TD de Mécanique Quantique 1

Une approche qualitative de la stabilité de l'atome

On considère l'état-lié fondamental $\psi_0(x)$ d'énergie E_0 d'un puits de potentiel V(x) qui a un minimum $V_0 < 0$ et qui tend vers 0 à l'infini.

- 1. Rappeler l'équation de Schrödinger stationnaire pour $\psi_0(x)$.
- 2. En multipliant par $\psi_0^*(x)$ et en intégrant, exprimer les contributions de l'énergie cinétique et de l'énergie potentielle sous forme d'intégrales.
- 3. Pour l'énergie cinétique moyenne, montrer qu'elle se réécrit

$$\frac{\hbar^2}{2m} \int_{-\infty}^{+\infty} dx \left| \frac{d\psi_0}{dx} \right|^2 \,. \tag{1}$$

- 4. Justifier alors que $E_0 > V_0$. Comparer au cas classique.
- 5. Interpréter qualitativement ce fait à l'aide de la relation d'incertitude d'Heisenberg que vous rappellerez. On pourra montrer qu'elle entraîne une valeur minimum de l'énergie cinétique.
- 6. Dans le même esprit, expliquer qualitativement la stabilité de l'atome d'hydrogène, après avoir rappelé la forme du potentiel électrostatique liant le proton et l'électron. Avez-vous une idée de la raison pour laquelle un électron en orbite autour d'un proton n'est pas stable du point de vue de la mécanique classique?

Opérateur impulsion et transformée de Fourier

On discute dans cet exercice l'origine de la relation $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ qui explique comment l'opérateur impulsion \hat{p} agît sur une fonction d'onde dans sa représentation spatiale $\psi(x,t)$, dont on supposera qu'elle décroît rapidement à l'infini. Rappelons que l'opérateur position agît sur $\psi(x,t)$ en multipliant la fonction d'onde par x, soit $\hat{x}\psi(x,t) = x\psi(x,t)$. On fera aussi le lien avec la représentation en impulsion $\psi(p,t)$.

- 1. Rappeler l'équation de Schrödinger gouvernant $\psi(x,t)$ pour une particule libre de masse m.
- 2. Écrire l'équation de Schrödinger pour $\psi(p,t)$ et la résoudre pour la condition initiale $\psi(p,0)$ (s'aider du formulaire). En déduire la forme générale de la solution $\psi(x,t)$.

3. On définit l'opérateur impulsion par

$$\langle \hat{p} \rangle (t) = \lim_{dt \to 0} m \frac{\langle \hat{x} \rangle (t + dt) - \langle \hat{x} \rangle (t)}{dt}$$
 (2)

afin que sa valeur moyenne redonne le résultat de la vitesse moyenne de la particule comme on s'y attend.

- a) donner les expressions de $\langle \hat{x} \rangle (t + dt)$ et de $\langle \hat{x} \rangle (t)$ sous forme d'intégrales.
- b) exprimer $\psi(x, t + dt)$ en fonction de $\psi(x, t)$ et de $\frac{\partial^2 \psi(x)}{\partial x^2}$
- c) montrer, en utilisant des intégrations par partie, que l'on peut écrire

$$\langle \hat{p} \rangle (t) = \int_{-\infty}^{+\infty} dx \, \psi^*(x, t) \left(-i\hbar \frac{\partial}{\partial x} \right) \psi(x, t) \tag{3}$$

ce qui justifie la définition donnée au début de l'énoncé.

4. Montrer à partir de la relation ci-dessus et du formulaire que l'on a

$$\langle \hat{p} \rangle(t) = \int_{-\infty}^{+\infty} dp \, p |\psi(p, t)|^2 \,. \tag{4}$$

5. En regardant son action sur une fonction d'onde quelconque, montrer que l'on a l'égalité (l'opérateur identité est sous-entendu dans le membre de droite) :

$$[\hat{x}, \hat{p}] \equiv \hat{x}\hat{p} - \hat{p}\hat{x} = i\hbar . \tag{5}$$

On parle de relation de commutation.