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a b s t r a c t

We study the stationary state of a rough granular sphere immersed in a thermal bath
composed of point particles. When the centre of mass of the sphere is fixed the stationary
angular velocity distribution is shown to be Gaussian with an effective temperature
lower than that of the bath. For a freely moving rough sphere coupled to the thermostat
via inelastic collisions we find a condition under which the joint distribution of the
translational and rotational velocities is a product of Gaussian distributions with the same
effective temperature. In this rather unexpected casewe derive a formula for the stationary
energy flow from the thermostat to the sphere in accordance with the Fourier law.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The study of the dynamics of a tracer particle is a classical problem of nonequilibrium statistical mechanics. The object
is to determine the evolution of the state of a single particle resulting from interaction with the surrounding medium.
Such a study can yield valuable information on the effects of many-body dynamics. Moreover, the relative simplicity of the
problem creates opportunities for precise theoretical predictions. A number of works aimed at understanding the dynamics
of fluidized granular media have recently been produced [1]. In particular, the evolution of a granular sphere immersed in a
granular medium homogeneously cooling down has been discussed [2] as well as Brownian motion in a granular fluid [3].
The case of an impurity put in a vibrating low-density granular system has also been studied [4].

An interesting qualitative question, related to the effects of inelastic collisions taking place in granular fluids, is that of
the resulting structure of the distribution function when different kinds of degrees of freedom are present. A gas of rough
spheres with both translational and rotational degrees of freedom has been recently examined from this point of view [5].
The main prediction, based on numerical studies and approximate analytic arguments, is that dissipative collisions induce
statistical dependence between orientations of the angular and translational velocities.

In the present paper we address an analogous question in an even simpler situation of a single tracer granular rough
sphere suffering inelastic collisions with point masses forming a low-density thermal bath. Our object is to find out what
kind of stationary state can result from a dissipative coupling to a thermostat. In the case of elastic collisions the particle
would eventually attain equilibrium at the temperature of the bath. But the nature of the asymptotic stationary state in
which there is a constant dissipative heat flow from the thermostat to the tracer particle remains a largely open question of
fundamental interest.
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Exact results have been derived for a smooth hard sphere where inelastic collisions could influence only translational
motion. It turned out that at the level of the Boltzmann kinetic theory the stationary velocity distribution had the form of
a Maxwell distribution with an effective temperature lower than that of the thermostat [6]. In one dimension one could
even rigorously solve the initial value problem deriving, in particular, the exact dependence of the diffusion coefficient on
dissipation [7]. In the case of purely translational degrees of freedom the appearance of a Gaussian distribution has been
shown to follow from the equivalence between the Boltzmann equation for a granular tracer particle suffering inelastic
collisions and the Boltzmann equation for an elastic tracer particle with a suitably modified mass [2].

This remarkable property also occurs if the test particle is rough but has a fixed mass centre and thus only rotational
degrees of freedom [8] (an original derivation of this fact is presented in Section 3). The stationary angular velocity is then
again Gaussian with an effective temperature lower than that of the thermostat.

In the present paper we extend the study of stationary states at the level of Boltzmann’s kinetic theory to the case of a
tracer rough sphere whose translational and rotational motions are both influenced by inelastic collisions (the distribution
of kinetic energy in a granular gas composed of rough spheres has been discussed in [9,10]). In Section 2 we describe the
model. Section 3 contains the description of ourmethod first illustrated on simple situations where only one type of degrees
of freedom is present. We then turn to the general case and show that, when the restitution coefficients for normal and
tangential relative velocities obey a specific relation (37), the joint velocity distribution becomes a product of two Maxwell
distributions for the angular and translational velocities corresponding to the same effective temperature. It turns out that
the derived relationmay be fulfilled only if the restitution coefficient relevant for rotational motion is larger than that linked
to the motion of the mass centre.

The occurence of a stationary factorized Gaussian distribution for the two types of degrees of freedom inelastically
excited by collisions is quite remarkable and, in view of the results obtained for a gas of granular rough spheres [5], rather
unexpected. Themain result of Section 3 is obtained by using an appropriate change of integration variables in the gain term
of the Boltzmann equation (the method generalizes that used in Ref. [2]).

The heat flux thatmaintains the test particle in a stationary state is calculated in Section 4. It obeys the analogue of Fourier
lawwith a thermal conductivity proportional to the temperature jump between the sphere and the thermostat, as in generic
hydrodynamic theories. In Section 5 we briefly comment on the possible structure of the joint velocity distribution when
the values of the restitution coefficients are not related by the equation derived in Section 3. We expect that a typical case
would involve a statistical relationship between the angular and translational velocities of the sphere.

2. The model

For the sake of simplicity the thermal bath particles are supposed to be point masses m performing purely translational
motion. Their distribution in the one-particle phase space is the product of a uniform spatial densityρ and aMaxwell velocity
distribution φT(v;m) corresponding to temperature T

φT(v;m) =

(
m

2πkBT

)D/2
exp

[
−

mv2

2kBT

]
(1)

D is the dimension of the space (D = 2 or 3), and kB is Boltzmann’s constant.
The rough sphere is supposed to have mass M, radius R, moment of inertia I, and to move with translational velocity V,

and angular velocity �. Thus its total kinetic energy equals

E(V,�) =
1
2
MV2

+
1
2
qMR2�2 (2)

where q = I/MR2 is a number reflecting the mass density distribution inside the sphere (disk).

2.1. Collisional laws

Consider a binary collision between the rough sphere and a point particle of the thermostat. The instantaneous collisional
transformation of velocities

(V,�, v) → (V∗,�∗, v∗) (3)

is conveniently describedwith the help of the unit vector n̂ along the line segment from the centre of the sphere to the point
of impact.

The linear velocity of the point at the surface of the sphere hit by the thermostat particle is (V + R� × n̂). The relative
velocity at which the particle approaches the impact point is thus

g = v − V − R� × n̂. (4)

In what follows, we will use the notations

An =
(
A · n̂

)
n̂, and At = A − An = n̂ ×

(
A × n̂

)
(5)

for the normal and tangential components of any vector A.
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In the simplest model of inelastic collisions one defines the instantaneous transformation of relative velocity (4) by (see
e.g. Ref. [1])

g?
n = −αgn (6)

g?
t = −βgt (7)

where 0 ≤ α ≤ 1, and −1 ≤ β ≤ 1 are the translational and rotational restitution coefficients, respectively. The cases of
α = 1 with β = ±1 correspond to elastic encounters.

In order to calculate postcollisional velocities (V∗,�∗, v∗) one has to use relations (6) and (7) together with the
conservation laws for both the momentum and the angular momentum. One then finds (see e.g. Ref. [10])

R�?
= R� +

1 + β

1 + q(1 + µ)
n̂ × gt

V?
= V +

1 + α

1 + µ
gn +

q(1 + β)

1 + q(1 + µ)
gt

v?
= v −

µ(1 + α)

1 + µ
gn −

qµ(1 + β)

1 + q(1 + µ)
gt

(8)

where µ denotes the mass ratio µ = M/m.
According to the defining Eqs. (6) and (7), the formulae corresponding to the inverse collision

(V??,�??, v??) → (V,�, v) (9)
are obtained by changing α into 1/α, and β into 1/β.

2.2. The Boltzmann equation

We denote by f (V,�, t) the probability density for finding the test particle at time t with translational velocity V and
angular velocity �.

Within Boltzmann’s theory, whose predictions are the object of the present paper, the tracer particle never suffers
recollisions, and thus always encounters unperturbed thermalized particles. The Boltzmann kinetic equation is thus linear
in this case and in homogeneous situations it has the form

∂f (V,�, t)

∂t
= ρRD−1

∫
dn̂

∫
dvΘ

(
[v − V] · n̂

)
| [v − V] · n̂|

×

[ 1
α2|β|D−1 f (V

??,�??, t)φT(v??
;m) − f (V,�, t)φT(v;m)

]
. (10)

In the gain term there appears the factor 1/α2
|β|

D−1 which guarantees conservation of the normalization of the velocity
distribution. Θ(x) denotes here the unit step function. We restrict further discussion to the stationary solution of Eq. (10).

It will be useful to display the detailed structure of the gain term. To this end we express the precollisional velocities
(V??,�??, v??) in terms of the scaled relative velocities

wn =
1
α
gn =

1
α

(v − V)n (11)

wt =
1
β
gt =

1
β

(
v − V − R� × n̂

)
t . (12)

Using Eq. (8) with α and β replaced by α−1 and β−1 we find

R�??
= R� −

(1 + β)

1 + q(1 + µ)
wt × n̂

V??
= V +

1 + α

1 + µ
wn +

q(1 + β)

1 + q(1 + µ)
wt

v??
= V + R� × n̂ − w +

1 + α

1 + µ
wn +

(1 + q)(1 + β)

1 + q(1 + µ)
wt.

(13)

Under the change of the integration variables (vn, vt) → (wn,wt), the gain term takes the form

G(V,�) = ρRD−1
∫

dn̂
∫

∞

0
dwnwn

∫
dwtf

(
V +

1 + α

1 + µ
wn +

q(1 + β)

1 + q(1 + µ)
wt, � −

(1 + β)(wt × n̂)

R[1 + q(1 + µ)]

)

×φT

(
V + R� × n̂ − w +

1 + α

1 + µ
wn +

(1 + q)(1 + β)

1 + q(1 + µ)
wt;m

)
(14)

where wn = |wn|, and the relation dvndvt = α|β|
D−1dwndwt has been taken into account. The use of the scaled relative

velocities (11) and (12) as integration variables will play a crucial role in exploring the possibility of finding an elastic
problem equivalent to the dissipative one.
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2.3. Energy dissipated in a binary collision

The collisional transformation laws (8) conserve the centre of mass velocity

VG =
MV + mv
M + m

=
µV + v
µ + 1

,

the tangential vector

Ct = vt − Vt + q(1 + µ)R�t × n̂, (15)

and also the normal component of the angular velocity �n. Moreover, the transformation laws for the relative velocity g
reduce to simple rescalings (6) and (7).

The evaluation of the collisional change in the total kinetic energy of the colliding pair

1Etot ≡ Etot(V?,�?, v?) − Etot(V,�, v)

where

Etot(V,�, v) = E(V,�) +
1
2
mv2

=
1
2
m
{
µV2

+
1
2
qµR2�2

+ v2
}

, (16)

can be thus conveniently performed by expressing Etot in terms of the invariant vectors VG, �n, Ct , and the relative velocity
g. Owing to the relations

v2
+ µV2

= (1 + µ)V2
G +

µ

1 + µ
(v − V)2 (17)

and

(v − V)2t + q(1 + µ)R2�2
t =

1
1 + q(1 + µ)

[
q(1 + µ)g2

t + C2
t

]
(18)

we find

Etot =
m

2
µ

(1 + µ)

{
(1 + µ)2

µ
V2

G +

[
g2
n + q(1 + µ)R2�2

n

]
+

1
1 + q(1 + µ)

[
q(1 + µ)g2

t + C2
t

]}
. (19)

The dissipation of the total energy Etot under binary collisions is due to the reduction of the length of vectors gn and gt

governed by the restitution coefficients α and β. In view of the invariance of vectors VG, �n, and Ct , one finds

1Etot = −
m

2
µ

(1 + µ)

{
(1 − α2)g2

n +
q(1 + µ)

1 + q(1 + µ)
(1 − β2)g2

t

}
. (20)

The total pair energy is conserved if α = 1 and β = ±1.

3. Solvable situations

3.1. Specific elastic cases

In the case of an elastic rough sphere α = β = 1, the relative velocity g is reversed as the result of the impact, and the
conservation of kinetic energy 1Etot = 0 implies the equilibrium solution of the Boltzmann equation involving the product
of two Gaussian distributions

f eq(V,�) = φT(V;M)φrot
T (�; I) (21)

satisfying the equipartition law. Here

φrot
T (�; I) =

(
I

2πkBT

)D/2
exp

(
−

I�2

2kBT

)
(22)

with I defined in Eq. (2). The Maxwell distribution φT(V;M) has been defined in Eq. (1).
The case of α = 1, β = −1 corresponds to an elastic smooth sphere: the rotational degrees of freedom are not influenced

by collisions. Consequently, any distribution of the form

φT(V;M)χ(�) (23)

represents a stationary state of a smooth sphere.
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3.2. Connection with an elastic problem for a rough sphere

Let us now consider the possibility of reducing the Boltzmann equation for a granular sphere (inelastic collisions) to an
equivalent case of a rough sphere elastically coupled to the thermostat. The main observation is that the gain term (14)
would take the elastic form for a rough sphere (α = 1 and β = 1) with a mass µ̃m

ρRD−1
∫

dn̂
∫

∞

0
dwnwn

∫
dwtf

(
V +

2
1 + µ̃

wn +
2q

1 + q(1 + µ̃)
wt,� −

2(wt × n̂)

R[1 + q(1 + µ̃)]

)

×φT

(
V + R� × n̂ − w +

2
1 + µ̃

wn +
2(1 + q)

1 + q(1 + µ̃)
wt;m

)
(24)

provided the equations

1 + α

1 + µ
=

2
1 + µ̃

and
1 + β

1 + q(1 + µ)
=

2
1 + q(1 + µ̃)

(25)

could be simultaneously satisfied. This simple fact is the basis for the further discussion. The corresponding formula for the
loss term

L(V,�) = ρRD−1
∫

dn̂
∫

+∞

0
dgngn

∫
dgtf (V,�)φT

(
V + R� × n̂ + g;m

)
(26)

is irrelevant from the point of view of the correspondence with an elastic case as it does not involve the collision law.
Before discussing the general case let us consider two simple situations where only one type of degrees of freedom is

present.
When β = −1, the sphere is smooth and only the translational velocity V is influenced by collisions. We are thus

interested in the stationary velocity distribution fst(V). For a comparison with a smooth sphere undergoing elastic collisions
with the point particles of the thermostat, we make the extra change of variable wt → −wt in the gain term (14) which
becomes, for a smooth sphere (β = −1),

G(V,�) = χ(�)ρRD−1
∫

dn̂
∫

∞

0
dwnwn

∫
dwtf

(
V +

1 + α

1 + µ
wn

)
φT

(
V + R� × n̂ + w −

(
2 −

1 + α

1 + µ

)
wn;m

)
. (27)

(The complete variable change is similar to that used in Ref. [2].) The gain term (27) would take the elastic form for a smooth
sphere (α = 1 and β = −1) with a mass µ̃m

χ(�)ρRD−1
∫

dn̂
∫

∞

0
dwnwn

∫
dwtf

(
V +

2
1 + µ̃

wn

)
φT

(
V + R� × n̂ + w −

2µ̃
1 + µ̃

wn;m
)

(28)

provided that (1+α)/(1+µ) = 2/(1+µ̃). Eventually, from the two conditions (25) only the first remains relevant, yielding
the mass ratio

µ̃ = µ +
1 − α

1 + α
(1 + µ). (29)

The stationary distribution of the mass centre velocity thus has the form of the Maxwell distribution at temperature T for
a particle with mass M̃ = µ̃m, or, equivalently, it is a Maxwell distribution for the sphere of mass M with an effective
temperature T∗ satisfying the relation M̃/T = M/T∗. From (29) we find

T∗ =
(1 + α)µ

1 − α + 2µ
T < T. (30)

Hence fst(V) = φT∗(V;M) which is the result derived in Ref. [6].
When the rough sphere has a clamped centre of mass, V = 0, only rotational degrees of freedom are involved. The

corresponding collision laws can be deduced from Eq. (8) by taking the limit µ → ∞ and q → 0, while keeping the product
qµ = I/mR2 fixed. Indeed, in this limit the moment of inertia is kept unchanged while the mass relevant to translational
motion tends to infinitywhich immobilizes the centre ofmass of the sphere.We are thus interested in the stationary velocity
distribution fst(�). The gain term (14) takes the form

G(�) = ρRD−1
∫

dn̂
∫

∞

0
dwnwn

∫
dwtf

(
� −

1 + β

R[1 + qµ]
wt × n̂

)
φT

(
R� × n̂ − w +

1 + β

1 + qµ
wt;m

)
. (31)

The gain term (31) would take the elastic form for a clamped rough sphere (V = 0, α = 1 and β = 1) with a mass µ̃m

ρRD−1
∫

dn̂
∫

∞

0
dwnwn

∫
dwt × f

(
� −

2
R[1 + qµ̃]

wt × n̂
)

φT

(
R� × n̂ − w +

2
1 + qµ̃

wt;m
)

(32)



F. Cornu, J. Piasecki / Physica A 387 (2008) 4856–4862 4861

provided that

1 + β

1 + qµ
=

2
1 + qµ̃

. (33)

Eventually in the above mentioned limit only the second of the two relations (25) remains relevant : it takes the limit form
(33) and yields the mass ratio

µ̃ =
1 − β + 2qµ
(1 + β)qµ

µ. (34)

Thus the stationary solution of the Boltzmann equation again has the form of aMaxwell distribution for the angular velocity
�

fst(�) =

(
qMR2

2πT0
∗∗

)D/2

exp
[
−

qMR2�2

2kBT0∗∗

]
(35)

with the effective temperature T 0
∗∗

given by

T 0
∗∗

=
(1 + β)qµ

1 − β + 2qµ
T < T. (36)

The results (35) and (36) have been previously derived in a different way in an unpublished work [8]. We notice that T 0
∗∗

is
independent of α, whereas the collisional laws are not.

In the general case of a granular rough sphere (−1 < β ≤ +1, 0 ≤ α < 1) with translational and rotational degrees
of freedom, both conditions (25) are to be satisfied simultaneously, implying that the relation between the restitution
coefficients is of the form

β = α +
1 − α2

1 + α + 2q(1 + µ)
. (37)

The relation can occur only for positive values of the restitution coefficient β that are larger than α. It is thus possible to
rewrite the gain term (14) in the form corresponding to elastic collisions provided Eq. (37) is satisfied. This fact is quite
remarkable, and, as we have mentioned in the introduction, rather unexpected. It would be interesting to understand why
the particular tuning (37) of the parameters governing the dissipation makes the Gaussian distribution appear.

We notice that the constraint (37) can be rewritten as T∗ = T∗∗ with T∗ given in (30) and T∗∗ defined by

T∗∗ =
(1 + β)qµ

(1 + q)(1 − β) + 2qµ
T. (38)

The notations have been chosen in order to take into account the property T 0
∗∗

= limq→0,qµ fixed T∗∗ (see (36)). When T∗∗ is
expressed in terms of T 0

∗∗
, the condition T∗ = T∗∗ takes the form

T∗ =

[
1 +

1 − β

µ(1 + β)

T 0
∗∗

T

]−1

T 0
∗∗

(39)

where each temperature T∗ or T 0
∗∗

depends only on one restitution coefficient, α or β, respectively. In other words, the
constraint (37) expresses the relation (39) between the effective temperatures found in the study of a sphere for which
collisions could influence either only translational or only rotational motion. Our analysis shows that the gain term in the
Boltzmann equation can be rewritten in the form corresponding to elastic collisions only when the dissipation related to
pure translational motion and the dissipation related to pure rotations would lead to effective temperatures linked by Eq.
(39). The stationary state of the granular rough sphere under the condition (37) complies thuswith the energy equipartition,
and reads

fst(V,�) =

(
M

2πTeff

)D/2
(

qMR2

2πTeff

)D/2

exp
[
−

1
kBTeff

(1
2
MV2

+
1
2
qMR2�2

)]
(40)

with Teff = T∗ = T∗∗.
Clearly, the equivalence with the elastic problem on curve (37) also holds for the Boltzmann equation in the presence of

an arbitrary inhomogeneous nonequilibrium state of the medium surrounding the test particle, since the structure of the
collision term in this general case remains unchanged. It seemsworthmentionning here that also the Enskog equation could
be reduced to its elastic form on curve (37), since it involves exactly the same collisional transformation of velocities as the
Boltzmann equation (see e.g. Ref. [2]).
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4. Analogue of the Fourier law in the solvable stationary state

In the stationary state determined by the relation (37) themean kinetic energy of the test particle results from the energy
equipartition between the rotational and translational degrees of freedom∫

dV
∫

d�fst(V,�)

[1
2
MV2

+
1
2
qMR2�2

]
= DkBTeff (41)

(D is the dimension of the position space). This stationary state is sustained by an energy flux from the heat bath to the test
particle that compensates the energy dissipation under binary collisions.

The collisional rate of the energy dissipation equals

JdissE =

∫
dV

∫
d�

∫
dv
∫

dn̂Θ
(
[V − v] · n̂

)
[V − v] · n̂ 1Etot fst(V,�)φT(v;m). (42)

Inserting here 1Etot calculated in Eq. (20) one finds

JdissE = −
D − 1
2

√
1 +

θeff

µ

{2(µ + θeff)

1 + µ
(1 − α2) +

(D − 1)[qµ + (1 + q)θeff ]

1 + q + qµ
(1 − β2)

}
× kBT

√
2πkBT

m
(43)

where θeff = Teff/T and Teff is defined in (40). Since α and β obey the constraint (37), the relations (30) and (38) allow one to
express α and β in terms of θeff . In particular

1 − α2
= 4

µ(1 + µ)

(µ + θeff)2
(1 − θeff)θeff (44)

and

1 − β2
= 4

qµ[1 + q + qµ]

[qµ + (1 + q)θeff ]2
(1 − θeff)θeff . (45)

Eventually one finds that the heat flux obeys the analogue of the Fourier law

JdissE = κ(T) (Teff − T) (46)
in which the discontinuous jump of the temperature plays the role of the temperature gradient present in the theory of
continuous media. The thermal conductivity for D = 2 or 3 reads

κ(T) = 2(D − 1)θeff

√
1 +

θeff

µ

( 2µ
µ + θeff

+
(D − 1)qµ

qµ + (1 + q)θeff

)
kB

√
2πkBT

m
(47)

where θeff is a dimensionless function of α and µ given by (30) or equivalently a function of β and qµ as given by (38).

5. Open questions

Outside the curve (37) in the (α,β) plane the possibility of deriving the analytic form of the stationary velocity
distribution remains an interesting open problem. The simplest generalization of solution (40) would be the product of
two Gaussian distributions with different effective temperatures for translational and rotational motions. However, on the
basis of detailed calculations, we conjecture that such a distribution is not possible and that the Gaussian form can appear
only on the derived curve (37). The complete proof of the conjecture is still to be constructed.

Since the translational velocityV is a vectorwhereas the angular velocity� is a pseudovector, the stationary state depends
in general on three scalar variables |V|, |�| and |V̂ · �̂|, where V̂ and �̂ are the unit vectors in the direction of V and �,
respectively.We conjecture that, when the constraint (37) is not respected, the stationary distribution depends on the angle
between V and � via the variable |V̂ · �̂| which introduces statistical dependence between the two velocities.
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