effect compared to Hauge [5]. The magnetic field
introduces an anisotropy into the diffusion process absent in the field free case. For the diffusion in the
direction perpendicular to B the Lorentz model predicts the decay D?�ðotÞ

�2 in the limit of strong fields
otb1. The diffusion parallel to B looks the same as in Ref. [5].

There is one point where the presence of the magnetic field makes the problem much more difficult than in
the case of B ¼ 0. It concerns the possibility of solving the nonlinear equation (50), necessary for the explicit
construction of the Chapman–Enskog solutions. In the limit o! 0 (50) takes the form

1

t
F ¼ f½Pðik � vÞF � � ik � vgð1þ F Þ (67)

and can be readily solved yielding

F ðk; vÞjB¼0 ¼
1

kvt cotðkvtÞ þ itk � v
� 1. (68)

It is quite remarkable that the solution of the nonlinear equation (67) is so easily obtained. It permitted in
Ref. [5] to provide the proof of the existence of the Chapman–Enskog solutions by explicit construction. This
was however not the case with our equation (50). All we were able to do was to find the way to a systematic
expansion of F ðk; vÞ in a power series of the variables k?; kk. The first two terms (62) and (63) of the expansion
have been exhibited in the text. They become ð�itk � vÞ and ½�ðtk � vÞ2 þ ðtkvÞ2=3�, respectively, in the o! 0
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limit reproducing the first two terms in the expansion of (68). The still open question is the convergence of the
complete series (58).

Let us finally remark, that the further generalization consisting in including also an electric field would
require a modification in the dynamics of the Lorentz model, as keeping elastic collisions with fixed scatterers
excludes the existence of a stationary state because of the unbounded absorption of energy [8].
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