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Abstract
The goal of this study is to determine the structure of Ure2p yeast prion, a mis-
folded form of Ure2p protein responsible for a stress-triggered phenotype in yeast,
after its self assembly into fibrous aggregates. Using biological data which pro-
vides in particular information on residue interactions, this work aims at finding the
conformation of the prion and compare it with the one of a native protein, which
doesn’t form fibrils, so as to investigate the mechanisms leading to pathological
fiber formation. As self assembly happens as a way to minimize interaction energy
between elements, this work replicates the self assembly principle and develops
a conjugate gradient method based algorithm which computes and minimizes the
energy of one protein inside of a fiber. The minimized parameters correspond to
the smallest energetic cost and could therefore be biologically relevent and may
characterize the real fibers shapes. This report describes the prion monomer
conformation as well as the prion dimer conformation and the different types of
fibers obtained. Then the deformation energy associated to different fiber confor-
mations is computed, which highlights the role of geometrical frustration in fiber
formation.
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Introduction
Self assembly is the process by which elements gather

so as to minimize their overall energy. When the as-
sembling elements are ill-fitting, the energy minimiza-
tion may require them to undergo geometrical frustra-
tion: the assembling elements are deformed in the pro-
cess. Self assembly is extremely useful in biology, as
many supra-molecular structures are formed in this fash-
ion, such as microtubules or actin filaments for instance.
However, frustrated self assembly can also be detrimen-
tal for living organisms. Actually, some ill-fitting pro-
teins can gather and form deleterious fibers involved in
neurodegenerative diseases like Alzheimer’s and Parkin-
son’s, or in prion diseases. This study focusses on the
Ure2p protein which is a yeast prion known to self as-
semble into fibers, but whose deformed configuration
once inside a fiber has yet to be fully characterized.
There are several hypothesis regarding Ure2p self assem-
bly. In any case the native or non prion protein doesn’t
assemble into fibrils, only the prion is assembly compe-
tent. Therefore the aim of this work is first to deter-
mine the prion conformation. Once in its prion form,
the protein could either form fibrils directly, from prion
monomers, or first form prion dimers which would then
assemble into a fiber. Besides, two different kinds of
fibers have been observed depending on the tempera-
ture, with one of them being an amyloid fiber with a core
of cross beta sheets. The hypothesis proposed by this
work is that depending on the temperature, the protein
can fold into two distinct assembly competent forms,
leading to the formation of two different kinds of fibrous
aggregates. This report proposes a conjugate gradient
method based algorithm which uses crosslinking data to
define intra-molecular and inter-molecular interactions
between residues and minimizes the energy associated
to these interactions for a protein inside a fiber. Knowing
that all proteins in a fiber have the same neighbors, the
goal is to test possible fiber configurations respecting this
criteria. Through this process we hope to determine pos-
sible deformed protein configurations after fibrous self
assembly, and help investigate the origin of the forma-
tion of protein fibers. In the following report, Section 1
presents the biological data available and how it is phys-
ically modelled as well as the parametrization used to
test all relevant fiber conformations, and describes the
algorithm used. Section 2 focusses on the description
of the assembly competent proteins, dimers and fibers
obtained, and the caracterization of the different fibres.
Lastly Section 3 highlights the role of geometrical frus-
tration in fiber formation, and classifies the fibers ob-
tained into two categories : amyloid and non amyloid
fibers.

1 Methods
This sections aims at describing the numerical mod-

elling of the self assembly process of a biological prion
through first describing the biological data available and
how it can be integrated in a model in section 1.1, then
highlighting the interest of fiber parameterization in sec-

tion 1.2, and finally describing the algorithmic process
set up in section 1.3

1.1 Modelling the biological data
In order to make use of the biological data at hand in a
physical model, it is necessary to first describe the phys-
ical relevance of this data in 1.1.1 and then simplify it to
create a model of protein aggregation in 1.1.2.

1.1.1 Biological data
The following paragraphs present the data gath-

ered by Dr. Ronald Melki’s team at the Laboratoire
d’enzymologie et de biochimie structurale de Gif-sur-
Yvette, which allows for a thorough description of the
protein and gives information on the protein conforma-
tion inside a fiber.

Figure 1. Ure2p C-terminal dimer visualized with Py-
mol.

Prions are proteins folded into a transmissible patho-
logical conformation which leads to them self assem-
bling and forming deleterious aggregates, often disrupt-
ing the affected organism. Ure2p is a yeast prion that
propagates a stress-triggered phenotype in baker’s yeast.
In its native conformation Ure2p is involved in a path-
way regulating he use of nitrogen sources, which is lost
in cells containing the prion form. Ure2p is composed of
2 distinct domains [8]:

• The N-terminal domain, ranging from amino acid 1
to 95 which is poorly structured and flexible

• T C-terminal domain, ranging from amino acid 96
to 354, which contains many alpha helices and is
much more rigid. (fig 1)

The terms N-terminal and C-terminal refer to both ends
of a protein. Since to form a peptide the amine group of
an amino acid binds to the carboxylic group of the next
one, at one end an amino group remains unbound (N-
terminal) and at the other end it is a carboxylic group
(C-terminal). The amino acids are the numbered start-
ing from the N-terminus. The structure of the rigid C-
terminal domain has been solved and is available for vi-
sualization thanks to a data base which especially con-
tains all the coordinates of the atoms forming the protein
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in Å, and which residue each atom belongs to [2]. This
information is accessible through the Pymol software [6]
The native or non-prion protein is active and soluble and
forms dimers through the interaction of 2 C-terminal do-
mains. The N terminal domain of Ure2p is known as
the prion forming domain because it is required in the
change of conformation that leads to the prion struc-
ture [5]. When such configuration change has happened
the protein is said to be assembly competent. There is lit-
tle information about this conformational change, other
than that the N-terminal domain is believed to wrap
around the C-terminal domain. Experiments have also
shown that there is a crystalline structure inside some
fibers which is consistent with the conservation of the
integrity of the C-terminal domain. [1]. In addition,
native Ure2p forms dimers that conserve the crystalline
structure of the C-terminal of monomeric Ure2p. There-
fore two hypothesis for fiber formation are explored in
this work: fibers could either be formed through self as-
sembly of monomeric Ure2p, or through self assembly
of dimeric Ure2p (figure 2). The following paragraph
describes experimental data giving insights on the for-
mation of such dimers and fibers.

Figure 2. Illustration of the two fiber formation pro-
cesses considered.

Several experiments have been carried on by the team
of Dr. Ronald Melki so as to get information on Ure2p’s
structure inside a fiber. Cross linking and oxidation ex-
periments provide data on the distance between residues
in the fiber which is summarized in figure 3. Besides,
RMN experiments show that all the dimers in the fiber
are in the same environment, meaning that they all have
the same interactions with the same neighbors. See ap-
pendix for more details on the experiments.

1.1.2 Modelling
This section describes the spring and spheres model

chosen to represent the protein aggregates. In this
model each residue is represented by a hard sphere of
fixed radius. Complex physical interactions fix the dis-
tance between residues in reality, and these are modelled
as an harmonic deformation cost.

As developed before, the protein is constituted of two
domains which each have a different conformation and
rigidity characteristics and require different modelling

Figure 3. Crosslinking distances data. The rows and
columns refer to the residues that have been marked
and each case is colored depending on how the cou-
ple of residues associated interact.

strategies. However in both cases only the residues in-
volved in the crosslinking and oxidation experiments are
modelled, as they are the only ones for which distance
constraints can be specified. The N-terminal domain
which is highly flexible is modelled as a gaussian chain
of amino acids, linked by spring core interactions which
rigidity is 1

K N .m−1, with K the number of amino acids
in the chain. Per this high flexibility, the structure of
the N-terminal has not been solved and there is little
information on the lengths between its residues, which
have to be approximated. Here the relaxed length be-
tween amino acids is chosen as 1 Å which is the length
of a covalent bond. As the coordinates of the residues
of the C-terminal are well documented, they are ex-
tracted from the biological data base to build the model.
These residues are also linked through spring core inter-
actions which spring constant is set to 10 N .m−1 since
the C-terminal is more rigid than the N-terminal, but
no further order of magnitude is known. The number
of interactions between residues un the C-terminal is
i = 6∗(r−1)−3∗r with r the number of residues, which
leads to an isostatic structure : a structure for which all
the degrees of freedom are constrained only once, see
figure 4 .

Figure 4. Model native protein.
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Figure 5. Description of the folding process of a parallelogrammatic lattice described by vectors−→a and
−→
b onto

a cylinder, with the folding vector −→p . First panel represents the tilling on a plane before folding. Panels two
and three represent two views of the tilled cylinder after the folding. In panel three the protein is represented
by its residues with residue zero on the surface of the cylinder.

Experiments provide information on the distances be-
tween residues in the prion’s configuration. These dis-
tance constraints are modelled as non physical inter-
residue interactions, which only enforce the distance
constraints. The crosslinking data is modelled as an at-
tractive interaction when the residues are known to be
closer than a given threshold and as a repulsive inter-
action when they are known to be further away than a
given threshold. The attractive interactions correspond
to a low energetic cost when the interacting residues are
at a distance bellow a threshold da

0 , and a harmonic en-
ergy barrier when the distance is above the threshold.
Conversely for repulsive interactions the energy is high
when the residues are closer than the threshold. This
threshold corresponds to the size of the crosslinker used
in the experiments (see appendix 3.1.2). All in all the
three kinds of interactions involved are defined as:

Espring =
1
2
∗ kspring ∗ (d − ds

0)
2 (1)

Eat t ra =

�

1
2 ∗ kat t ra ∗ (d − da

0 )
2 if d > da

0
0 otherwise

(2)

Erep =

�

1
2 ∗ krep ∗ (d − d r

0)
2 if d < d r

0
0 otherwise

(3)

where ds
0, da

0 , d r
0 are the cutoff distances for the spring,

attractive and repulsive interactions respectively, and d
is the distance between the two interacting residues. Ex-
perimental data indicates which residues are in inter-
action, however there is no way to know which dimer
or monomer two interacting residues belong to. There-
fore all possible interaction partners need to be tested
by the algorithm. Lastly, the steric repulsion between
the C-terminal parts of two proteins are modelled as re-
pulsive cut-off interactions between each residue of the
C-terminal of protein zero and the residues of the C-

terminal of its interaction partner. The cut-off distance
is chosen as twice the radius of a spherical residue :
Este = Erep with d r

0 = 2rr esidue. This ensures that the
residues cannot interpenetrate.

1.2 Fiber parameterization
This section describes analytically the tilling method

used in the minimization algorithm to parameterize
all fiber configurations respecting the identical environ-
ment biological constraint.

Considering a general form for a fiber boils down to
tilling a cylinder. To obtain such a tilled cylinder, let us
consider a tilled plane which will be folded onto itself to
obtain a cylinder. Here this tilling and folding process
must account for the biological constraint of all proteins
having the same neighbor configuration. The first step is
to identify which tilled planes respect the constraint, and
the see in which cases the constraint holds when folding
the plane. In mathematics, a plane covered by the regu-
lar repetition of a motive is called a wallpaper. There are
seventeen wallpaper types depending on the symmetries
conserved, which form the wall paper group. Only two
of these satisfy the identical neighbors constraint in the
case of the cylinder (see appendix and figure 6) :

• The p1 wallpaper which consists in a regular paral-
lelogrammatic lattice

• The p2 wallpaper which is also based on a sim-
ple parallelogrammatic lattice whose motive is
repeated with a 180 degrees rotation symmetry
around each node.

Such wall papers are described by lattice vectors de-

fined as
−→
b defined as −→a = a1 ∗

−→x and
−→
b = b1 ∗−→x + b2 ∗

−→y in ??. The folding process can be charac-
terized by a vector −→p called folding vector which links
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Figure 6. p1 and p2 wallpaper groups on rectangular
lattices and with an arrow as a base motive.

two nodes that coincide once the plane is folded. The
folding vector is a linear combination of the lattice vec-

tors: −→p = m ∗ −→a + n ∗
−→
b , with m and n integers. THe

folding vextor fixes the radius of the tilled cylinder to
R = 1

2π

p

(ma1 + nb1)2 + (nb2)2. Once the cylinder is
defined, fiber parameterization provides a way to gen-
erate the position of any residue of any protein in the
fiber from a minimal set of parameters. The choice of a
set of linearly independent parameters is crucial in the
following when it comes to the method of conjugate gra-
dient. The planar tilling is described by the coordinates
of the lattice vectors, and the coordinated of one protein
around the tiling’s node, which defines the motive. The
protein used to define the motive is called protein zero
in the following. However, this set of parameters is not
linearly independent in the case of the tilled cylinder, as
the fixed radius adds a constraint: the center of mass of
the protein must be on the surface of the cylinder. This
constraint is equivalent to fixing the position of one of
the residues of the protein to (R, 0, 0). Let us fix the posi-
tion of the first residue of protein zero, residue zero (see
figure 5) so that (x1, y1, z1, ...xn−1, yn−1, zn−1, a1, b1, b2)
is the set of linearly independent parameters describing
the problem from now on. Considering protein ij as the

protein at a distance i+−→a + j∗
−→
b from protein zero, the

coordinates of any residue in this protein is generated
thanks to a rotation of angle φ i j around the cylinder’s
axis and a translation of ei j along the cylinder’s axis, with
φ i j and ei j determined as follows : if (−→er ,−→eθ ,−→ez ) is the
referential of the cylinder, then −→er vector is the one com-
ming out of the unfolded plane, the −→eθ vector is in the
direction of the folding vector −→p and the −→ez vector is
orthogonal to −→p in the plane. Is it necessary to project

the −→a and
−→
b vectors in the (−→er ,−→eθ ,−→ex ) base. The cal-

culations give out :

−→eθ =
(na1 +mb1)

−→x +mb2
−→y

p

(na1 +mb1)2 + (mb2)2

−→ez =
−mb2

−→x + (na1 +mb1)
−→y

p

(na1 +mb1)2 + (mb2)2

and therefore :

φ i j = 2π
(na1 +mb1)(ia1 + j b1) + jmb2

2

(na1 +mb1)2 + (mb2)2
(4)

ei j =
b2a1( jn− im)
p

(na1 +mb1)2 + (mb2)2
(5)

The relations 4 to 5 are used in the energy derivation
(see appendix 3.5) and to generate the coordinates of
any protein in the final conformation knowing only the
minimization parameters, and therefore represent fibers
or dimers.

1.3 Description of the algorithm
Now that the parameterization of the problem is com-

plete this section focusses on its numerical implementa-
tion.

The algorithm implemented minimizes the total en-
ergy of protein zero. This energy encompasses the spring
interaction energy characterizing the deformability of
a protein, attractive or repulsive interactions between
residues of the same protein or in different proteins and
steric repulsion between C-terminal residues: Etotal =
Espring+Eat t ra+Erep+Este (see equations 1 to 3)In order
to increase the convergence speed of the conjugate gra-
dient method it is necessary to provide a function com-
puting the derivative of the energy with respect to the
minimization parameters. These derivatives are com-
puted in the appendix.

The analytical parameterization highlights all the pa-
rameters that must be explored by the algorithm so as to
test all the possible fiber configurations and hope to get
a global minimum of the energy. They can be divided in
two groups :

• The discrete parameters, which correspond to the
symmetry group p1 or p2, the folding vector coor-
dinates m and n and the so called interaction part-
ners for each interaction involving a residue of pro-
tein zero and one in another protein. These take a
finite number of values and are not to be optimized
by the algorithm, but rather the minimization has
to be run for each set of these parameters.

• The continuous parameters, which
are the linearly independent
(x1, y1, z1, ...xn−1, yn−1, zn−1, a1, b1, b2) and which
are optimized by the conjugate gradient algorithm.

This fixes the codes architecture as follows:

• Definition of all the interactions between residues
as modelled from the biological data.

• Initialization of the continuous parameters: propo-
sition of a set of coordinates for the tilling vectors−→a
and
−→
b , and initialization of the coordinates of the

model protein zero as developped in section 1.1.2.

• For a given symmetry group, a given set of coordi-
nates for the folding vector, and a given set of in-
teraction partners, optimization of the continuous
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parameters in a method of conjugate gradient fash-
ion through the ”scip y.optimize. f mincg” python
function. Store the final energy and the correspond-
ing minimized parameters, as well as the discrete
parameters.

• Repeat the last step for all the combinations of dis-
crete parameters.

• Search for the minimum energy across all sets of
discrete parameters. The corresponding parame-
ters describe the most likely fiber configuration and
deformed protein configuration.

In the end the minimization step will be carried out us-
ing the ”scip y.optimize. f mincg” python function which
uses a non linear conjugate gradient algorithm, see sup-
plementary materials and [7]. Its inputs are a one
dimensional array containing the function to be mini-
mized, the parameters to be optimized, and the deriva-
tive of the function to be minimized. It returns the mini-
mized parameters and the minimum value found for the
function. However, as the implementation of the gradi-
ent function necessary to use the Method of conjugate
gradient is still a work in progress, the following results
are obtained using a minimization method which doesn’t
require the analytical computation of the gradient func-
tion: the Nelder Mead method (see appendix), imple-
mented in the ”scip y.optimize.minimize” function of
python.

2 Results
The approach described above gives out numerical re-

sults presented in this section. In order to observe fiber
formation, the native protein must first become assem-
bly competent (see 2.1) and then either form fibers di-
rectly or form dimers first (seen 2.2 and 2.3). The same
process is followed in the algorithm, and several fiber
configurations are tested so as to explore the role of ge-
ometrical frustration in fiber formation in section 2.4.
The simulations are still running and the results here are
a preliminary sample of fiber configurations obtained.

2.1 Assembly competent protein
Let us first describe the configuration of a protein in-
side a dimer or a fiber of monomers. The biological data
described in section 1.1.1 specifies both intra and inter-
molecular distances between residues. Depending on if
the fiber is formed by monomeric or dimeric Ure2p, this
data doesn’t have the same interpretation.

• If the fiber is formed of monomeric Ure2p, then
the intra-molecular distances designate distances
between the residues of the same monomer and
inter-molecular distances correspond to distances
between the residues of protein zero and the other
marked residue in protein zero’s interaction part-
ner.

• If the fiber is formed of dimeric Ure2p, then the
intra-molecular distances correspond to distances

between one residue of the first monomer in the
dimer, and another residue in the second monomer
of the dimer. Inter-molecular distances correspond
to distances between one residue in a dimer, and
one residue in another dimer. This adds one level
of complexity because it is not possible to biolog-
ically distinguish the monomers of a dimer, and
therefore the residues of monomer one could be
interacting with the ones of either monomer one
or two in a different dimer, and the same goes for
residues of monomer two. The results presented in
the following are obtained with first monomers and
secons monomers interacting with first and second
monomers respectively, but the other possibilities
must be taken into acount as well.

Figure 7. Three different assembly competent pro-
teins: prion forms of Ure2p inside a fiber. In light
green : N-terminal residues, in dark green : C-
terminal residues. The numbering corresponds to
the one in figure 8

Figures 7 and 9 respectively represent monomers in-
side the fibers of figure 8 and the dimers formed using
the interactions described above. These figures show
that in all the cases presented the crystalline structure
of the C-terminal of Ure2p is deformed upon dimer or
fiber formation, although the pyramid like shape is con-
served. The flexible N-terminal is deformed and wraps
around the C-terminal in different fashions. The quan-
titative deformation of each part of the protein is dis-
cussed in section 2.4, but this qualitative observation is
consistent with the biological expectation to find crys-
talline structures in the fibers [1]. Furthermore, assem-
bly competent protein a) differs from the others in that
the N-terminal folds in a different direction with respect
to the pyramid like C-terminal axis.

2.2 Formation of dimers
This section then focusses on the formation of dimers

of assembly competent proteins

The dimer formed with the precursor Ure2p is pre-
sented above 9. The comparison with figure 1 in fig-
ure 9 highlights the role of the N-terminal part of the
protein in dimer and fiber formation, as the full protein
dimer has a different conformation than the C-terminal
dimer. This dimer is then used as a tiling motive (in-
stead of a monomer) on order to form fibers of dimeric
Ure2p. However once again the pyramid-like form of
the C-terminal is conserved in the assembly competent
monomer and in the dimer.
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Figure 8. 6 different types of fibers obtained through simulation, each see under three different angles. Each
fiber is obtained by optimizing the parameters (x1, y1, z1, ...xn−1, yn−1, zn−1, a1, b1, b2) for different folding vector
coordinates m and n, for the wall paper group p1 and allowing either the closest or the two closest proteins to
be interaction partners. In the first panel fibers a),b) and c) are three fibers formed from Ure2p monomers.
Specifically, for fiber a) m= −1 or 1, n= 0, interactions allowed with the closest neighbor. For fiber b) m= −1
or 1, n= 0, interactions allowed with the two closest neighbors. For fiber c) m= −1 and n= −1 or m= 1 and
n = 1, interactions allowed with the closest neighbor. In the second panel fibers d),e) and f) are three fibers
formed from Ure2p dimers. Specifically, for fiber a) m = −1 or 1, n = 0, interactions allowed with the closest
neighbor. For fiber b) m = −1 or 1, n = 0, interactions allowed with the two closest neighbors. For fiber c)
m= −1 and n= −1 or m= 1 and n= 1, interactions allowed with the closest neighbor.

Figure 9. Characteristics of a dimer of Ure2p pri-
ons. In light green and light purple : N-terminal
residues of protein 1 and 2 respectively, In dark green
and dark purple : C-terminal residues of protein 1
and 2 respectively. In the last panel the shape of
the C-terminal of a native protein has been extracted
thanks to the Pymol software, and superimposed to
the C-terminals of the model dimer.

2.3 Formation of fibers
The aim of this section is to describe different types of

fibers that can be obtained from monomeric or dimeric
Ure2p.

Let us first focus on monomeric Ure2p fibers. Figure
8 represents four fibers obtained. These fibers can be
divided into two categories. In fiber a, the N-terminal
residues of a protein are aligned in the centre of the fiber
and are organized in lines perpendicular to the axis of
the fiber. This structure is a reminder of the beta sheet

structures that are present in amyloid fibers. The amy-
loid fiber form is consistent with the litterature [3]. The
existence of several forms of proteins is consistent as
well since other forms of proteins have been observed
[3]. When it comes to fibers formed with prion dimers,
two categories of fibers seem to emerge as well with fiber
d) of figure 8 being structured differently than the rest.
In this fiber the N-terminal seem to align like in fiber
a), however this time the beta sheet like chains formed
by the N-terminal residue are oriented along the fiber’s
axis which is not consistent with an amyloid form. In
addition, fibers e) and f), along with fiber c) have a star
shaped structure, with N-terminal residues organized in
several directions.

Figure 10 shows the total energy of a molecule (pro-
tein or dimer) inside a (monomeric or dimeric respec-
tively) fiber. This final energy takes into account the en-
ergies linked to unsatisfied distance constraints or defor-
mation of the N and C terminals. Overall the final en-
ergies observed are lower for proteins in dimeric fibers
than for proteins in the monomeric fibers case, even
when adding the deformation needed to get a dimer
from two monomers. This seems to indicate that form-
ing dimers and then fibers has a lower energetic cost,
but further data must be gathered to validate this hy-
pothesis. No clear dependency of the total energy of a
protein inside a fiber on the fiber configuration (m, n and
interaction partners dependency) arises from this data,
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however further simulations must be caried on.

2.4 Geometrical frustration
This section highlights the role of geometrical frus-
tration in the formation of Ure2p fibers.

Figure 10. Energy deformation for the C and N pro-
tein terminals as a function of the post minimisa-
tion energy of the protein in its fiber for fibers of
monomers.

Geometrical frustration happens in a constrained sys-
tem when it is more energetically beneficial for the el-
ements of the system to deform than not to respect the
constraints [4]. In the case of this study, if the protein is
always forced to deform to accommodate the constraints
that come with being in a fiber, then geometrical frus-
tration plays a role in fiber formation. Here geometri-
cal frustration is quantified by the deformation energy,
which is the energy necessary to deform the springs link-
ing the residues of the protein. The deformation energy
depends on the spring stiffness and is different for the
N-terminal and the C-terminal parts of Ure2p. Figure
10 represents the deformation energy of the C and N-
terminals of Ure2p for the six configurations presented
in figure 8. In all cases the deformation energy of the C-
terminal part is higher than the one for the N-terminal
part which is highly flexible, emphasizing the role of ge-
ometrical frustration as well.

Figure 11. Total deformation of the C-terminal as
a function of its rigidity for a given set of discrete
paramters and a constant rigidity of the N-terminal.

Figure 11 is obtained by optimizing the energy of a
protein for a given fiber conformation, with a constant
N-terminal spring constant but for different C-terminal

spring constants, and computing for each simulation the
total deformation of the C-terminal, meaning the sum
of the differences in the distances between residues in-
volved in core interactions before and after optimization.
This deformation converges toward a non-zero value,
showing that geometrical frustration of the C-terminal
happens during fiber formation even for high rigidities.
The data is also fitted with an exponential function. The
exponent obtained is smaller than one in absolute value,
which indicates that the deformation of the C-terminal
decreases slowly with its rigidity.

Conclusions
This work presents a method numerically replicating

self assembly of Ure2p protein. The algorithm developed
is a general one and can be used to test all fiber con-
formations respecting the identical surroundings con-
straints for the self assembling elements. It can be used
on any protein provided enough data is gathered to im-
pose distance constraints on the residues. When applied
to the Ure2p protein, this method helps investigate the
formation of fibers of dimeric or monomeric Ure2p.

The optimization method used to minimize the energy
of a protein inside a fiber is a Nelder Mead method for
now and will eventually be a conjugate gradient method.
In any case, the optimization could converge toward a
local minimum for the energy rather than the global one.
Given the energy dependence in both the coordinates of
protein zero and the tilling parameters, it is not possible
to compute the complete energy landscape and ensure
that the global minimum is reached. However, each sim-
ulation is run three times with different initial parame-
ters (a1, b1, b2) each time. In all cases tested all three
simulations reach the same minimum which is consis-
tent with it being a global minimum.

The results presented above are coherent with the bi-
ological literature [3] since they hint toward the forma-
tion of amyloid-like fibers to be energetically beneficial
for the Ure2p prion, in the case of monomer fibers. Be-
sides, simulations also show the existence of different
possible kinds of fibers as there are small final energy
differences between fibers in both the monomeric and
dimeric case. Simulations also seem to indicate that pro-
teins in dimeric fibers have a lower total energy and need
to deform less to respect the constraints imposed by the
biological data. Finally, these results highlight the im-
portance of geometrical frustration in the formation of
such fibers, since in all cases geometrical deformation of
the rigid C-terminal is observed and since that some de-
formation happens even for highly rigid structures. The
geometrical frustration of the C-terminal observed may
seem inconsistent with the biological data stating that
there are crystalline forms of the protein in fibers [1].
However, the data doesn’t specifiy that the crystalline
form observed in fibers is the exact same as the one
observed in native protein, and it is possible that the
C-terminal, although deformed conserves a crystalline
conformation as the pyramid-like shape seems to be con-
served.
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The upcoming work will consist on improving the al-
gorithm’s performances by finishing implementing the
gradient function necessary to use a conjugate gradi-
ent method. Besides, only few fiber conformations have
been tested yet and it is necessary to carry on more simu-
lations to understand better the energetics of Ure2p fiber
formation.
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3 Appendix
3.1 Github link to the code used for the simu-

lations
"https://github.com/claradelahousse/Ure2p_fibers.git"

Figure 12. oxidation data obtained by Ronald Melki’s
group.

3.2 Experiments
3.2.1 Cysteine oxidation experiments

Cysteines are amino acids that can bind together when
oxidized. This binding happens when the cysteines are
close enough together, which defines a cut-off distance
for cysteine-cysteine interactions. In the experiments
carried on, some cysteine couples in the Ure2p protein
are oxidized. Then the solution of Ure2p proteins passes
through a gel, which separates the components of the so-
lution in terms of molecular weight. The results are pre-
sented in FIGURE. If one column presents only one line
it means that only one conformation of the Ure2p pro-
tein is present in the gel. There are several oxidized cys-
teine couples for which the gel present several lines 12,
which means that there are conformation of the Ure2p
protein in which this cysteine couple binds together, and
some where it doesn’t. These observations are coherent
with the hypothesis of several soluble protein conforma-
tions, the native form and the prion form for instance, as
well as the existence of several fiber conformations and
therefore several types of polymerized Uer2p.

3.2.2 Crosslinking experiments
A crosslinking experiment is based on the following

protocol 13:

• Some residues in the proteins of interest are
marked.

• Crosslinkers are introduced in the solution contain-
ing the proteins. They will bind to one marked
residue at each of their extremities.

• The proteins are denatured and parceled into small
pieces.

• The pieces marked by crosslinkers stay together and
can be identified

If 2 marked residues are bound by a cross linker, this
means that the distance between them in the proteins of
interest is bellow the size of the crosslinker. Similarly, if
they aren’t bound, it is above. The size of the crosslinker
serves as a cut-off for the distance between two marked
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Figure 13. Crosslinking experiment protocol.

residues. Crosslinking can be used to refine a cysteine
oxidation experiment by providing a clearer cut-ff dis-
tance for two residues known to be interacting.

3.3 The Method of Conjugate Gradient
Let us describe the conjugate gradient minimization

[7]. This method is effective on systems of the form

A−→x =
−→
b , so it can be applied to quadratic forms such

as f (−→x ) = 1
2
−→x T A−→x −

−→
b T x which is minimized by the

solution of A−→x =
−→
b .

Actually, when one wants to minimize a function f of
a vector−→x = x i

i∈[1,d] in a space of dimension d > 1, one
way is to start from a vector −→x 0, and take several steps

(
−→
x1,−→x2, ...) untill f (−→xn) is close enough to 0. At each step

k, the error−→ek =
−→xk−
−→x indicaes how far the current sep

remains from he solution, and the residue −→rk =
−→
b −A−→xk

how far from the correct value of
−→
b . In this case the con-

vergence speed depends on a wise choice of the direction
and size of each step. In the Method of Steepest Descent,
each step is taken in the direction where the slope is the
steepest, meaning the direction x j for which ∂ f

∂ x j is the
smallest. This so called direction of steepest descent can
be assimilated to the residue at step k : rk = − f ′(−→xk The
point where the steepest slope at step k reaches zero i.e
the point where the steepest slope’s direction is orthog-
onal to the gradient fixes the size of step k.

The Method of Conjugate Directions is a refinement
of the Method of Steepest Descent, in which a set of A-
orthogonal directions of minimization (di)i∈[1,n] is cho-
sen in order to avoid the algorithm taking several stems
in the same direction. The A-orthogonality of two vec-

tors
−→
d1 and

−→
d2 is defined as:

−→
d1

T A
−→
d2 = 0. The condition

of A-orthogonality instead of orthogonality ensures that
the size of a step can be computed like in the Method of
Steepest Descent, by finding the point where the steepest

slope reaches 0, and warrants a convergence in n steps
as well. To perform this method, it is necessary to find a
set of A-orthogonal directions. The Method of Conjugate
Gradient is based on a clever choice of such vectors.

Performing the Method of Conjugate Gradient boils
down to performing the Conjugate Directions one with
search directions constructed to be orthogonal to the
residuals. By definition of the step size, at each step
the residual is orthogonal to the previous search direc-
tions, until the residual is zero and the problem is solved.
Residual k is also orthogonal to all the previous residu-
als, which means that to build the following search direc-
tion, the only vector that matters is the search direction
of the previous step: there is no need to store the previ-
ous search directions which increases available memory.

3.4 The Nelder Mead Method
The implementation of the Gradient function of the

conjugate gradient method is a work in progress. In
the meantime to obtain fiber formation results another
slower energy minimization method is used. The Nelder
Mead method is chosen here because it doesn’t rely on
the use of gradient. Instead, for a problem of dimen-
sion N this method tests N+1 values of the function, and
orders them based on how close they are to the target
value. This collection of values is called a simplex and
can be assimilated to a polygon of N+1 sides, that will
deform as the optimization is carried on. At each iter-
ation the worst point xN is moved through a reflection
with respect to the center of mass of the simplex.

• If this new position is better than the second worst,
but not better that the best, meaning if the value of
the function is closer to the target than in the one at
point xN−! but not at x0, then the point is integrated
to the simplex.

• If the new position is better than the best, then an
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Figure 14. Symetry groups respecting the identical neighbors constraint on a plane.

expansion is performed : another step (of prede-
fined length) is taken in the same direction. If the
expansion position is better than the reflected one,
then it replaces the worst point, else the reflected
one replaces the worst point.

• If the new position is worse than the worst point,
a contraction is performed : the worst point is re-
placed by a point in the same direction as the re-
flection but closer to the centroid.

This process goes on until the function reaches a value
close enough to the target, with a predefined tolerance.

3.5 Relevant Wall paper groups
The main experimental result about a protein’s sur-

roundings is that all the proteins in a fiber have the same
immediate environment : they all have the same neigh-
bor configuration. There can be several configuration
that respects this constraint. As a matter of fact, form-
ing a fiber can be seen as folding a 2D lattice around a
cylinder. In this case one way of listing all the possible
configuration is to understand which 2D lattices still re-
spect the identical environment constraint once folded
onto a cylinder.

First let us focus on the case of a 2D lattice tiled with
proteins. All proteins being in the same environment im-
plies that the tiling must be invariant by translation from
one protein to another. Therefore this lattice can be con-
siders as a mathematical wallpaper, which is an object
covering a plane so that the drawing is unchanged under
certain isometries REF. Here these unchanged isometries
must coincide with the ones used to tile the plane, i.e to
go from one protein to the next. Wallpapers are clas-
sified into 17 groups depending on the transformation
group they leave invariant. There are 4 times of planar
isometries:

• translation: the pattern remains identical when
shifted from one or several units

• rotation: the patter remains identical when rotated
around a point

• reflection: the pattern remains identical when
flipped across an axis

• glide reflection: the pattern remains identical when
flipped then shifted.

Among those only the translations and rotations are
compatible with there being only fully identical proteins.
This reduces the number of possible planar symmetry
groups to 5 (figure 14:

• p1: a parallelogrammatic lattice with two transla-
tion axes

• p2: a parallelogrammatic lattice with two transla-
tion axes and four second degree (180 degrees) ro-
tations

• p4: parallelogrammatic lattice with two translation
axes, four second degree (180 degrees) rotations
and one fourth degree (90 degrees) rotation.

• p3: a triangular lattice with seven third degrees
(120 degrees) rotations

• p6: a triangular lattice with six second degrees (180
degrees) rotations, six third degree (120 degrees)
rotations and one sixth degree (60 degrees) rota-
tion.

Next, it is important to consider which of these 4
groups still respect the identical environment constraint
when folded onto a cylinder, and under which condi-
tions. The folding of the plane results in the distances
being stretched in all directions except the one of the
axis of the cylinder. If the distances between proteins
are stretched unevenly, then the identical environment
constraint which was respected on the 2D plane does
not hold anymore. Actually, this issue arises for trian-
gular lattices where only some proteins are stretched. It
also arises in the p4 symmetry group as the proteins are
aligned in two orthogonal directions. Lastly, the con-
straint holds in the p1 and p2 symmetry groups (figure
6).
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3.6 Analytical model
The convergence speed of the ”scip y.optimise. f minc g” funciton increases when provided with an analytical ex-

pression of the derivative of the minimisation function. These derivatives are computed as follow :

• Derivatives with respect to protein zero coordinates

∂ Eh

∂ x00
a

= k
d − d0

d
((x00

a − x i j
b )− (x

00
a − x i j

b )
∂ x i j

b

∂ x00
a

− (y00
a − y i j

b )
∂ y i j

b

∂ x00
a

)

∂ Eh

∂ y00
a

= k
d − d0

d
((y00

a − x i j
b )− (y

00
a − y i j

b )
∂ y i j

b

∂ y00
a

− (x00
a − x i j

b )
∂ x i j

b

∂ y00
a

)

∂ Eh

∂ z00
a

= k
d − d0

d
((z00

a − z i j
b )− (z

00
a − z i j

b )
∂ z i j

b

∂ z00
a

)

• Derivatives with respect to tilling vectors coordinates :

∂ Eh

∂ a1
= k

d − d0

d
((x00

a − x i j
b )
∂ x00

a

∂ a1
− (x00

a − x i j
b )
∂ x i j

b

∂ a1
+ (y00

a − y i j
b )
∂ y00

a

∂ a1
− (y00

a − x i j
b )
∂ y i j

b

∂ a1
+ (z00

a − z i j
b )
∂ z00

a

∂ a1
− (z00

a − z i j
b )
∂ z i j

b

∂ a1
)

∂ Eh

∂ b1
= k

d − d0

d
((x00

a − x i j
b )
∂ x00

a

∂ b1
− (x00

a − x i j
b )
∂ x i j

b

∂ b1
+ (y00

a − y i j
b )
∂ y00

a

∂ b1
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a − x i j
b )
∂ y i j
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b )
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∂ Eh

∂ b2
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((x00

a − x i j
b )
∂ x00

a

∂ b2
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b )
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∂ y00

a

∂ b2
− (y00

a − x i j
b )
∂ y i j

b

∂ b2
+ (z00

a − z i j
b )
∂ z00

a

∂ b2
− (z00

a − z i j
b )
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)

With Eh corresponding to any harmonic energy with a spring constant k ans assuming that residue b of protein ij is
in interaction with residue a of protein zero, and with :

∂ x00
0

∂ a1
=

n(a1n+ b1m)

(
q

(a1n+ b1m)2 + b2
2m2)

∂ x00
0

∂ b1
=

m(a1n+ b1m)

(
q
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2m2)

∂ x00
0

∂ b2
=

m2 b2

(
q
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(a1n+ b1m)2 + b2
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−
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2 jm+ (b1 j + ia1)(a1n+ b1m))

((a1n+ b1m)2 + b2
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