TD de Mécanique Quantique 7

On utilisera les formules et les notations vues en cours et dans les annexes. Formulaire : $\int_0^\infty t^s e^{-t} dt = s!$

La danse de l'électron autour du proton

Dans le problème d'une particule dans un champ de force central, invariant par rotation, on a montré que la fonction d'onde se décompose sous la forme suivante, dans la représentation de position selon les coordonnées sphériques (r, θ, φ) :

$$\psi_{n,\ell,m}(r,\theta,\varphi) = R_{n,\ell}(r)Y_{\ell}^{m}(\theta,\varphi) , \qquad (1)$$

avec $R_{n,\ell}(r)$ la fonction d'onde radiale associée aux nombres quantiques n et ℓ , et $Y_{\ell}^{m}(\theta,\varphi)$ l'harmonique sphérique associée aux nombres quantiques ℓ et m.

1. Quelles sont les valeurs possibles de ℓ et m? À quelles quantités physiques sont associés ces nombres quantiques?

Densité de probabilité radiale

- 1. Quelle est la probabilité de trouver la particule dans l'état $\psi_{n,\ell,m}$ au point \vec{r} à $d^3\vec{r}$ près?
- 2. En déduire la probabilité dP(r) que la particule se trouve dans le volume contenu entre deux sphères de rayon r et r + dr. Déterminer $p_{n,\ell}(r) = \frac{dP}{dr}$ la densité de probabilité radiale associée, en fonction de $R_{n,\ell}(r)$ et r.

On se place à partir de maintenant dans le cas de l'atome d'Hydrogène.

Dans le fondamental : on s'intéresse au cas du niveau fondamental.

- 1. Tracer l'allure de $p_{1,0}(r)$ pour l'état $n=1, \ell=0$ (orbitale s).
- 2. Quelle est la distance r^* la plus probable fonction de a_B ?
- 3. Que vaut la valeur moyenne $\langle r \rangle$ en fonction de a_B ?

Théorème du Viriel

Soit un Hamiltonien de la forme $\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + V(\hat{\vec{r}}).$

- 1. Calculez le commutateur $[\hat{H}, \hat{x}\hat{p}_x]$.
- 2. En déduire que $[\hat{H}, \hat{\vec{r}} \cdot \hat{\vec{p}}] = i\hbar \left[-\frac{\hat{\vec{p}}^2}{m} + \hat{\vec{r}} \cdot \vec{\nabla} V(\hat{\vec{r}}) \right]$.

- 3. Dans le cas d'un potentiel central, justifiez que l'on a alors la relation $2\langle \hat{T} \rangle = \left\langle \hat{r} \frac{\partial V}{\partial \hat{r}} \right\rangle$ dans laquelle \hat{T} représente l'opérateur énergie cinétique, \hat{r} l'opérateur de distance radiale, et la moyenne est prise dans un état propre de \hat{H} .
- 4. Pour l'atome d'Hydrogène, en déduire que

$$\left| \left\langle \frac{1}{\hat{r}} \right\rangle = \frac{1}{n^2 a_B} \quad \text{et} \quad \langle \hat{\vec{p}}^2 \rangle = \frac{\hbar^2}{n^2 a_B^2} \right|$$
(2)

Distance moyenne dans un état quelconque

On rappelle l'équation différentielle vue en cours pour la fonction réelle $u_{n,\ell}(r) = rR_{n,\ell}(r)$ et exprimée en fonction de la variable $\rho = r/a_B$

$$\left[-\frac{d^2}{d\rho^2} + \frac{\ell(\ell+1)}{\rho^2} - \frac{2}{\rho} \right] u_{n,\ell}(\rho) = -\frac{1}{n^2} u_{n,\ell}(\rho) \quad \text{avec} \quad \int_0^{+\infty} u_{n,\ell}^2(\rho) d\rho = 1 \ . \tag{3}$$

On rappelle également que $u_{n,\ell}(0)=0$ et que $u_{n,\ell}(\rho)$ décroît exponentiellement à l'infini.

- 1. Quelle est la relation entre $u_{n,\ell}(r)$ et $u_{n,\ell}(\rho)$? Exprimer $\langle r \rangle$ en fonction de $\langle \rho \rangle$ et a_B puis exprimer $\langle \rho \rangle$ en fonction d'une intégrale sur ρ faisant apparaître $u_{n,\ell}(\rho)$.
- 2. En multipliant l'équation (3) par $\rho u_{n,\ell}(\rho)$, en intégrant sur ρ , et en utilisant (2), montrer que

$$\frac{\langle \rho \rangle}{n^2} + \frac{\ell(\ell+1)}{n^2} - 2 = \int_0^\infty \rho \, u_{n,\ell}(\rho) u_{n,\ell}''(\rho) d\rho \,. \tag{4}$$

3. En multipliant l'équation (3) par $\rho^2 u'_{n,\ell}(\rho)$ sur ρ , montrer que

$$\frac{\langle \rho \rangle}{n^2} - 1 = -\int_0^\infty \rho^2 u'_{n,\ell}(\rho) u''_{n,\ell}(\rho) d\rho = -\int_0^\infty \rho u_{n,\ell}(\rho) u''_{n,\ell}(\rho) d\rho \tag{5}$$

Indication : utiliser les intégrations par parties.

- 4. En déduire le résultat $\langle r \rangle = \frac{a_B}{2} [3n^2 \ell(\ell+1)]$.
- 5. Par une méthode similaire, on montre que $\sqrt{\langle r^2 \rangle} = \frac{a_B^2}{2} n^2 [5n^2 3\ell(\ell+1) + 1]$. En déduire ce que vaut le comportement du rapport $\Delta r/\langle r \rangle$. Dans quelles conditions a-t-on un orbite proche d'un orbite classique?

Les orbitales atomiques en chimie

On a introduit les harmoniques sphériques pour décrire la dépendance angulaire des fonctions propres.

- 1. La densité de probabilité de trouver les angles (θ, φ) dépend-elle de φ pour une harmonique sphérique? Tracer la dépendance en θ pour les cas $\ell = 0, 1$.
- 2. Rappeler l'expression des coordonnées (x, y, z) en coordonnées sphériques. Exprimer-les ensuite en fonction des harmoniques sphériques $Y_1^m(\theta, \varphi)$.
- 3. Représenter les fonctions réelles ainsi obtenues pour r fixé, en précisant leur signe. À quoi correspondent-elles?
- 4. Sont-elles fonctions propres de l'Hamiltonien? Ces fonctions sont-elles état propre de $\hat{\vec{L}}^2$, de \hat{H} ou de \hat{L}_z ? Calculer $\langle \hat{L}_z \rangle$ dans ces orbitales.
- 5. Rapidement : deviner l'origine de la nomenclature d_{z^2} , d_{xy} , d_{xz} , d_{yz} et $d_{x^2-y^2}$ pour les orbitales d en chimie à partir de l'expression des harmoniques sphériques pour $\ell=2$.