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Zusammenfassung
Wenn sich einzelne Komponenten autonom zu größeren Strukturen zusammensetzen,
spricht man von Selbstassemblierung. Dieser Prozess ist in der Natur allgegenwärtig.
In lebenden Zellen führt die Selbstassemblierung von Proteinen beispielsweise zur Bil-
dung großer funktionaler Komplexe wie dem Ribosom. Im Gegensatz dazu geht ein
Mangel an Qualitätskontrolle von Proteinen mit schlanken, pathologischen Fibern in
zahlreichen Krankheiten wie Alzheimer, Typ-2-Diabetes und Sichelzellenanämie ein-
her. Es ist weitgehend unbekannt, warum komplexe Komponenten über verschiedene
molekulare Kontexte hinweg wohldefinierte Aggregate formen.

Geometrische Frustration könnte ein physikalisches Prinzip der Selbstassemblierung
sein, das schlanke Aggregate begünstigt. Sie tritt auf, wenn anisotrope Teilchen auf-
grund geometrischer Zwänge nicht gleichzeitig günstige Wechselwirkungen mit all ih-
ren Bindungspartnern eingehen können. Eine frühere numerische Studie deutet darauf
hin, dass die Rolle der geometrischen Frustration auf der kleinskaligen Teilchenebene
am bedeutendsten sein könnte. Bislang gibt es keine analytische Grundlage für diese
Vermutung. Daher untersuchen wir in dieser Arbeit die kleinskaligen Auswirkungen
geometrischer Frustration. Dafür entwerfen wir ein analytisches Gittergasmodell auf
einem baumartigen Graphen, dem Husimi-Baum aus Dreiecken. Auf diesem Gitter in-
teragieren Teilchen anisotrop mit ihren Nachbarn und ahmen so die Komplexität und
die geometrischen Zwänge der Selbstassemblierung von Proteinen nach. Wir machen
uns die baumartige Struktur des Gitters zunutze, um exakte Rekursionsbeziehungen
für die großkanonische Zustandssumme einzelner Aggregate abzuleiten. In unserem
Modell treten verschiedene Formen von Aggregaten auf, darunter Fibern und Kristal-
le. Diese resultieren aus der Konkurrenz vieler verschiedener Wechselwirkungen. Um
zu beurteilen, ob Aggregate häufig wohldefinierte Formen aufweisen, formalisieren wir
ihre strukturellen Merkmale. Dazu nutzen wir ihre Dicke, wie verzweigt sie sind und
ob sie geordnet sind oder nicht. Trotz der komplexen Wechselwirkungen unserer aniso-
tropen Teilchen entstehen mit zunehmender Anisotropie immer mehr wohldefinierte
geordnete Aggregate. Im Regime großer Anisotropie begünstigt geometrische Frustra-
tion schlankere Aggregate wie Fibern und Fibernetzwerke, während ihr Ausbleiben
für geordnete, raumfüllende Strukturen wie Kristalle charakteristisch ist.

Diese Masterarbeit unterstreicht geometrische Frustration auf der Teilchenebene
als potenzielles Prinzip der Selbstassemblierung proteinartiger Teilchen, welches die
auftretenden Formen kontextübergreifend beeinflusst. Darüber hinaus könnte unser
Formalismus das Design von synthetischen Komponenten für die Selbstassemblierung
gewünschter Formen erleichtern.
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Abstract
Self-assembly, the process by which individual components autonomously arrange
into larger-scale structures, is ubiquitous. For instance, living cells rely on protein
self-assembly to form large functional complexes like the Ribosome. By contrast, in
numerous diseases like Alzheimer’s, type 2 diabetes, and sickle cell anemia, a lack of
protein quality control gives rise to slim, pathological fibers. Why complex particles
like proteins robustly form well-defined morphologies across diverse molecular settings
is largely unknown.

Geometrical frustration was proposed as a possible underlying physical principle of
self-assembly that favors slim aggregates. It arises when complex anisotropic particles
cannot simultaneously establish favorable interactions with all nearest neighbors in
assembly due to geometric constraints. A previous numerical study suggests that
the role of geometrical frustration may be most significant on the scale of individual
self-assembling components. To date, no analytical self-assembly framework exists
to corroborate this idea. Therefore, this thesis investigates the small-scale effects
of geometrical frustration by designing an analytical lattice gas model on a treelike
graph, namely the Husimi tree of triangles. Particles interact anisotropically with
their nearest neighbors on this lattice, mimicking protein self-assembly’s complexity
and geometric constraints. We exploit the lattice’s treelike structure to derive exact
recursion relations for the grand canonical partition function of individual aggregates.
Our model exhibits diverse aggregate morphologies, including fibers and crystals, that
result from a nontrivial competition of many distinct interactions. To assess whether
well-defined aggregate morphologies occur robustly, we formalize structural features to
classify aggregates, namely their bulkiness, how often they branch, and whether they
exhibit order. We find that, despite the complex interaction landscape, well-defined
ordered aggregates using only a few distinct interactions emerge and dominate the
self-assembly behavior, as particle anisotropy increases. In this regime, geometrical
frustration strongly favors slimmer aggregates like fibers and fiber networks, while its
absence is characteristic of ordered space-filling morphologies like crystals.

This master thesis underscores geometrical frustration on the single-particle scale
as a principle of morphology selection in the self-assembly of anisotropic particles with
complex interactions. Moreover, our partition function formalism for individual ag-
gregates could facilitate the design of components for desired self-assembly outcomes.
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1
Introduction

Self-assembly is a ubiquitous process in nature [1], where individual constituents au-
tonomously arrange into larger-scale structures or ordered patterns based only on
their local interactions. Examples range from the self-assembly of viruses [2] and bac-
terial flagella [3] all the way to bacterial colonies [4], snowflakes [5], spider silk [6],
and even galaxies [7]. In living cells, protein self-assembly is a key mechanism by
which large functional complexes are formed [8]. For instance, RNA not only codes
for proteins but may fold and self-assemble with other proteins to form Ribosomes [9],
the cell’s protein factories. In 2002, Whitesides and Grzybowski commented, “living
cells self-assemble, and understanding life will therefore require understanding self-
assembly” [1]. Due to its fundamental importance to life, self-assembly has attracted
considerable interest in a large variety of scientific disciplines ranging from medicine
[10] and chemistry [11, 12] to physics [13, 14]. Further, thanks to technological ad-
vances in supramolecular [15], polymeric [16] and colloidal self-assembly [17, 18] as
well as DNA origami [19–21], self-assembly is increasingly utilized in nano- and mi-
croengineering [22], materials science [23], and bionanotechnology [24, 25]. Although
still in its infancy, the concept of “Materials by Design” aims to integrate Machine
Learning (ML) [26] to design constituent particles for self-assembled functional mate-
rials. Furthermore, scientists have successfully synthesized a ribosomal subunit on a
chip, reconstructing this essential component of the cell’s self-replication mechanism
outside the cell for the first time [27]. This achievement only scratches the surface, as
living cells are far more complex, combining intricate molecular structures with so-
phisticated regulatory mechanisms [28]. Reproducing life-like functions or even a full
“synthetic cell” will require individual self-assembling components that can code for
this complexity [29]. Adopting a broader physics perspective could aid in unifying the
phenomenology of diverse self-assembly systems, thereby narrowing down the search
for suitable self-assembling components. However, the general physical laws of how
complex building blocks determine the resulting large-scale structure in self-assembly
remain elusive.

Simple, well-fitting particles like identical cubes may form dense space-filling ag-
gregates. What happens if ill-fitting irregular particles or, more generally, particles
with generic anisotropic interactions are considered? The intracellular environment
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a b

Figure 1.1: Geometrical frustration could be prevalent in protein self-assembly. a, In sickle cell
anemia, normally soluble hemoglobin aggregates to form pathological fibers due to mutation of a
single amino acid (glutamate 6 to valine; in green). Adapted from [39]. b, Proteins are comparable
to ill-fitting puzzle pieces. As such, proteins are subject to geometrical frustration if they cannot
simultaneously establish favorable interactions with multiple nearest neighbors in assembly.

is crowded, which may lead to unspecific interactions between “ill-fitting” proteins,
resulting in uncontrolled aggregation, potentially causing cell death [30, 31]. Healthy
living cells rely on protein quality control via molecular chaperones to regulate pro-
tein folding, and hence their interactions [32, 33]. However, this safety mechanism
can fail. In neurodegenerative diseases like Alzheimer’s or Parkinson’s, as well as in
type 2 diabetes and sickle cell anemia, typically soluble proteins aggregate into patho-
logical fibers [34–36]. Polymerization of sickle-cell hemoglobin (see Fig. 1.1a) is one
of the best-understood instances of protein self-assembly in terms of the molecular
mechanisms involved [37, 38].

However, why complex and anisotropic components can robustly form well-defined
morphologies is largely unknown. Besides, the frequent occurrence of fibers in this
context contrasts sharply with three-dimensional assemblies of isotropic particles like
spherical colloids. This may suggest the existence of an underlying physical principle
for complex anisotropic building blocks that favors aggregates with reduced dimen-
sionality, meaning they do not grow in every spatial direction.

Geometrical frustration has recently emerged as a potential physical principle of
self-assembly to explain this [40–42]. Complex anisotropic particles may be incapable
of simultaneously establishing favorable interactions with multiple nearest neighbors
in assembly due to geometric constraints. This phenomenon is broadly called “frus-
tration”. To visualize it, think of irregularly shaped puzzle pieces (see Fig. 1.1b).
Due to their geometry, tiling the plane would require unfavorable binding, making
the assembly geometrically frustrated. As a consequence, aggregates of these puzzle
pieces only grow in one spatial direction, resulting in a reduced dimensionality that
is reminiscent of fibers.

While geometrical frustration may arise very locally, like in the above example,

2



1it can also progressively build up and prevent aggregates from growing indefinitely.
It was first shown that geometrical frustration generically gives rise to self-limiting
and fibrous aggregates using a minimal model of weakly deformable, ill-fitting, sticky
particles [43]. Recently, this result has been reaffirmed and analytically extended us-
ing a continuum description of a broader class of elastic particles [44]. Proteins are
indeed somewhat flexible and can change their conformation upon binding [45]. How-
ever, protein-protein interactions are not only influenced by their shape but are also
dictated by their surface amino acids. Their interactions may stem from hydrophobic-
hydrophilic effects or electrostatic forces, among others [46, 47]. As a result, inter-
action energies can independently vary in magnitude. Based on this observation, a
numerical model of anisotropic hexagonal lattice particles was introduced [48]. The
relative orientation of anisotropic particles toward each other determines whether
binding is favorable or not. This leads to a competition between many distinct inter-
action energies. Despite the inherent complexity of their interactions, these particles
only form a small number of qualitatively different aggregate morphologies that of-
ten exhibit a well-defined structure, including fibers and crystals. The results also
strongly indicate that identical complex particles tend to form slim or porous aggre-
gates to avoid geometrical frustration. Its effect seems strongest on the single-particle
scale. This is corroborated by the fact that “propagability”, the particles’ ability to
form periodic structures, as defined by the authors, is a reliable predictor of aggregate
morphology [48].

In this Master’s thesis, we analytically investigate the local effects of geometri-
cal frustration by singling them out in a minimal model. Our goal is to gain a
broad understanding of which aggregate morphologies generically emerge in frustrated
self-assembly rather than designing particles to assemble into specific morphologies.
Specifically, we show that increasing particle anisotropy induces the emergence of ge-
ometrical frustration as a morphology selection mechanism within our model. While
geometrical frustration favors fiber formation, its absence often leads to ordered space-
filling structures like crystals.

Our discussion of geometrical frustration hinges on particles with anisotropic inter-
actions. To study geometrical frustration, we thus adopt a particle-based description
of self-assembly. We exclusively probe equilibrium self-assembly for simplicity. In the
lattice gas model, particles are placed on the vertices of a lattice and interact only
with their nearest neighbors [49–51]. This framework is suitable for describing parti-
cles with anisotropic interactions because their relative orientations toward each other
can be formalized. Observables of interest can then be obtained by calculating an ap-
propriate partition function. Lattice gas models can be based on two-dimensional
lattices like a triangular lattice [48]. However, their analytical treatment becomes
very complicated and involved even without considering the anisotropy of particles.
This is mainly because an aggregate can loop back to itself, thereby introducing effec-
tive long-range interactions between particles of that aggregate. There are numerous
ways in which this looping can happen, making it impossible to keep track of all inter-
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a b c

Figure 1.2: Treelike graphs are a suitable framework to study geometrical frustration in a minimal
setting analytically. a, Bethe lattice of coordination 𝑓 = 4, a tree graph without loops. b, Husimi
tree of triangles. While the treelike structure is preserved, the triangles constitute small-scale loops.
c, Triangles represent a minimal setting of geometrical frustration (also see Fig. 1.1c).

actions and how they affect aggregate morphology. We make the approximation that
large-scale loops do not qualitatively change the self-assembly behavior by utilizing
treelike graphs (see Fig. 1.2). Akin to triangular or square lattices, a graph is defined
as a collection of vertices at which particles may sit, joined by edges, correspond-
ing to nearest-neighbor interactions. The characteristic feature of tree graphs is that
there are no loops at all, while on treelike graphs, there are only small-scale loops (cf.
Fig. 1.2). This allows a recursive approach to obtaining the partition function exactly.
For our purposes, we will study interacting particles on a Husimi tree of triangles (see
Fig. 1.2b), simply referred to as Husimi tree in the following. In a triangle, it might be
impossible to realize favorable interactions between three nearest neighbor particles
simultaneously (see Fig. 1.2c). Therefore, triangles represent a minimal setting of
geometrical frustration that enables us to study its role on a local scale.

We define our model of interacting complex particles in Chapter 2. Building on
this description, we introduce recursion equations for the grand canonical partition
function of aggregates, quantifying the likelihood of different aggregates to be formed.
In Chapter 3, we characterize aggregate morphologies based on their structural fea-
tures: their bulkiness, how branchy they are, and whether they are ordered or not.
On our treelike graph, these properties are sufficient to distinguish between all dif-
ferent morphologies. In particular, we can differentiate fibers of varying thickness
from crystals and these two morphologies from disordered ones like liquids. With
the self-assembly of pathological fibers in contrast to space-filling crystals in mind,
we focus our analysis exclusively on large aggregates, where morphological differences
are most apparent. Our model allows for a plethora of binding motifs. In Chapter 4,
nevertheless, only a few categories of well-defined aggregate morphologies emerge if
we increase particle anisotropy, including fibers and crystals. Finally, in Chapter 5,
we put forward geometrical frustration as a governing principle of morphology selec-
tion for anisotropic particles with complex interactions by comparing self-assembled
morphologies in our model system to those on an unfrustrated loopless tree graph (see
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1Fig. 1.2a). Geometrical frustration strongly favors slimmer aggregates like fibers and
fiber networks, while its absence is characteristic of ordered space-filling morpholo-
gies, including crystals. Chapter 6 discusses our findings and provides an outlook for
further research.
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2
Model

Our objective is to design a minimal model of geometrical frustration for complex
interacting particles. We choose the Husimi tree as our underlying lattice, as tri-
angles constitute a minimal setting of frustration (cf. Fig. 1.2). At the same time,
the lattice’s treelike structure, obtained by simply merging triangles at their corners,
enables the analytical study of the model as we will see later.

How do we model interacting particles on this lattice? With proteins as ill-fitting
puzzle pieces in mind, they should be anisotropic such that they can be geometri-
cally frustrated in the first place. Simultaneously, they should exhibit some degree
of complexity reminiscent of proteins that is suitable to the lattice we place them
on and still analytically tractable. Thus, we use identical copies of a particle with
four different binding sites, since each lattice vertex also has four nearest neighbors.
That way, interactions between neighboring particles vary depending on their relative
orientation, without making the model needlessly complicated.

In this chapter, we first define how anisotropic particles interact on our lattice and
introduce the system’s Hamiltonian in Section 2.1. Then, we have a look at the asso-
ciated binding motifs in Section 2.2, which represent the intermediate building blocks
of aggregates. Ultimately, we are interested in the morphology of single aggregates.
Thus, in Section 2.3 we set up the model’s formal basis by deriving a recursion re-
lation for the partition function of aggregates. We complement this perspective on
single aggregates with a description of the statistics of the whole lattice in Section 2.4.
Thereby, we show how these two perspectives relate to each other. Together, they for-
mally cover all aggregate phenomenology of our model. In later chapters, we build on
this formal framework to statistically examine and analyze aggregate morphologies.

2.1 Interacting Anisotropic Particles on the
Husimi Tree

For the purpose of this section, picture anisotropic particles as irregular puzzle pieces
that sit on vertices of the Husimi tree (see Fig. 2.1). Whenever two particles sit
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a b

Figure 2.1: Anisotropic particles on neighboring vertices of the Husimi tree constitute an aggregate.
a, Anisotropic particles can be visualized as irregular puzzle pieces that are placed on the Husimi tree.
A particle’s orientation dictates which of its four faces (labeled 1 to 4) points to which neighboring
vertice. For illustrative purposes, we only show a small part of the lattice throughout this thesis.
b, If particles sit on neighboring vertices they bind together, here indicated by a bold black edge.
A cluster of particles, that are interconnected through these bonds, is called an “aggregate”. Note
that in order to visualize the Husimi tree, we draw edges smaller the further away they are from
the root of the treelike graph. From a formal viewpoint all vertices are equivalent, the lattice is
translationally invariant.

on neighboring vertices, they interact and form a bond. A cluster of particles in-
terconnected through bonds is then called an “aggregate”. In this section we define
anisotropic nearest neighbor interactions between particles by means of an interac-
tion matrix. Subsequently, we formulate the associated overall energy of an aggregate.

Whether inter-particle interactions are favorable depends on which faces of these
particles bind together. This in turn is dictated by the particles’ relative orientation
towards each other. For two particles with four faces, there are a priori 4 ⋅ 4 = 16
different ways to bind (see Fig. 2.2). However, since our particles are identical the
number of different interactions is reduced to 10 due to symmetry. For instance, face
1 of the first particle binding to face 2 of the second particle corresponds to the same
interaction as face 2 of the first binding to face 1 of the second. This implies that the
so-called interaction matrix is also symmetric:

E =
⎛⎜⎜⎜⎜
⎝

𝐸11 𝐸12 𝐸13 𝐸14
⋯ 𝐸22 𝐸23 𝐸24
⋯ ⋯ 𝐸33 𝐸34
⋯ ⋯ ⋯ 𝐸44

⎞⎟⎟⎟⎟
⎠

(2.1)

In the above matrix, the two indices denote which pair of faces (labeled 1 to 4) is
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Interacting Anisotropic Particles on the Husimi Tree

Figure 2.2: Due to symmetry, two identical anisotropic particles with four faces exhibit up to 10
distinct interactions. Shown is a visualization of all 16 possible relative arrangements of these
particles, with redundant arrangements in gray.

binding together. Each possible bond is quantified by an interaction energy 𝐸, with
negative energies corresponding to a favorable interaction.

Formally, the Hamiltonian (or overall energy) of a given aggregate is

ℋ = ∑
𝜑≤𝜈

𝑛𝜑𝜈𝐸𝜑𝜈 , (2.2)

where 𝑛𝜑𝜈 is the number of contacts between face 𝜑 and face 𝜈 in that aggregate.
Note that we sum over 1 ≤ 𝜑 ≤ 𝜈 ≤ 4 to avoid double-counting face pairs. Moreover,
we assert that empty vertices do neither interact with particles nor with each other.
Intuitively, this corresponds to the case that the solvent (in biological systems usually
water) does not interact with assembly components, and hence the surface energy of
the aggregate is zero. In Section A.1 we show that this assumption does not change
the phenomenology of our model, since it only corresponds to an energy shift of inter-
particle interactions.

The set of contacts in an aggregate, {𝑛𝜑𝜈}, is constrained. For example, the number
of particles 𝑛 in the aggregate places an upper bound, since each particle contributes
only one face of each kind, 𝑛𝜑𝜈 ≤ 𝑛. Moreover, each particle in an aggregate forms
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at least one bond, i.e. ∑𝜑≤𝜈 𝑛𝜑𝜈 ≥ 𝑛/2. In addition to particle geometry, the lattice
itself constrains the combinations of interactions that can be realized simultaneously
in an aggregate. In Section 2.3 we introduce a formalism that naturally includes all
physical aggregates and respects their structural constraints. However, first we want
to get a qualitative idea of what self-assembly behavior to expect from our model.

2.2 Simple Binding Motifs as Building Blocks
for Aggregate Morphology

In contrast to tree graphs, our lattice exhibits small-scale loops, namely triangles.
In addition to two-body interactions, these triangles allow particles to enter three-
body interactions, possibly leading to frustration as discussed in the introduction (cf.
Chapter 1, particularly Fig. 1.1 and Fig. 1.2). We call these three-body interactions
“triangle interactions”, because the three participating particles constitute a triangle
on our lattice. Each two-body and three-body interaction, that can be realized by
our anisotropic particles, represents a local binding motif. On the scale of a single
lattice triangle, a single binding motif is realized based on their competition, to be
formally introduced in the next section. However, aggregates may in principle be
build up from any combination of distinct binding motifs. In that sense, these local
binding motifs can be viewed as intermediate building blocks of self-assembled struc-
tures in our model system. By first isolating the assembly behavior associated to
each individual binding motif, we can better understand which aggregate morpholo-
gies arise when they compete in our model later. In this section, we thus ask: What
aggregate morphologies can be built from copies of only a single binding motif? Sub-
section 2.2.1 illustrates the structures that are connected to two-particle interactions,
while Subsection 2.2.2 is concerned with three-particle interactions.

2.2.1 Two-Particle Binding Motifs Yield Fibers or Dimers
Taking a closer look at all possible two-particle interactions in our system, it becomes
clear that there are some qualitative differences between them (see Fig. 2.3). For
instance, the interaction between faces 1 and 3, which we denote by the tuple (1, 3),
involves two particles that are both pointing in the same direction. This is an example
of a so-called head-to-tail interaction. On the other hand, two particles have to face
each other to realize a (1, 1) head-to-head interaction.

Think of a system, where only (1, 1) is allowed. Apart from monomers, only dimers
(i.e. two-particle aggregates) would occur (see Fig. 2.4a). Conversely, (1, 3) does allow
the formation of fibers by placing particles side by side indefinitely (see Fig. 2.4b).
As it seems, not all interactions are created equal! In fact, different interactions may
lead to qualitatively different aggregate morphologies. We similarly consider every
other possible two-particle interaction, and determine the morphologies that can be
built from copies of it. The results are summarized in Table 2.1. There is a third
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Simple Binding Motifs as Building Blocks for Aggregate Morphology

Figure 2.3: Two-body interactions in our system can be grouped into three qualitatively different
cases. Throughout this thesis, interactions are accordingly color-coded. The diagonal of the in-
teraction matrix represents symmetric dimer interactions, also called “head-to-head” interactions
(purple). Interactions on the first and third off-diagonal are called “cyclic”, because particles can
form closed loops through them, namely triangles (yellow). Lastly, “head-to-tail” interactions are
capable of constituting straight fibers (blue-green). Also refer to Fig. 2.4.

type of two-body interaction, copies of which can either yield dimers or curved fibers
(see Fig. 2.4). All 10 distinct two-body interactions in our model fall into one of the
above three broad categories.

Table 2.1: If only a specific two-particle interaction is allowed in the system, particles self-assemble
into either dimers, or straight fibers or both dimers and curved fibers, respectively (cf. Fig. 2.4).

Binding motif Aggregate morphology

(1, 1) (2, 2) (3, 3) (4, 4) Dimers

(1, 3) (2, 4) Straight fibers

(1, 2) (2, 3) (3, 4) (1, 4) Dimers and curved fibers

2.2.2 Three-Particle Binding Motifs Lead to Oligomers,
Fibers Composed of Triangles or Bulks

Three particles can constitute a three-body interaction in a lattice triangle, which we
also call triangle interaction. For combinatoric reasons, there are 24 distinct triangle
interactions in our model. To give an example, consider three particles connected
through three (1, 2) bonds, which we denote by {(1, 2), (1, 2), (1, 2)}. This binding
motif yields a threefold symmetric triangular aggregate or oligomer (see Fig. 2.5a).
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Figure 2.4: Two-body interactions are associated with one of three types of basic aggregate morpholo-
gies: dimers, fibers and curved fibers. Shown are visualizations of aggregates with bonds colored
according to Fig. 2.3, and a few puzzle pieces are added to illustrate particle orientation. a, Dimers
stereotypically form through head-to-head interactions, e.g. (1, 1). b, Head-to-tail interactions, e.g.
(1, 3), yield straight fibers. c, Systems with cyclic two-body interactions exhibit both dimers and
curved fibers, depending on the orientation of particles on the lattice, as exemplified here for the
(1, 2) interaction.

Aggregates that are composed of only a few particles (but more than one) are gen-
erally called oligomers. Throughout this thesis, we reserve this name to triangular
aggregates. Therefore, (1, 2) is also called a cyclic interaction (cf. Fig. 2.3). The
“heads” of all three particles are pointing towards the center of the triangle, which is
why none of them can take part in yet another copy of the same binding motif. Cor-
respondingly the aggregate cannot be grown further by only using the same binding
motif. Not all oligomers are symmetric, as exemplified in Fig. 2.5b. In contrast to
oligomers, some other triangle binding motifs lead to curved fibers that are composed
of many triangles (see Fig. 2.5c) or bulks, i.e. aggregate morphologies that can tile
the whole lattice (see Fig. 2.5d).
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aa

c

b

d

Figure 2.5: Copies of a single specific triangle-interaction can form one of three basic aggregate mor-
phologies: oligomers, curved fibers of triangles or bulks. Here, examples for each morphology are
visualized, with bonds colored according to Fig. 2.3. Some puzzle pieces are added to illustrate parti-
cle orientation. a, Symmetric oligomers are composed from three copies of the same cyclic interaction,
here {(1, 2), (1, 2), (1, 2)}. b, Oligomers can also be asymmetric, e.g. for the {(1, 4), (2, 4), (1, 1)}
triangle-interaction. c, A curved fiber of triangles can be formed through the combination of a cyclic
interaction with dimer interactions. In this example, the {(1, 1), (4, 4), (2, 3)} triangle-interaction
is shown. d, Bulks can be formed through triangle interactions of three different cyclic two-body
interactions, as exemplified here for the binding motif {(1, 2), (1, 4), (2, 3)}.

2.3 Recursion Relations Yield Aggregate
Partition Functions

Aggregates are like a “mosaic” that is uniquely defined by the different local bind-
ing motifs that make it up and their relative arrangement. In an infinite system at
thermal equilibrium, all combinations of binding motifs that are permitted by con-
straints due to particle and lattice geometry do occur, and hence an infinite variety of
aggregates. However, different aggregates are not equally as prevalent. Instead, the
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likelihood of encountering a specific aggregate is determined by its energetic favorabil-
ity (quantified by its hamiltonian ℋ, see Eq. (2.2), together with the fixed interaction
matrix E, see Eq. (2.1)) as well as its entropic multiplicity. This notion of probabil-
ity is formalized within a suitable statistical ensemble. While the total number of
individual particles in our system may be fixed, its aggregates can accommodate a
varying number of interacting particles. It is thus natural to employ a grand canoni-
cal ensemble of aggregates, which enables us to assign a probabilistic weight to each
aggregate. To quantify probabilities of aggregates, we need a base distribution from
which we sample uniformly. In our model, we sample aggregates according to their
volume fraction, i.e. aggregates are weighted by the number of particles they contain.
This amounts to choosing a random particle in the system (each with probability 1/𝑁,
where 𝑁 is the total number of particles in the system) and examining the aggregate
to which it belongs. That particle constitutes the root of the aggregate on our treelike
lattice, which is why we term it the “root particle”. In this section, we first derive
a recursion relation of the entropic multiplicity of aggregates that contain a given
number of particles 𝑛 in Subsection 2.3.1. Subsequently, we define a grand canonical
ensemble that includes aggregates of all sizes and employ a generating function ap-
proach in Subsection 2.3.2 in order to obtain the grand canonical partition function.
Generalizing the aforementioned recursion relation to include given anisotropic inter-
actions E between particles (cf. Section 2.1), we obtain a self-consistency relation for
the partition function. In doing so, we fully capture the probabilistic weights of all
aggregates as a function of their interactions E and the total number of particles in
the system, which is quantified by a fugacity 𝑐. This allows us to later design and
obtain observables of aggregate morphology, thereby enabling the statistical analysis
of aggregate structure.

2.3.1 Entropic Multiplicity of Aggregates

How many ways 𝛺𝑛 are there, to build an aggregate of a given size 𝑛 (meaning it
contains 𝑛 particles) starting from the root particle? For one, the aggregate’s multi-
plicity 𝛺𝑛 stems from the four different orientations each of its particles can have, a
trivial contribution. In addition, a given fixed number of particles can be arranged
on the lattice in a variety of ways to form different aggregates, which we now formalize.

At the vertex where the root particle sits, two triangles are joined at their corners
(cf. Fig. 2.1). Thereby the root particle divides the aggregate to which it belongs
into two subaggregates that emanate from it. These subaggregates accommodate 𝑘1
and 𝑘2 particles, respectively, so that the total particle constraint of the aggregate is
satisfied, 1 + 𝑘1 + 𝑘2 = 𝑛. Let ̃𝛺𝑘 be the multiplicity of such a subaggregate. Since
the two subaggregates are independent of each other, the aggregate multiplicity 𝛺𝑛
is then given as the product of the multiplicities ̃𝛺𝑘1

and ̃𝛺𝑘2
:

𝛺𝑛 = 4 ∑
𝑘1+𝑘2=𝑛−1

̃𝛺𝑘1
̃𝛺𝑘2

(2.3)
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Figure 2.6: The partial partition functions obey a self-consistent recursion relation thanks to the
treelike structure of the Husimi tree. Each term in the recursion relation, Eq. (2.4), can be visualized
in diagrammatic form. The left hand side (l.h.s.) of the diagrammatic equation corresponds to
the partial partition function of a subaggregate emanating from a root particle with orientation
𝜓 ∈ {1, 2, 3, 4}. We define the orientation 𝜓 to be the label of the face pointing towards the top
right triangle corner. As shown on the right hand side (r.h.s.), the root particle can either have zero
(first term), one (second and third term) or two neighboring particles (fourth term). Bonds between
particles are represented by bold black edges, while their absence is indicated by light gray edges.

Here, the prefactor 4 corresponds to the 4 orientations which the root particle itself
can have. The sum runs over all allowed combinations of subaggregate sizes 𝑘1 and 𝑘2.
Determining the multiplicity of the subaggregates ̃𝛺𝑘 will give us the multiplicity of
the whole aggregate 𝛺𝑛. We formally set ̃𝛺𝑘 = 0 for 𝑘 < 0, because there cannot be
aggregates of negative size. As visualized diagrammatically in Fig. 2.6, a subaggregate
can be built up recursively by placing particles on the neighboring vertices of the root
particle and subsequently considering the subaggregates that emanate from these
particles in turn. Based on this, ̃𝛺𝑘 obeys the following recursion relation:

̃𝛺𝑘 = 𝛿𝑘,0 + 2 ⋅ 4 ̃𝛺𝑘−1 + 42 ∑
𝑘1+𝑘2=𝑘−2

̃𝛺𝑘1
̃𝛺𝑘2

(2.4)

If there are no particles in the subaggregate, 𝑘 = 0, it terminates and the recursion
relation is closed via ̃𝛺1 = 1. This case is quantified by the Kronecker delta 𝛿𝑘,0,
which is defined as

𝛿𝑖𝑗 = {
1, if 𝑖 = 𝑗 ,
0, if 𝑖 ≠ 𝑗 .

(2.5)

For 𝑘 > 0, there can be either one or two particles on the neighboring vertices of
the root particle in a lattice triangle. The prefactors 2 ⋅ 4 and 42 of the second and
third term in Eq. (2.4), respectively, correspond to their possible arrangements with
respect to the root particle, where we take into account their orientational degree of
freedom. Each of these particles constitutes another subaggregate, whose sizes respect
the constraint on the total number of particles in the aggregate.

If all aggregates in the system were of size 𝑛, then each aggregate would be sampled
with equal probability 1/𝛺𝑛 (for non-interacting particles). In the next subsection
we introduce a grand canonical ensemble in order to consider aggregates of varying
sizes that are composed of anisotropic interacting particles.
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2.3.2 Grand Canonical Partition Function via Generating
Function Approach

The total number of particles 𝑁 in the system influences the relative probabilities
with which aggregates of different sizes are sampled. 𝑁 is fixed through the particle
density 𝜌, that relates the former to the system volume 𝑉, 𝜌 = 𝑁/𝑉. This density
can be implicitly enforced in a suitable grand canonical ensemble. In this subsection,
we first define a grand canonical ensemble of aggregates, that assigns a probabilistic
weight to aggregates of different sizes. Subsequently, we employ a generating function
approach to find a set of self-consistent equations for the grand canonical partition
function, based on the recursion relations that we introduced in the last subsection
(see Eq. (2.4)).

A Grand Canonical Ensemble of Aggregates

Let 𝑍𝑛 be the canonical partition function of aggregates of size 𝑛. 𝑍𝑛 is a sum over
all aggregates of that size, each weighted according to their energy ℋ (see Eq. (2.2)):

𝑍𝑛 = ∑
{aggregates of size 𝑛}

e−𝛽ℋ(aggregate) (2.6)

The grand canonical partition function of our system 𝒵 can then be defined as a
formal power series in a fugacity 𝑐:

𝒵 ≔
∞

∑
𝑛=1

𝑍𝑛𝑐𝑛 , (2.7)

where each summand 𝑍𝑛𝑐𝑛 quantifies the probability weight of aggregates of size 𝑛.
Let 𝛽 = 1/𝑘𝐵𝑇 denote the inverse thermal energy. The fugacity 𝑐 ≕ e𝛽𝜇 couples
each aggregate to an infinite particle reservoir with chemical potential 𝜇. If 𝜇 is
large and positive, it is very favorable to introduce particles from the reservoir into
the aggregate. Conversely, for negative 𝜇 adding more particles is unfavorable. An
aggregate of size 𝑛 is thus weighted with a factor 𝑐𝑛. The particle density 𝜌 fixes the
fugacity 𝑐. Let 𝜙𝑛 = 𝑛𝑚𝑛/𝑉 be the volume fraction of aggregates of size 𝑛, where
𝑚𝑛 is the total number of aggregates of that size in the system. Since 𝒵 assigns a
probabilistic weight to aggregates according to their volume fraction and 𝑍1 = 1, the
fugacity is related to the (a priori unknown) volume fraction of monomers by

𝑐
𝒵

= 𝜙1
𝜌

, (2.8)

where we used that the density is the combined volume fraction of all aggregates:

𝜌 = 𝑁
𝑉

=
∞

∑
𝑛=1

𝜙𝑛 (2.9)
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Later, Subsection 2.4.2 also provides a relation between 𝜌 and 𝑐 in which we have
eliminated the monomer fraction 𝜙1 (see Eq. (2.33)).

Self-Consistency Relations for Grand Canonical Partition Function

We now employ a generating function approach in order to obtain a set of self-
consistent equations for the grand canonical partition function 𝒵. In order to do
this, we generalize the recursion relation for entropic multiplicity (see Eq. (2.4)) to
incorporate interactions E between particles.

In the case of vanishing interactions, E = 0, the partition function 𝒵(E = 0) is sim-
ply a generating function of the entropic multiplicities 𝛺𝑛 = |{aggregates of size 𝑛}|:

𝒵(E = 0) =
∞

∑
𝑛=1

𝛺𝑛𝑐𝑛 (2.10)

Using Eq. (2.3), we bring 𝒵(E = 0) into a form where we can apply the recursion
relation Eq. (2.4):

𝒵(E = 0) = 4𝑐
∞

∑
𝑛=1

∑
𝑘1+𝑘2=𝑛−1

̃𝛺𝑘1
𝑐𝑘1 ̃𝛺𝑘2

𝑐𝑘2

= 4𝑐
∞

∑
𝑛=0

𝑛
∑
𝑘=0

( ̃𝛺𝑘𝑐𝑘)( ̃𝛺𝑛−𝑘𝑐𝑛−𝑘) (2.11)

= 4𝑐 (
∞

∑
𝑘1=0

̃𝛺𝑘1
𝑐𝑘1) (

∞
∑
𝑘2=0

̃𝛺𝑘2
𝑐𝑘2) ≡ 4𝑐𝐺(E = 0)2

In the second line, we performed an index shift and regrouped terms to apply the
Cauchy product rule for infinite series in the third line. For two infinite series ∑∞

𝑖=0 𝑎𝑖
and ∑∞

𝑗=0 𝑏𝑗, the Cauchy product rule is the following discrete convolution:

(
∞

∑
𝑖=0

𝑎𝑖) ⋅ (
∞

∑
𝑗=0

𝑏𝑗) =
∞

∑
𝑘=0

𝑐𝑘 with 𝑐𝑘 =
𝑘

∑
𝑙=0

𝑎𝑙𝑏𝑘−𝑙 (2.12)

We also defined the partial (grand canonical) partition function for vanishing inter-
actions

𝐺(E = 0) ≔
∞

∑
𝑘=0

̃𝛺𝑘𝑐𝑘 , (2.13)

which generates the multiplicities of subaggregates. Employing the recursion relation
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for ̃𝛺𝑘 (see Eq. (2.4)), we find a self-consistency relation for 𝐺(E = 0):

𝐺(E = 0) =
∞

∑
𝑘=0

𝑐𝑘 (𝛿𝑘,0 + 2 ⋅ 4 ̃𝛺𝑘−1 + 42 ∑
𝑘1+𝑘2=𝑘−2

̃𝛺𝑘1
̃𝛺𝑘2

)

= 1 + 2 ⋅ 4𝑐𝐺(E = 0) + 42𝑐2𝐺(E = 0)2

(2.14)

We now show how this relation can be generalized to nonvanishing anisotropic
interactions between particles. Qualitatively, the partial partition function of subag-
gregates 𝐺 is of the form

𝐺 = ∑
{subaggregates}

e−𝛽ℋ(subaggregate)𝑐size of subaggregate . (2.15)

Due to the lattice’s treelike structure, e−𝛽ℋ(subaggregate) factorizes over individual lat-
tice triangles: If 𝐸(triangle) is the sum of interaction energies in a given lattice
triangle, then

e−𝛽ℋ(subaggregate) = ∏
triangles

e−𝛽𝐸(triangle) , (2.16)

where the product runs over all lattice triangles that belong to the considered subag-
gregate. Equation (2.14) already self-consistently encodes the multiple ways in which
particles in a triangle can be oriented towards each other (assuming a given root par-
ticle orientation). There are 8 ways in which a single particle can be arranged with
respect to the root particle and 16 ways how this can be done for two particles. Each
arrangement corresponds to a set of realized interactions between particles in that
triangle. Thus, we have to decorate each particle arrangement in Eq. (2.14) with an
interaction Boltzmann weight

𝑦𝜑𝜈 ≔ e−𝛽𝐸𝜑𝜈 (2.17)

for every pair of particles that bind together through faces 𝜑 and 𝜈 (𝜑, 𝜈 ∈ {1, 2, 3, 4}).
In order to formally do this, the orientation of each involved particle needs to be made
explicit. We define the orientation 𝜓 of the root particle as the face pointing towards
its right neighbor in the considered triangle as visualized in Fig. 2.6. If this is the case
for face 1, then we have 𝜓 = 1 and so on. The other particles in the triangle constitute
new subaggregates and their orientations are defined correspondingly. Say, the root
particle has orientation 1 and it binds to its right neighbor that has orientation 2.
Then the realized interaction is (1, 2 + 3) =̂ (1, 1), where we use that two face labels
are equivalent if they are the same up to addition of multiples of 4. Finally, if the root
particle has orientation 𝜓 ∈ {1, 2, 3, 4}, then the associated partial partition function
𝐺𝜓 obeys the following self-consistency relation:

𝐺𝜓 = 1 + 𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝐺𝜑 + 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 (2.18)
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Equation (2.18) constitutes a system of four coupled quadratic equations in the partial
partition functions. Lastly, the total partition function 𝒵 includes one term for each
possible orientation of the root particle. It is related to the partial partition functions
by

𝒵 = 𝑐
4

∑
𝜓=1

𝐺𝜓𝐺𝜓+2 . (2.19)

In Eq. (2.18), morphologies of individual aggregates and their probabilistic weight are
encoded, which is why we call this description “aggregate-centered”.

We are now in the position to sample and illustrate aggregates for a given in-
teraction matrix E and fugacity 𝑐 by solving Eq. (2.18). Moreover, manipulating
this self-consistent system of equations will enable the calculation of observables that
characterize aggregate morphology in Chapter 3. However, our model toolbox is still
incomplete. 𝒵 is a Taylor series expansion in fugacity 𝑐 which has a finite radius of
convergence 𝑐g around 𝑐 = 0. 𝑐 = 𝑐g is the so-called gelation point, at which an
infinite aggregate appears in the system (see Section 3.2). While the divergence of
𝒵 ultimately allows us to purposefully examine the rich morphologies of large aggre-
gates at gelation in the next chapter, the aggregate-centered formalism as described
above is not applicable to self-assembly systems in which infinite aggregates comprise
a nonzero fraction of all particles; this is the case for 𝑐 > 𝑐g. The next section takes
a different perspective which is better-suited to this regime.

2.4 Relating Aggregate to Lattice Description
In order to be able to sample from the regime of infinite aggregates, we employ a
“lattice-centered” framework, which considers the partition function of the whole lat-
tice instead of the one of individual aggregates. Then, formal divergences can be elim-
inated from the model by appropriately rescaling the corresponding partial partition
functions. In Subsection 2.4.1, we derive recursion relations for the lattice partition
function 𝒵lat similarly to before for single aggregates. We show how the aggregate-
centered and lattice-centered descriptions are related to each other by providing a
simple mapping in Subsection 2.4.2. Consequently, the partition function of single
aggregates equivalently informs about properties of the whole lattice gas assembly,
for instance the density 𝜌 of particles on the lattice, as long as no infinite aggregates
are present in the system. Combined, these two perspectives cover every possible
self-assembly behaviour in our system and they enable the prediction of aggregate
morphologies resulting from any anisotropic interactions and particle density.

2.4.1 The Lattice Partition Function Follows From
Similar Recursion Relations

We again invoke the treelike structure of our lattice to derive self-consistency relations
for the partition function 𝒵lat of the whole lattice. The main conceptual difference of
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this perspective to the one in Section 2.3 is the following: In our aggregate-centered
formalism, an empty vertex constitutes termination of the aggregate. Thus, the ag-
gregate partition function is not concerned with what happens beyond this empty
vertex. However, the lattice itself does not terminate at empty vertices but extends
to infinity. So, the lattice partition function also needs to contain information on
what happens beyond empty vertices.

In this perspective, the whole lattice is coupled to a particle reservoir via another
fugacity 𝑧 = e𝛽𝜇lat . Let 𝑍𝑁 be the canonical partition function of 𝑁 interacting
particles on the lattice:

𝑍𝑁 ≔ ∑
𝑁 particle configurations of the lattice

e−𝛽ℋ(lattice) , (2.20)

where ℋ(lattice) is the total interaction energy of a given lattice configuration. The
grand canonical lattice partition function is defined as

𝒵lat =
∞

∑
𝑁=0

𝑍𝑁𝑧𝑁 . (2.21)

Each summand in 𝒵lat is the probability weight of the corresponding lattice configu-
ration. In the last section, we used that the root particle of an aggregate divides it
into two subaggregates (see Subsection 2.3.1). Instead, now each lattice vertex (either
empty or accommodating a particle) separates the whole lattice into two infinite sub-
lattices. Hence, the lattice partition function 𝒵lat can be written in terms of partial
partition functions of the sublattices. Let 𝑔0 be the partial partition function of an
infinite sublattice that originates from an empty vertex, and let 𝑔𝜓 denote the partial
partition function corresponding to a nonempty vertex with a particle of orientation
𝜓. The partition function of the whole lattice 𝒵lat is then given by (cf. Eq. (2.19))

𝒵lat = 𝑔2
0 + 𝑧

4
∑
𝜓=1

𝑔𝜓𝑔𝜓+2 . (2.22)

Similarly to before (cf. Eq. (2.18)) we obtain the partial partition functions via
recursion:

𝑔0 = 𝑔2
0 + 2𝑧𝑔0

4
∑
𝜑=1

𝑔𝜑 + 𝑧2 ∑
𝜑,𝜈

𝑦𝜑+3,𝜈+2𝑔𝜑𝑔𝜈

𝑔𝜓 = 𝑔2
0 + 𝑧𝑔0

4
∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝑔𝜑 + 𝑧2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑔𝜑𝑔𝜈

(2.23)

Note that these partial partition functions generally diverge to infinity: for vanishing
fugacity 𝑧 = 0, i.e. for a lattice without particles, we have 𝑔0 = 𝑔2

0. The physical
solution to this equation is 𝑔0 = 1, since 𝒵lat(𝑧 = 0) = 1. However, this entails
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that 𝑔0 > 1 for nonzero density of particles because 𝑧 > 0. The formal solution to
Equation (2.23) is then 𝑔0 = ∞ = 𝑔𝜓. To be able to numerically solve for the partition
functions in order to sample and draw aggregates later (cf. Subsection B.1.1), we
rescale all partial partition functions with 𝑔0:

𝑥𝜓 ≔
𝑔𝜓

𝑔0
(2.24)

A global prefactor in 𝒵lat does not change the relative probability weights of lat-
tice configurations and hence does not alter physical predictions. Thus, we can also
redefine the lattice partition function

𝒵lat → 𝒵lat
𝑔2

0
= 1 + 𝑧

4
∑
𝜓=1

𝑥𝜓𝑥𝜓+2 . (2.25)

Employing Eq. (2.23), we arrive at a self-consistency relation for 𝑥𝜓:

𝑥𝜓 =
1 + 𝑧 ∑4

𝜑=1(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝑥𝜑 + 𝑧2 ∑𝜑,𝜈 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈

1 + 2𝑧 ∑4
𝜑=1 𝑥𝜑 + 𝑧2 ∑𝜑,𝜈 𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈

,

(2.26)
where we plugged the equations for 𝑔0 and 𝑔𝜓 into 𝑥𝜓 = 𝑔𝜓/𝑔0, respectively, and then
divided both the numerator and denominator by 𝑔2

0 to eliminate all divergences. The
lattice partition function 𝒵lat can thus be obtained by solving Eq. (2.26), a system of
four cubic equations. While 𝒵 can be used to sample individual aggregates according
to their probability weight, 𝒵lat permits sampling of a whole lattice configuration.
Both descriptions enable us to later visualize snapshots of equilibrium self-assembly.

2.4.2 A Mapping and Particle Density

We now show how the statistical description of single aggregates from Section 2.3 is
related to the one of the whole lattice via a simple mapping. This implies that they
represent equivalent mathematical perspectives on our physical model. Moreover, we
derive two expressions that relate the density 𝜌 of particles to the lattice fugacity 𝑧
and the aggregate fugacity 𝑐, respectively. This formally solidifies our choice of grand
canonical ensemble, a posteriori.

The mapping has to link both self-consistency relations (2.18) and (2.23). Hence,
the rationale is to divide (2.23) by 𝑔2

0 in order to turn the 𝑔2
0 term on the r.h.s. into

21



2

Model

a “1”. This motivates the ansatz 𝐺𝜓 ≡ 𝑔𝜓
𝑔2

0
, which leads to

𝐺𝜓 ≡ 𝑔2
0

𝑔2
0

+ 𝑧𝑔0

4
∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)
𝑔𝜑

𝑔2
0

+ 𝑧2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2
𝑔𝜑𝑔𝜈

𝑔2
0

!= 1 + 𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝐺𝜑 + 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 .

(2.27)

Comparing the two expressions we obtain the following mapping:

𝐺𝜓 ≡
𝑔𝜓

𝑔2
0

and 𝑐 ≡ 𝑧𝑔0 (2.28)

The first identification can also be expressed as

𝑐𝐺𝜓 ≡ 𝑧𝑥𝜓 . (2.29)

In different terms, the probability to encounter a particle of orientation 𝜓 in an aggre-
gate is intimately connected to the prevalence of such particles on the whole lattice.
This is to be expected, because in our aggregate-centered framework we sample ag-
gregates according to their volume fraction, which amounts to uniformly choosing a
random particle on the lattice and analyzing the aggregate to which it belongs. The
above mapping shows that the statistics of individual aggregates informs about the
statistics of the whole lattice and vice versa.

As a consequence, there exists a unique relation between the density of particles on
the whole lattice 𝜌 and aggregate morphologies quantified by 𝐺𝜓 and 𝑐, for instance.
In the lattice-centered description with partition function 𝒵lat = 1 + 𝑧 ∑𝜓 𝑥𝜓𝑥𝜓+2,
the first term encodes the probability weight of a given lattice vertex to be empty
while the second term corresponds to a nonempty vertex. The probability to find a
particle at any given lattice vertex is also given by the volume fraction of particles
𝜌 = 𝑁/𝑉. Formalizing this idea yields

𝜌 =
𝑧 ∑𝜓 𝑥𝜓𝑥𝜓+2

1 + 𝑧 ∑𝜓 𝑥𝜓𝑥𝜓+2
. (2.30)

Applying Eq. (2.28) and Eq. (2.29) to 𝑧 and 𝑥𝜓, we obtain

𝜌 =
𝑐 ∑ 𝐺𝜓𝐺𝜓+2

𝑧
𝑐 + 𝑐 ∑ 𝐺𝜓𝐺𝜓+2

=
𝑐 ∑ 𝐺𝜓𝐺𝜓+2

1/𝑔0 + 𝑐 ∑ 𝐺𝜓𝐺𝜓+2
.

(2.31)
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Dividing the self-consistency condition for 𝑔0, Eq. (2.23), by 𝑔2
0 and using the mapping

again we find

1/𝑔0 = 1 + 2𝑐
4

∑
𝜑=1

𝐺𝜑 + 𝑐2 ∑
𝜑,𝜈

𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 . (2.32)

Plugging this back into 𝜌 finally yields

𝜌 =
𝑐 ∑ 𝐺𝜓𝐺𝜓+2

1 + 2𝑐 ∑𝜑 𝐺𝜑 + 𝑐2 ∑𝜑,𝜈 𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 + 𝑐 ∑ 𝐺𝜓𝐺𝜓+2

= 𝒵
1 + 2𝑐 ∑𝜑 𝐺𝜑 + 𝑐2 ∑𝜑,𝜈 𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 + 𝒵

.
(2.33)

This equation provides an implicit definition of the fugacity 𝑐 in terms of the particle
density 𝜌.

We now have two equivalent mathematical descriptions for our model in place. As
we will see in the following chapter, the aggregate-centered framework from Section 2.3
is best-suited for sampling and visualizing single aggregates in the system and also
enables the formal study of the morphology of large aggregates. However, it formally
breaks down when infinite aggregates are present in the system. The lattice-centered
framework from this section still applies in the latter regime and allows us to also
consider infinite aggregates that span the whole system.
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With the model in place, we want to sample aggregates, probe their morphology and
classify them into multiple classes of morphologies accordingly. This chapter sets up
the descriptive tools for the statistical analysis of aggregate morphologies. Our goal is
to enable the relation of particle properties, namely their interactions, to large scale
aggregate morphologies in subsequent chapters.

Aggregate morphologies will at least partially depend on how many particles are
put into the system (see Fig. 3.1): If there are almost no particles, then all aggregates
will be very small, corresponding to a dilute gas of mostly single-particle-aggregates or
monomers. On the contrary, if particles are densely packed on the lattice, we obtain a
single aggregate that accommodates all particles. In both cases, aggregate structure
only weakly depends on particle interactions.

?
Almost no particles Dense packing

Figure 3.1: Aggregate morphologies depend on the density of particles on the lattice. Shown are
qualitative illustrations of aggregates for two extreme cases: a lattice with almost no particles,
exclusively yielding monomers (left), and a densely packed one (right). The bonds of the aggregate
for the latter case are colored according to which type of interaction is realized (see Fig. 2.3).

To exhaust the self-assembly phenomenology our model has to offer, it is necessary
to identify and quantify the intermediate density regime where nontrivial aggregates
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can arise. In our model, aggregation behavior is dictated by the interplay of particle
density and particle interactions. When there are only a few particles in the system,
then they are unlikely to meet and form aggregates. If this entropic cost of adding
a particle to an aggregate is counterbalanced by the energetic gain due to favorable
interactions, then aggregates become infinite in size. In the associated crossover den-
sity regime, the aggregates may range in size all the way from monomers to very large
aggregates. The particle density 𝜌g, where the first infinitely large aggregate appears
in the system, is called the gel point and depends on the particle interactions. At
their gel point, systems with mostly repulsive interactions also yield large aggregates
(instead of only monomers), whose structure could differ qualitatively from assembled
morphologies of attractive interactions. We want to broadly understand how parti-
cle interactions dictate aggregate morphology in this nontrivial intermediate density
regime.

In Section 3.1, we first visualize a few characteristic aggregates that arise in systems
with different interactions. Thereby, it becomes clear that the sizes of aggregates are
indeed very sensitive to the particle interactions and the fugacity, which controls the
density. Nontrivial morphologies only arise at intermediate particle densities. To sys-
tematically investigate this regime, we formally introduce the gel point in Section 3.2.
Based on this, we obtain an implicit equation involving the fugacity and the partial
partition functions that has to be satisfied at the gel point. By solving this equation
and the self-consistency relations from Eq. (2.18) simultaneously, we can probe the
self-assembly behavior at the gel point for arbitrary interaction matrices. Thereby, we
identify stereotypical categories of aggregate morphology, including fibers and crys-
tals. In Section 3.3, we finally implement formal tools and observables to distinguish
between different aggregate morphologies. This enables the automatic classification
of aggregates according to their morphology in the following chapter.

3.1 Aggregate Size Is Sensitive to Particle
Interactions and Fugacity

We want to get a first impression of how particle interactions determine aggregate
structure. In this section, we consider a few qualitatively different interaction ma-
trices E (cf. Eq. (2.1)) and observe which aggregates they yield in self-assembly,
respectively. As formalized in the previous chapter, there are two main quantities
that influence the statistical weight of aggregate morphologies. These are their over-
all energy or Hamiltonian (cf. Section 2.1) and their entropy (cf. Subsection 2.3.1).
Thus, we examine systems with weak interactions, which are mainly governed by en-
tropy, as well as ones with strong interactions, whose aggregates are mostly due to
the energetic competition of binding motifs.

In order to sample and draw aggregates, we employ a numerical procedure com-
bining Mathematica and Python which we now briefly outline. Our objective is to
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visualize a stereotypical aggregate that arises for a given interaction matrix E at a
fixed lattice fugacity 𝑧. For this purpose, we use the lattice-centered formal framework
from Section 2.4, because it applies for arbitrary fugacities. For the given example
system quantified by (E, 𝑧), we solve Eq. (2.26) numerically using Mathematica in
order to obtain the numerical value of the partial partition functions 𝐺𝜓 (see Subsec-
tion B.1.1 for further details). Together with the fugacity 𝑐 and interaction energies
E, these fix the statistical weight of each term in Eq. (2.18). These self-consistency
relations quantify the relative likelihoods for each binding motif to be realized in a
lattice triangle, conditioned on the fact that there already is one particle in it. This
allows us to recursively sample and draw a whole aggregate. As discussed in Sec-
tion 2.3, we sample aggregates according to their volume fraction by considering a
random particle as the root of an aggregate. This root particle splits its aggregate
into two subaggregates. For each of these, we randomly sample a binding motif ac-
cording to its statistical weight and draw it. Each neighboring particle of the root
particle constitutes a new subaggregate in turn. Thus, the same sampling and draw-
ing process can be repeated. When the “1”-term in Eq. (2.18) is sampled, then the
corresponding subaggregate terminates. We implement this sampling and drawing
procedure in Python, as detailed in Appendix B.2. Therewith, we let Python sam-
ple and draw multiple aggregates for the considered example system (E, 𝑧) randomly.
Subsequently, we pick a single aggregate that is qualitatively representative of the
system’s self-assembly behavior for illustrative purposes.

In Fig. 3.2, we consider three different example systems that exhibit weak interac-
tions between particles. In all cases, the typical size of aggregates increases if more
particles are put into the system, i.e. when the fugacity 𝑧 is increased. Differences
between the three systems are most pronounced at fugacity 𝑧 = e𝛽𝜇 = 1. There, ag-
gregates are larger the more attractive the interactions are. Moreover, the differently
colored bonds show that aggregates are broadly composed of a random combination
of binding motifs. This is indicative of the fact that entropy mostly dominates in this
regime. However, in the case where particles are weakly repulsive with only a few
favorable interactions as in Fig. 3.2b, a slight trend towards fewer distinct binding
motifs can be observed. If the energetic malus of unfavorable interactions or con-
versely the energetic gain due to a favorable interaction is large, the system might
exhibit only those few morphologies that exclusively use the energetically most favor-
able binding motifs.

We study examples of systems with strong interactions in Fig. 3.3. Differences in
aggregate morphology are now very pronounced between distinct interaction matrices.
For very repulsive particles as in Fig. 3.3b, even at high fugacities the system is
dominated by monomers and other small aggregates. On the other hand, in Fig. 3.3c
strongly attractive particles form dense space-filling aggregates even at low particle
densities. Nontrivial behavior occurs for particles that exhibit both strongly repulsive
and attractive interactions as in Fig. 3.3a. In this example, the particles only use
a few distinct binding motifs as hypothesized above. In fact, the system strongly
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Figure 3.2: Characteristic aggregates for three systems with weak interactions. Each interaction
matrix is color coded with blue denoting favorable and red denoting unfavorable interactions. Ex-
ample aggregates for three different fugacities 𝑧 = e𝛽𝜇 with 𝜇 ∈ {−4, 0, 4} are visualized from top
to bottom, corresponding to an increase in the total number of particles in each system. The bond
colors correspond to the three different types of binding motifs (see Fig. 2.3). a, No interactions, i.e.
entropy governs the assembly. b, Weakly repulsive interactions. The system exhibits more copies of
the only favorable binding motif. c, Weakly attractive interactions. Typical aggregates are larger
than in the two other example systems.
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favors cyclic binding motifs (signified by yellow bonds) while the single most favorable
interaction is actually a head-to-tail motif, which is colored in blue-green (refer to
Fig. 2.3 for details on the color code). This exemplifies that aggregate structure is
not trivially related to the interaction matrix E.

From the six example systems discussed above, we learnt that systems with repul-
sive interactions or few particles exhibit mostly small aggregates like monomers, while
systems with attractive interactions or many particles yield dense space-filling aggre-
gates. However, there are also hints at the fact that for “intermediate” fugacities, a
non-trivial competition between individual binding motifs determines aggregate mor-
phology. Hence, we expect aggregate morphology to be richer in this regime. This
notion of “intermediate” fugacity depends on the interactions between particles. In
the following, we formally identify and quantify it through the gel point.

3.2 Aggregate Morphologies Are Diverse at
the Gel Point

Precisely at the gelation point, 𝜌 = 𝜌g, an aggregate that percolates to infinity arises,
the so-called “gel”. At and below the gel point, the volume fraction 𝜙∞ of the gel is
zero and only begins to continuously rise once the particle density 𝜌 in the system
is increased beyond the gelation density 𝜌g. Thus, the gel point marks a continuous
second-order phase transition of the system as a function of 𝜌. Gelated solutions
are mostly fluid, meaning almost all aggregates have a finite size, and that size can
strongly vary. Therefore, arising aggregate morphologies are potentially nontrivial,
i.e. neither monomers nor aggregates which fill the whole lattice. The chemists Paul
Flory and Walter Stockmayer were the first to predict the onset of gelation in a the-
ory of crosslinked polymers in the 1940s, termed Flory-Stockmayer theory [52, 53].
In Subsection 3.2.1, we introduce their definition of the gel point, which is consti-
tuted by the divergence of mean aggregate size. Aggregate size is accessible within
our aggregate-centered formalism (cf. Section 2.3, which is therefore ideally suited
to translate the definition of the gel point into our model. We find a formal expres-
sion for the mean aggregate size. Subsequently, we rewrite the gelation condition
in order to derive equivalent characterizations for the gel point in Subsection 3.2.2.
Thereby, we obtain an equation that relates the aggregate fugacity at gelation 𝑐g to
the corresponding partial partition functions 𝐺𝜓 (cf. Section 2.3). This equation
complements the self-consistent system from Eq. (2.18). Aggregate morphologies at
gelation are thus formalized within five coupled equations in the five unknowns 𝑐g
and 𝐺𝜓 (𝜓 ∈ {1, 2, 3, 4}). Lastly, we probe the self-assembly behavior at gelation for
different interactions in Subsection 3.2.3 by sampling and drawing random aggregates
according to their statistical weight. We observe 8 different stereotypical categories of
aggregates, including morphologies with a well-defined structure, for instance, fibers
and crystals.
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Figure 3.3: Stereotypical aggregates for three systems with strong interactions. The color codes
for the interaction matrices and the bonds are the same as in Fig. 3.2. Again, example aggregates
for three different fugacities 𝑧 = e𝛽𝜇 with 𝜇 ∈ {−4, 0, 4} are visualized from top to bottom. a,
Particles have both strongly repulsive and attractive interactions. Dense space-filling aggregates of
mostly cyclic binding motifs emerge (in yellow). b, Strongly repulsive interactions. Even at high
fugacity, the aggregates are small. c, Strongly attractive interactions. For all considered fugacities,
the aggregates tile the lattice and are composed of many different binding motifs.
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3.2.1 Formal Definition of the Gel Point

Let 𝜙𝑛 be the volume fraction of aggregates of size 𝑛. Then 𝜌 = ∑∞
𝑛=1 𝜙𝑛 and the

mean aggregate size is defined as

⟨𝑛⟩ ≔
∞

∑
𝑛=1

𝑛𝜙𝑛
𝜌

. (3.1)

Note that this definition corresponds to a mass average instead of a number average,
because the aggregate size 𝑛 is weighted by a volume (or mass) fraction 𝜙𝑛. At the
gel point, a transition from a system of only finitely sized aggregates to one with an
infinite gel occurs. Thus, the gelation transition mathematically corresponds to the
divergence of the mean aggregate size,

⟨𝑛⟩ → ∞ . (3.2)

We now derive a formal expression for ⟨𝑛⟩ in the language of our aggregate-centered
framework (cf. Section 2.3). Since we are going to use a similar approach to obtain
other observables in Section 3.3 as well, we guide through the detailed calculation
below.

The volume fractions 𝜙𝑛 are proportional to the corresponding statistical weight
𝑍𝑛𝑐𝑛 in the partition function 𝒵 = ∑∞

𝑛=1 𝑍𝑛𝑐𝑛. Here, 𝑍𝑛 is the canonical partition
function of aggregates of fixed size 𝑛 (cf. Section 2.3). So, ⟨𝑛⟩ is given by

⟨𝑛⟩ =
∞

∑
𝑛=1

𝑛𝑍𝑛𝑐𝑛

𝒵
=

∞
∑
𝑛=1

𝑍𝑛𝑐 d
d𝑐𝑐𝑛

𝒵
= 𝑐

𝒵
d
d𝑐

𝒵 = d ln 𝒵
d ln 𝑐

. (3.3)

Using 𝒵 = 𝑐 ∑𝜓 𝐺𝜓𝐺𝜓+2 (see Eq. (2.19)) and the Leibniz product rule, we can also
write ⟨𝑛⟩ as

⟨𝑛⟩ = 1 + 2𝑐
∑𝜓

d𝐺𝜓
d𝑐 𝐺𝜓+2

∑𝜓 𝐺𝜓𝐺𝜓+2
. (3.4)

To proceed, note that 𝐺𝜓 is given by self-consistency relations that we have derived
in Section 2.3 (see Eq. (2.18)):

𝐺𝜓 = 1 + 𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝐺𝜑 + 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 (3.5)

Accordingly, the derivative d𝐺𝜓
d𝑐 can be obtained in terms of 𝐺𝜓 via implicit differ-

entiation of these self-consistency relations. Let 𝑮 denote the vector of partition
functions

𝑮 ≔ (𝐺1, 𝐺2, 𝐺3, 𝐺4)⊤ . (3.6)
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A short calculation shows that d𝑮
d𝑐 obeys the following inhomogeneous linear matrix

equation:
A ⋅ d𝑮

d𝑐
= 𝒃(𝑐) , (3.7)

where ⋅ denotes the matrix product throughout this thesis. The entries of the matrix
A = (𝑎𝜓𝜑) are

𝑎𝜓𝜑 = 𝛿𝜓𝜑 − 𝑐(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)
− 𝑐2 ∑

𝜈
(𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2 + 𝑦𝜓+1,𝜈+2𝑦𝜓,𝜑+3𝑦𝜈+3,𝜑+2) . (3.8)

and the inhomogeneous term on the r.h.s. 𝒃(𝑐) is given by

𝑏(𝑐)
𝜓 = ∑

𝜑
(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝐺𝜑 + 2𝑐 ∑

𝜑,𝜈
𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 . (3.9)

Linear systems as in Eq. (3.7) are solved by

d𝑮
d𝑐

= A−1 ⋅ 𝒃(𝑐) = adj(A) ⋅ 𝒃(𝑐)

det A , (3.10)

where adj(A) is the adjugate matrix of A. Using this expression of d𝑮
d𝑐 in terms of

the partial partition functions 𝐺𝜓, we now write the mean aggregate size ⟨𝑛⟩ without
derivatives. Introducing the following notation

𝑮(+2) ≔ (𝐺3, 𝐺4, 𝐺1, 𝐺2) , (3.11)

we can use the matrix product to rewrite the sums, e.g.

∑
𝜓

𝐺𝜓𝐺𝜓+2 = 𝑮(+2) ⋅ 𝑮 . (3.12)

Summarizing, we finally arrive at the following characterization of the gel point in
our system:

⟨𝑛⟩ = 1 + 2𝑐
det A

𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝑐))
𝑮(+2) ⋅ 𝑮

→ ∞ (3.13)

Since the self-consistency relations, Eq. (2.18), can only be solved for 𝐺𝜓 numerically,
this form is convenient, because it does not involve derivatives of a priori unknown
quantities. In the above equation, the first term corresponds to a system of only
monomers. The second term describes the contribution of all other aggregate sizes
to the mean. In the next subsection, we show that the divergence of mean aggregate
size is associated to det A → 0.
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3.2.2 The Gelation Condition Augments the System’s
Governing Equations

In this subsection, we translate the divergence of ⟨𝑛⟩ at gelation into a condition for
the corresponding fugacity 𝑐g.

First, gelation almost always occurs at a finite fugacity that is related to the 𝑛-
dependence of the canonical partition functions 𝑍𝑛 (cf. Eq. (3.1)). In particular,
𝑐g is finite for particles that are not infinitely repulsive, i.e. the interaction matrix
has no infinite entries (𝐸 → ∞ corresponds to 𝑦 = e−𝛽𝐸 → 0). This holds for all
biological self-assembly systems. The Hamiltonian and the total chemical potential
of all particles in an aggregate, 𝑛𝜇, are extensive in aggregate size 𝑛. Thus, there
is a competition between the interactions E and the fugacity 𝑐 that determines the
aggregation behavior and, thereby, the gel point. Based on this, Appendix A.2.1
provides an upper bound on 𝑐g. In what follows we are going to frequently refer to the
self-consistency relations between the partial partition functions 𝐺𝜓 (see Eq. (3.5);
recall Section 2.3 for the derivation). For each fugacity 𝑐 ∈ [0, 𝑐g], there exists a
unique physical solution to these self-consistency relations: Differentiating Eq. (3.5)
with respect to the fugacity 𝑐 defines an initial value problem for 𝑐 ∈ [0, 𝑐g] with initial
condition 𝐺𝜓 = 1 for all 𝜓 ∈ {1, 2, 3, 4} at 𝑐 = 0. By the Picard-Lindelöf theorem for
ordinary differential equations, the physical solution is then unique for all 𝑐. Thus,
Eq. (3.5) represents a line of physical solutions in 5𝑑 space:

(𝑐, 𝐺1(𝑐), 𝐺2(𝑐), 𝐺3(𝑐), 𝐺4(𝑐)) (3.14)

In biological systems, interaction energies are never actually infinite, −∞ < 𝐸 < ∞.
In particular, this implies that 𝑦 = e−𝛽𝐸 > 0. Due to this, the 𝐺𝜓’s are all strictly
monotonic in 𝑐 and with respect to each other, because every term on the r.h.s. of
the self-consistency relations is positive (cf. Eq. (3.5)). As a consequence, we have
bijectivity between all 5 variables and we can equivalently interpret the fugacity 𝑐 as
a function of the partial partition functions

𝑐 ≡ 𝑐(𝐺𝜓) . (3.15)

This point of view enables us to find a condition on the gelation fugacity 𝑐g below.

To begin with, 𝐺𝜓 ≥ 1 for all fugacities 𝑐 = e𝛽𝜇 ≥ 0 due to monotonicity and
𝐺𝜓(𝑐 = 0) = 1. As a consequence, we find the following necessary condition for
gelation using Eqs. (2.19) and (3.3):

⟨𝑛⟩ = 1
∑𝜓 𝐺𝜓𝐺𝜓+2

d
d𝑐

𝒵 ≤ d
d𝑐

𝒵 i.e. d
d𝑐

𝒵 → ∞ at gelation (3.16)

This condition is also sufficient, which we show in Appendix A.2.2 based on the fact
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that 𝒵 is a sum of positive probability weights:

⟨𝑛⟩ → ∞ ⇔ d
d𝑐

𝒵 → ∞ (3.17)

Since all partial partition functions are strictly monotonic functions of each other, one
can even conclude that (see Subsection A.2.2)

⟨𝑛⟩ → ∞ ⇔ d
d𝑐

𝐺𝜓 → ∞ for all 𝜓 ∈ {1, 2, 3, 4} . (3.18)

In principle, we can use this property on the self-consistency relation (3.5), by dif-
ferentiating it with respect to 𝑐. However, it is tedious to deal with the associated
infinities. In particular, the divergence behavior d

d𝑐𝐺𝜓 → ∞ at the gel point depends
on orientation 𝜓. Instead, thanks to bijectivity of 𝑐 ≡ 𝑐(𝐺𝜓) we also have:

⟨𝑛⟩ → ∞ ⇔ d𝑐
d𝐺𝜓

→ 0 for all 𝜓 ∈ {1, 2, 3, 4} . (3.19)

By means of this condition, below we obtain an implicit equation that relates 𝑐g to
E and the partial partition functions 𝐺𝜓. If we differentiate Eq. (3.5) with respect to
𝐺1 and employ Eq. (3.19), we get a homogeneous system of linear equations involving
the same matrix A as in the previous subsection:

A ⋅ d
d𝐺1

𝑮 = 0 (3.20)

All implicit derivatives of 𝑮 are always related to this same matrix A, because they
are derived from the same set of self-consistency relations (also see Section 3.3 on
our morphological observables). Homogeneous linear systems always allow the trivial
zero solution, d

d𝐺1
𝑮 = 0, which is also the only solution if and only if the matrix A

is non-singular, i.e. det A ≠ 0. This trivial solution is not physical, because d𝐺1
d𝐺1

!= 1.
Consequently, singularity of A is a necessary condition for gelation:

⟨𝑛⟩ → ∞ ⇒ det A = 0 (3.21)

Based on heuristic evidence, det A = 0 coupled to the self-consistency relations,
Eq. (3.5), even seems to be equivalent to gelation. However, we were unable to show
this generally. As an alternative, we can explicitly check that det A = 0 implies
⟨𝑛⟩ → ∞ by using Eq. (3.13).

For interaction matrices with finite entries E, We are now able to sample and
draw large aggregates that occur at the gel point by solving a coupled system of 5
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polynomial equations for the aggregate fugacity 𝑐 and the partial partition functions
𝐺𝜓 (see Eqs. (3.5) and (3.21); cf. Appendices B.1.2 and B.2).

3.2.3 Stereotypical Categories of Morphologies at
Gelation

Section 3.1 has illustrated how a given interaction matrix E and a fixed lattice fu-
gacity 𝑧 broadly govern the size of aggregates, often trivially. In this subsection, we
visualize large nontrivial aggregate morphologies that can arise for different interac-
tions E at the gel point. We thereby identify 8 stereotypical categories of aggregates
in our model.

To sample aggregates at the gel point for given interactions E, we simultaneously
solve the self-consistency relations for the partial partition functions and the fugacity
at gelation (see Eqs. (2.18) and (3.21)) numerically using Mathematica as detailed
in Appendix B.1.2. At the gel point, aggregate sizes vary strongly. For different in-
teraction matrices, the resulting morphologies are most different for large aggregates.
Hence, we sample multiple aggregates and, among these, arbitrarily choose a represen-
tative large aggregate. We repeat this procedure for 8 different interaction matrices
and visualize the corresponding aggregates in Fig. 3.4. There are conspicuous mor-
phological differences, both in the overall aggregate structures as well as in the binding
motifs used. We accordingly assign each aggregate to one of 8 stereotypical categories
of aggregate morphology. A “fiber” is defined as a slim, linear aggregate. Notably,
fibers are naturally formed through one of the two head-to-tail interactions on the
third off-diagonal of the interaction matrix (also see Fig. 2.3). “Fiber networks” are
derived from shorter fibers that are joined at triangles, which may constitute branch-
ing points of the fiber network. We also identify a curved “fiber of triangles”, which is
one of the elementary aggregate morphologies that we have already seen in Section 2.2
and as such built from copies of a single triangle binding motif. However, if parti-
cle interactions allow it, then more triangle motifs can attach to these curved fibers,
which yields a “decorated fiber”. In addition to mostly linear fibrous aggregates, we
also observe more bulky ones that contain more triangles. “Crystals” are periodic
structures of two different triangle binding motifs and grow in every lattice direction.
For example, the crystal in Fig. 3.4 arises from two cyclic triangle motifs only, namely
{(1, 2), (1, 2), (1, 2)} and {(3, 4), (3, 4), (3, 4)}. In a “sponge” only every other bind-
ing motif is a triangle motif. On a 2𝑑 lattice, this aggregate would correspond to
a crystal with holes. All six above classes represent well-defined morphologies that
exhibit some bias in their binding motifs. On the other hand, “flocs” and “liquids”
are disordered aggregates that are composed of a seemingly random variety of binding
motifs. Liquids contain many triangle motifs, and flocs have fewer ones. These two
categories are more ill-defined and broadly include all aggregates that do not fall into
any of the six categories above.

With 8 stereotypical aggregate categories in place, we next aim to characterize ag-
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Figure 3.4: Stereotypical categories of morphologies at gelation. Each interaction matrix E is color-
coded with blue denoting favorable and red denoting unfavorable interactions (cf. Eq. (2.1)). The
colors in the aggregate drawings correspond to the three different types of interactions (cf. Fig. 2.3):
head-to-head bonds are colored in purple, head-to-tail bonds in blue-green, and cyclic bonds in
yellow.
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gregates using physical observables that we can measure in our formalism. Ultimately,
we use them to quantitatively define the aggregate categories and to formally classify
aggregates that result from given interactions E into one of these categories.

3.3 Observables of Aggregate Morphology
To distinguish different aggregate morphologies, we now provide a suitable set of ag-
gregate observables. While this section is quite technical, its results are going to be
essential for the automatic classification of a large number of aggregates into one of
the above categories (see Fig. 3.4) based only on numerical results for the fugacity 𝑐g
and the partial partition functions 𝐺𝜓 in Chapter 4.

Using the partition function formalism, we can calculate the average of any ob-
servable that can be made explicit within the self-consistent governing equations of
aggregates, Eq. (2.18), via the use of some dummy variable. In Subsection 3.2.1, we
calculated mean aggregate size ⟨𝑛⟩ using a derivative of the partition function with
respect to the fugacity 𝑐, because each particle in an aggregate is made explicit with
a factor of 𝑐. However, at gelation ⟨𝑛⟩ → ∞, regardless of aggregate category. Thus,
we have to rely on other descriptors of aggregate morphology, but we can still em-
ploy suitable derivatives of the partition function to probe other observables of large
aggregates. In fact, the divergence of mean aggregate size at gelation, although ag-
gregates of all sizes occur in the system, indicates that averages of observables at the
gel point are dominated by large aggregates. Thus, statistical averages are well-suited
to quantify the morphology of large aggregates.

Our choice of observables is illustrated in Fig. 3.5. The number of triangles in an
aggregate is indicative of how bulky it is (see Fig. 3.5a). Therefore, it distinguishes
slim, straight fibers from bulky, curved ones, for example. However, there are other
morphologies that contain a lot of triangles, e.g. crystals. So, we use branching events
as an indicator of how fibrous an aggregate is (see Fig. 3.5b). Curved fibers of tri-
angles rarely branch and instead grow mainly linearly. Crystals, on the other hand,
branch often and explore all lattice directions equally. Lastly, crystals and liquids
both have a lot of triangles and many branchings. Crystals are made up of only a few
different interactions that repeat periodically, while liquids use a random mixture of
interactions. The relative abundances of all possible interactions 𝐸𝜓𝜑 in an aggregate
define a probability distribution. By referring to the associated Shannon entropy, we
can distinguish ordered aggregates like crystals from disordered ones like liquids (see
Fig. 3.5c). From a formal viewpoint, the average number of triangles, branchings,
and bonds per aggregate goes to infinity at the gel point, so we consider ratios of
observables instead.

In Subsection 3.3.1, we compute the triangle density ⟨𝑡⟩
⟨𝑛⟩ , i.e. the number of triangles

per particle in large aggregates. Subsequently, we determine the branching ratio ⟨𝑏⟩
⟨𝑡⟩
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Figure 3.5: Observables of aggregate morphology. a, Slim fibers (left) can be distinguished from
more bulky curved fibers of triangles (right) via the number of triangles in each respective aggregate.
b, The number of branchings discriminates between mostly linear aggregates like fibers of triangles
(left) and space-filling crystals (right). c, Bond entropy can be used to discern ordered aggregates like
crystals (left), which only use a few different interactions, from disordered ones like liquids (right),
which are constituted by a wide variety of interactions.

in Subsection 3.3.2, which describes the probability of a triangle in a large aggregate
constituting a branching point. Lastly, in Subsection 3.3.3, we calculate the bond
entropy 𝑆bonds of large aggregates based on the relative abundances of individual
interactions 𝐸𝜓𝜑.
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3.3.1 Triangle Density
To obtain the triangle density ⟨𝑡⟩

⟨𝑛⟩ , we must first compute the mean number of triangles
⟨𝑡⟩. Generally, in statistical physics, observables can be computed by differentiating
the free energy with respect to their conjugate variable. For instance, in the Ising
model, the external magnetic field is the conjugate variable of the magnetization.
Based on this analogy, we introduce a dummy factor 𝑇 to each term in the self-
consistency relation, Eq. (2.18), that corresponds to a triangle:

𝐺𝜓 = 1+𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2 +𝑦𝜓,𝜑+3)𝐺𝜑 +𝑇𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 (3.22)

Similarly to the mean aggregate size (cf. Subsection 3.2.1), we compute the mean
number of triangles ⟨𝑡⟩ by differentiating the partition function 𝒵 with respect to 𝑇:

⟨𝑡⟩ = 𝑇
𝒵

d𝒵
d𝑇

∣
𝑇 =1

= d ln 𝒵
d ln 𝑇

∣
𝑇 =1

(3.23)

Due to 𝒵 = 𝑐 ∑𝜓 𝐺𝜓𝐺𝜓+2 (see Eq. (2.19)), we can write ⟨𝑡⟩ in terms of the partial
partition functions

⟨𝑡⟩ = 2𝑇 𝑐
𝒵

∑
𝜓

𝐺𝜓+2
d

d𝑇
𝐺𝜓∣

𝑇 =1

. (3.24)

Implicit differentiation of Eq. (3.22) with respect to 𝑇 yields a linear system of equa-
tions

A ⋅ d𝑮
d𝑇

= 𝒃(𝑇 ) (3.25)

with the same matrix A as in Eq. (3.8)), but now there is another inhomogeneous
term

𝑏(𝑇 )
𝜓 = 𝑐2 ∑

𝜑,𝜈
𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 . (3.26)

Following the same formal steps as in Subsection 3.2.1, we obtain

⟨𝑡⟩ = 2
det A

𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝑇 ))
𝑮(+2) ⋅ 𝑮

(3.27)

Combining this expression with our result for mean aggregate size ⟨𝑛⟩ (see Eq. (3.13)),
we finally find the triangle density:

⟨𝑡⟩
⟨𝑛⟩

= 1
𝑐

𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝑇 ))
𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝑐))

(3.28)

3.3.2 Branching Ratio
Before deriving an expression for the branching ratio ⟨𝑏⟩

⟨𝑡⟩ , we define what constitutes
a branching in an aggregate and introduce a counting mechanism.
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0 branchings 6 branchings 4 branchings

Figure 3.6: The notion of a branching point. A triangle constitutes a branching point (green dots),
if each of its particles also has neighboring particles outside of that triangle. If the root particle sits
at the boundary of the aggregate (purple dot in the left panel), then its triangle does not represent
a branching point (purple cross), according to our definition of a branching. This case is covered in
Eq. (3.32).

As visualized in Fig. 3.6, only a triangle motif, each of whose particles has at least
one more neighboring particle outside of that triangle, corresponds to a branching
event of the aggregate.

To formalize the number of branchings in an aggregate, we have to modify Eq. (2.18)
to be able to identify whether a triangle is also a branching point or not. For this
purpose we define

𝐺𝜓 ≕ 1 + ̃𝐺𝜓 . (3.29)

̃𝐺𝜓 is the partial partition function 𝐺𝜓 minus the contribution of subaggregate ter-
mination. In other words, ̃𝐺𝜓 is the statistical weight for a subaggregate that accom-
modates at least one particle. Based on Eq. (2.18), we write a self-consistent system
for ̃𝐺𝜓 that associates the dummy variable 𝐵 to a branching event:

̃𝐺𝜓 = 𝑐 ∑
𝜑

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)(1 + ̃𝐺𝜑)

+ 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2(1 + ̃𝐺𝜑 + ̃𝐺𝜈 + 𝐵 ̃𝐺𝜑
̃𝐺𝜈)

(3.30)

However, the root particle of the subaggregate described by ̃𝐺𝜓 does not necessarily
have more neighbors outside this subaggregate. Therefore, the partition function of
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the whole aggregate 𝒵 is not simply given by

𝒵 ≠ 𝑐 ∑
𝜓

𝐺𝜓𝐺𝜓+2 = 𝑐 ∑
𝜓

(1 + ̃𝐺𝜓)(1 + ̃𝐺𝜓 + 2)

= 𝑐 ∑
𝜓

(1 + ̃𝐺𝜓 + ̃𝐺𝜓+2 + ̃𝐺𝜓
̃𝐺𝜓+2) ,

(3.31)

because the terms ̃𝐺𝜓 and ̃𝐺𝜓+2 in the last equality do not actually correspond to
a branching event. This is also visualized on the left of Fig. 3.6. To cover this case,
we introduce another partial partition function ̄𝐺𝜓 that does not include the dummy
variable 𝐵:

̄𝐺𝜓 ≔ 𝑐 ∑
𝜑

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)(1 + ̃𝐺𝜑)

+ 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2(1 + ̃𝐺𝜑 + ̃𝐺𝜈 + ̃𝐺𝜑
̃𝐺𝜈)

(3.32)

The correct expression for the partition function 𝒵 is then

𝒵 = 𝑐 ∑
𝜓

(1 + ̄𝐺𝜓 + ̄𝐺𝜓+2 + ̃𝐺𝜓
̃𝐺𝜓+2) . (3.33)

Similarly to the last subsection, the mean number of branchings in an aggregate ⟨𝑏⟩
can then be obtained via

⟨𝑏⟩ = 𝐵
𝒵

d𝒵
d𝐵

∣
𝐵=1

= d ln 𝒵
d ln 𝐵

∣
𝐵=1

= 2𝐵𝑐
𝒵

∑
𝜓

( d
d𝐵

̄𝐺𝜓 + ̃𝐺𝜓+2
d

d𝐵
̃𝐺𝜓)∣

𝐵=1

,
(3.34)

where we have used Eq. (3.33) in the last step. Analogously to before, implicit differ-
entiation of Eq. (3.30) yields an inhomogeneous linear matrix equation for ̃𝑮:

A ⋅ d ̃𝑮
d𝐵

= 𝒃(𝐵) (3.35)

with A as in Eq. (3.8) and

𝑏(𝐵)
𝜓 = 𝑐2 ∑

𝜑,𝜈
𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2

̃𝐺𝜑
̃𝐺𝜈 . (3.36)

Moreover, we find
d

d𝐵
̄𝐺𝜓 = d

d𝐵
̃𝐺𝜓 − 𝑏(𝐵)

𝜓 . (3.37)

Putting everything together, the mean number of branchings can be brought into the
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following form:

⟨𝑏⟩ = 2
det A

𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝐵)) − det A ∑𝜓 𝑏(𝐵)
𝜓

𝑮(+2) ⋅ 𝑮
(3.38)

Recalling the formula for the mean number of triangles ⟨𝑡⟩, Eq. (3.27), and using that
det A = 0 (cf. Eq. (3.21)), we finally obtain the branching ratio at gelation:

⟨𝑏⟩
⟨𝑡⟩

=
𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝐵))
𝑮(+2) ⋅ (adj(A) ⋅ 𝒃(𝑇 ))

(3.39)

3.3.3 Bond Entropy
We can characterize aggregates according to their global structure through the tri-
angle density and the branching ratio. Lastly, we now consider one possible notion
of aggregate order, which will be instrumental to distinguishing between well-defined
ordered morphologies from random disordered ones in Chapter 4.

Figure 3.5c visualizes one typical distinction that we want to make, namely between
crystals that use only a few different interactions and liquids that employ a wide va-
riety of different interactions. The underlying theme is that the interactions between
neighboring particles are determined by their orientation. Therefore, the realized in-
teractions are closely related to the orientational order of particles in the aggregate.
In a crystal, particle orientations follow periodic patterns, while in a liquid, particles
are randomly oriented.

For the purpose of our discussion, we choose the relative abundance of different
interactions in an aggregate as a descriptor of the orientational order of its particles.
Consider a random bond in an aggregate. We are going to calculate the probabil-
ity for each individual interaction to be realized at that bond and subsequently find
the Shannon entropy of the associated probability distribution, which we term bond
entropy 𝑆bonds. For a crystal, the probability weights are concentrated in a few in-
teractions corresponding to a low bond entropy, while in the case of a liquid, the
distribution is closer to uniform, yielding a higher bond entropy.

Let 𝑛𝑎𝑏 denote the total number of bonds between faces 𝑎 and 𝑏 in an aggregate
(𝑎, 𝑏 ∈ {1, 2, 3, 4}). The (𝑎, 𝑏) interaction and the (𝑏, 𝑎) interaction lead to the same
bond due to the symmetry of the interaction matrix. We therefore consider bonds as
unordered tuples {𝑎, 𝑏}. The probability 𝑝𝑎𝑏 for the bond {𝑎, 𝑏} to be realized at a
randomly chosen bond of a large aggregate is then approximately equal to

𝑝𝑎𝑏 ≃ ⟨𝑛𝑎𝑏⟩
∑𝑖≤𝑗 ⟨𝑛𝑖𝑗⟩

, (3.40)

because ⟨𝑛𝑎𝑏⟩ is dominated by large aggregates. Note that we only sum over 𝑖 ≤ 𝑗 to
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avoid overcounting of bonds. Hence, to obtain the following (Shannon) bond entropy

𝑆bonds = − ∑
𝑎≤𝑏

𝑝𝑎,𝑏 ln 𝑝𝑎,𝑏 , (3.41)

we have to find ⟨𝑛𝑎𝑏⟩.

In our aggregate-centered formalism (cf. Section 2.3), each {𝑎, 𝑏}-bond is associated
to either the Boltzmann weight 𝑦𝑎𝑏 = e−𝛽𝐸𝑎𝑏 or 𝑦𝑏𝑎. Thus, we have

⟨𝑛𝑎𝑏⟩ = 𝑦𝑎𝑏
𝒵

d𝒵
d𝑦𝑎𝑏

+ (1 − 𝛿𝑎𝑏)𝑦𝑏𝑎
𝒵

d𝒵
d𝑦𝑏𝑎

= d ln 𝒵
d ln 𝑦𝑎𝑏

+ (1 − 𝛿𝑎𝑏) d ln 𝒵
d ln 𝑦𝑏𝑎

. (3.42)

Following the same procedure as before to compute the derivative of 𝒵, one finds

⟨𝑛𝑎𝑏⟩ = 2𝑦𝑎𝑏
det A

𝑮(+2) ⋅ (adj(A) ⋅ (𝒃(𝑛𝑎𝑏) + (1 − 𝛿𝑎𝑏𝒃(𝑛𝑏𝑎)))
𝑮(+2) ⋅ 𝑮

. (3.43)

We obtain the inhomogeneous term 𝑏(𝑛𝑎𝑏)
𝜓 by using

d
d𝑦𝑎𝑏

𝑦𝜑𝜈 = 𝛿𝑎𝜑𝛿𝑏𝜈 (3.44)

and the product rule of differentiation:

𝑏(𝑛𝑎𝑏)
𝜓 = 𝑐 ∑

𝜑
𝐺𝜑

d
d𝑦𝑎𝑏

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)

+ 𝑐2 ∑
𝜑,𝜈

𝐺𝜑𝐺𝜈
d

d𝑦𝑎𝑏
(𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2)

= 𝑐 ∑
𝜑

𝐺𝜑(𝛿𝑎,𝜓+1𝛿𝑏,𝜑+2 + 𝛿𝑎,𝜓𝛿𝑏,𝜑+3)

+ 𝑐2 ∑
𝜑,𝜈

𝐺𝜑𝐺𝜈(𝛿𝑎,𝜓+1𝛿𝑏,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2

+ 𝛿𝑎,𝜓𝛿𝑏,𝜈+3𝑦𝜓+1,𝜑+2𝑦𝜑+3,𝜈+2 + 𝛿𝑎,𝜑+3𝛿𝑏,𝜈+2𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3)

(3.45)

From the expression for ⟨𝑛𝑎𝑏⟩, Eq. (3.43), the bond probability 𝑝𝑎𝑏 and 𝑆bonds then
follow according to Eqs. (3.40) and (3.41).

We now have means to sample and draw aggregates at gelation (see Section 3.2)
and quantitative observables that characterize them, namely the triangle density ⟨𝑡⟩

⟨𝑛⟩ ,
the branching ratio ⟨𝑏⟩

⟨𝑡⟩ and the bond entropy 𝑆bonds (cf. Fig. 3.5). In the next chapter,
we use them to quantitatively define the different aggregate categories.
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Well-Defined Morphologies
In this chapter, we will exploit that the triangle density, the branching ratio, and the
bond entropy are sufficient to classify all possible aggregates, in fact. In the following,
we investigate how different aggregate morphologies are related to particle properties,
namely their interactions E (see Eq. (2.1)). Proteins self-assemble in many different
molecular contexts and protein-protein interactions are diverse [54]. Therefore, we will
statistically explore our parameter space of interactions to assess which morphologies
generically arise for protein-like complex particles. In particular, we will examine
whether ordered aggregates like fibers or crystals emerge.

In Section 2.1, we drew an analogy between proteins and irregular puzzle pieces.
This illustration suggests a lock-key mechanism that yields a single well-defined in-
teraction per particle face pair. However, considering the aggregation of complex
proteins, for instance, motivates a different perspective. When two proteins bind to-
gether, many microscopic interactions exist between their amino acid residues. It has
been estimated that a protein-protein interface comprises 57 ±22 amino acid residues
[55]. Each of these residues can have several bonded contacts on the order of ∼ 10
[56]. The number of unbonded transient contacts is even higher. Thus, at least a few
hundred individual interactions 𝛽𝜀𝑖 determine the overall interaction 𝛽𝐸 between two
proteins in assembly

𝛽𝐸 = 𝛽 ∑
𝑖

𝜀𝑖 . (4.1)

This many individual interactions could have a self-averaging effect. Moreover, amino
acid residues often exhibit a high specificity [28]. Thus, we assume that the component
interactions 𝛽𝜀𝑖 are only weakly correlated. Motivated by the central limit theorem,
we model the dimensionless interaction energies 𝛽𝐸 as a Gaussian distributed ran-
dom variable with mean 𝜇 and standard deviation 𝜎. 𝜇 can be interpreted as the
average affinity or propensity of the considered complex particles, with a negative
value representing sticky particles. 𝜎 quantifies particle anisotropy, where 𝜎 = 0
would correspond to isotropic particles. Protein binding sites are typically made up
of a combination of “hot regions”, which are composed of multiple individual residues
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that contribute more dominantly to the interaction [57]. The distribution of these hot
regions over the protein surface is not isotropic. Therefore, we assume that protein-like
particles have a larger anisotropy 𝜎 ≠ 0. The exact magnitude of these parameters
may vary from one biological context to the other, for example due to different in-
teracting proteins and binding sites. In conclusion, we choose to independently and
identically sample the 10 independent components (once symmetry is taken into ac-
count) of the interaction matrix E from a Gaussian distribution 𝒩(𝜇, 𝜎). In our
analysis, we will consider different pairs of affinity 𝜇 and anisotropy 𝜎.

In Section 4.1, we explore the parameter space of anisotropic interactions by sam-
pling interaction matrices E from a Gaussian distribution. Based on the resulting
aggregate morphologies, we argue that all aggregates can broadly be classified into
the stereotypical aggregate categories introduced in the last chapter (see Fig. 3.4). For
given particle affinity and anisotropy, we then obtain the probability of each aggre-
gate morphology in Section 4.2. In doing so, we demonstrate that increasing particle
anisotropy promotes aggregate order. Moreover, slim fibrous morphologies are most
common for repulsive anisotropic interactions, while bulky space-filling morphologies,
including crystals, are most abundant for attractive ones.

4.1 Aggregate Morphologies Fall Into
Stereotypical Categories

In order to probe the parameter space of complex interactions, we compile statistics
for a particle affinity of 𝜇 = 0 and anisotropies 𝜎 ∈ {1, 2, 3, 4, 5, 10}. We quantify
the state space of aggregate morphologies by the morphological observables from Sec-
tion 3.3: triangle density, branching ratio and bond entropy. Thereby, we see that
aggregates only fall into a few subregions of the state space. By visualizing the as-
sociated aggregate morphologies, we show that all aggregates broadly belong to one
of the stereotypical categories of aggregate morphology from Fig. 3.4. Based on this,
we provide a new quantitative definition for each of these categories by associating
them to a region in the three-dimensional state space. This enables the classification
of aggregates based on their morphological observables.

For each pair (𝜇, 𝜎), we sample at least 10000 interaction matrices E by indepen-
dently drawing each (dimensionless) interaction energy 𝛽𝐸𝜑𝜈 from the Gaussian dis-
tribution 𝒩(𝜇, 𝜎). Given E, we obtain the system’s partition functions and fugacity
at the gel point as detailed in Subsection B.1.2. From these, we calculate the triangle
density, the branching ratio as well as the bond entropy of large aggregates using the
expressions derived in Section 3.3. Each interaction matrix E is then associated to a
point in the three-dimensional state space spanned by these three observables.

As an example, we visualize the state space for the pair (𝜇, 𝜎) = (0, 5) in the
form of a scatter plot in Fig. 4.1. In order to grasp which aggregate morphologies are
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Figure 4.1: Our three morphological observables span a state space of aggregate morphologies.
Shown are 3𝑑 scatter plots for E ∼ 𝒩(𝜇 = 0, 𝜎 = 5) as quantified by triangle density 2 ⟨𝑡⟩

⟨𝑛⟩ ∈ [0, 1]
(factor 2 for illustrative purposes), branching ratio ⟨𝑏⟩

⟨𝑡⟩ ∈ [0, 1] and bond entropy 𝑆bonds ∈ [0, ln 10].
Each small blue point corresponds to one of 50000 sampled interaction matrices E, while the 12
orange dots represent example aggregates that are pictured in Fig. 4.2. All subfigures show the same
scatter plot but from different viewpoints: a, default, b, above, c, right, d, front.

associated to each region in the state space, we also illustrate a few example aggregates
in Fig. 4.2 whose morphology corresponds to the orange dots in Fig. 4.1. Each of the
stereotypical aggregate categories from Fig. 3.4 is represented at least once.

In the scatter plot of Fig. 4.1, we observe that the state space is not uniformly
explored. This stems in part from the fact that we exclusively sample aggregates at
the gel point. Fig. 4.1b illustrates well that there are no data points in the regime
where the triangle density and the branching ratio are simultaneously high. A fully
occupied lattice would achieve a theoretical maximum of ⟨𝑏⟩

⟨𝑡⟩ × ⟨𝑡⟩
⟨𝑛⟩ = 2/3. Precisely

at the gel point, however, an infinite aggregate first arises, and its volume fraction is
zero, because gelation is a continuous second-order phase transition. In particular,
the probability of a specific particle belonging to that infinite aggregate is zero. On a
fully occupied lattice, each particle is in the bulk of the aggregate and belongs to two
triangles. Also, each triangle constitutes a branching point. Large but finite aggre-
gates necessarily have a large surface on our treelike graph. As a result, neither does
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Figure 4.2: Examples from the state space of aggregates. The aggregates in the subpanels a–l cor-
respond to the orange dots in Fig. 4.1 and are sampled from the following coordinates, respectively:
( ⟨𝑏⟩

⟨𝑡⟩ , 2 ⟨𝑡⟩
⟨𝑛⟩ , 𝑆bonds)∈{(0.99, 0.01, 0.06),(0.72, 0.20, 1.30),(0.02, 0.99, 1.11),(0.48, 0.99, 0.87),

(0.26, 0.66, 1.24),(0.33, 0.87, 0.62),(0.37, 0.99, 0.64),(0.26, 0.99, 1.01),(0.25, 0.99, 1.11),
(0.37, 0.52, 1.02),(0.44, 0.66, 1.48),(0.28, 0.85, 1.43)}. According to our classification scheme
these aggregates fall into the following categories (cf. Table 4.1 and Fig. 3.4): a, fiber, b, fiber
network, c, fiber of triangles, d, decorated fiber, e, sponge, f–i, crystal, j, floc, k & l, liquid.

every particle belong to two triangles nor does every triangle correspond to a branch-
ing point. Thus, the number of branching points per particle in large aggregates,
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quantified by

2 ⟨𝑏⟩
⟨𝑛⟩

= 2 ⟨𝑡⟩
⟨𝑛⟩

× ⟨𝑏⟩
⟨𝑡⟩

(4.2)

in the figure, is bounded away from the theoretical maximum of 2 ⟨𝑏⟩
⟨𝑛⟩ = 4

3 for a fully
occupied lattice. Fig. 4.1b visually suggests that the maximum at gelation is closer
to 1

2 . This value is for example realized in decorated fibers (see Fig. 4.2d), which
exist close to ⟨𝑏⟩

⟨𝑡⟩ = 0.5 and 2 ⟨𝑡⟩
⟨𝑛⟩ = 1. The gel condition thus explains why many

data points exhibit a trade-off between triangle density and branching ratio. Either
systems exhibit many triangles, which are almost never branching points, or there are
fewer triangles, but almost every one of them constitutes a branching point.

Data points seem to overwhelmingly fall into regions of the state space whose ag-
gregates resemble one of the stereotypical aggregate categories we have introduced in
Chapter 3 (cf. Figs. 4.2 and 3.4). For instance, Fig. 4.1c) illustrates that there are
many data points at low bond entropy and low triangle density. In this regime, slim
fibers live, which use a single type of head-to-tail interaction (cf. Fig. 2.3, Fig. 3.4
and see Fig. 4.2), such that 𝑆bonds ≈ ln 1 = 0. The minimum bond entropy of 0
never occurs for systems with high triangle density, i.e. for bulky aggregates. This
is because no bulky aggregate morphologies can be built using copies of just a single
interaction. Instead, they often exhibit a bond entropy close to 𝑆bonds = ln 2 ≈ 0.69
or 𝑆bonds = ln 3 ≈ 1.10, which corresponds to the case of a crystal where two or
three interactions are about equally as abundant, respectively. Many data points are
concentrated in line-like and plane-like regions of the state space in Fig. 4.1. This
suggests that sampled interaction matrices E either lead to one of a few stereotypical
aggregate morphologies or to aggregates that interpolate between these. However,
the scatter plot allows no quantification of the probability to sample from a specific
region of the state space. Therefore, it is unclear whether our stereotypical categories
of aggregate morphology actually dominate the state space or whether there are more
well-defined categories.

We think of liquids and flocs as all-encompassing categories of ill-defined, disordered
aggregates. Beyond, to decide whether more generic, well-defined morphologies than
the six introduced before exist, We further examine the projection of the state space
onto the 2𝑑 plane spanned by the branching ratio and the triangle density. These two
observables specify the structure of aggregates without referencing the orientational
order of individual particles.

Figure 4.3 shows 2𝑑 probability histograms for a collection of six pairs (𝜇, 𝜎) with
𝜇 = 0 and 𝜎 ∈ {1, 2, 3, 4, 5, 10}. For low particle anistropy 𝜎 ≤ 1, all sampled in-
teraction matrices lead to the formation of floc-like morphologies, which incorporate
an intermediate amount of triangles and branchings (see Fig. 4.3a). Formally, this
case is equivalent to a high temperature because the interactions only enter the model
equations in their dimensionless form 𝛽𝐸 = 𝐸

𝑘𝐵𝑇 (cf. (2.18)). Therefore, entropy dic-
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tates the self-assembly behavior, which leads to both slim and bulky binding motifs
being formed. As anisotropy of interactions is increased (or equivalently temperature
lowered), a continuous flow of probability and then accumulation at multiple distinct
regions in the state space can be observed (Figs. 4.3b–e). The case of 𝜎 = 10 in Fig-
ure 4.3f suggests that in the large anisotropy limit, almost all aggregates exhibit one
of only 6 different morphologies, corresponding to 6 accumulation points at the follow-
ing coordinates: ( ⟨𝑏⟩

⟨𝑡⟩ , 2 ⟨𝑡⟩
⟨𝑛⟩) ∈ {(0, 1), (0.25, 1), (0.37, 1), (0.5, 1), (0.25, 0.66), (1, 0)}. If

two data points are close to each other in the state space, then they amount to morpho-
logically very similar aggregates. Thus, accumulation points indicate the emergence
of very well-defined aggregate morphologies, which are generically formed for many
sampled interaction matrices E. This is remarkable because the parameter space as-
sociated with the 10 interactions in E is vast. The 6 accumulation points in state
space coincide with the following well-defined aggregate categories, respectively: fiber
of triangles, crystal, crystal, decorated fiber, sponge, and (slim) fiber. The overall
aggregate structure of the two types of crystals is exactly the same (cf. Fig. 4.2, for
example). However, if one of the two triangle binding motifs realized in a crystal is
much more favorable than the other, then it is also much more abundant in the system.
This ultimately leads to a higher branching ratio of the resulting crystals. According
to Fig. 4.3, the aggregate morphology, which we termed “floc”, which is made up
of a wide variety of interactions and exhibits an intermediate number of branchings
and triangles, arises when most interactions are weak and, therefore, about equally
as favorable. The 5 aforementioned more well-defined categories are stereotypical for
the case of strong interactions between particles, where few binding motifs are much
more favorable than the others. Before, we introduced two more aggregate categories,
namely fiber networks and liquids (see Fig. 3.4). These are stereotypical for inter-
mediately strong interactions. Indeed, in the state space, fiber networks interpolate
between flocs and (slim) fibers, while liquids interpolate between flocs and sponges,
crystals, fibers of triangles, or decorated fibers.

Based on these considerations, we define state boundaries between the 8 different
categories of aggregate morphologies. Table 4.1 summarizes the regions in state space
that are associated to each morphology.

In this section, we have illustrated that although our particles exhibit a 10-dimensional
parameter space of anisotropic interactions, large aggregates fall into only 8 stereotyp-
ical categories of aggregate morphology (see Fig. 4.3), namely: fibers, fiber networks,
fibers of triangles, decorated fibers, sponges, crystals, flocs, and liquids. We have
seen first indications that particles with strong anisotropic interactions tend to form
well-defined aggregates if these interactions are sampled from a Gaussian distribution
with vanishing affinity 𝜇 = 0. With a classification scheme for aggregates in place, we
can further corroborate this concept and next quantify how likely each morphology is
to occur for different values of affinity 𝜇 and anisotropy 𝜎.
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Figure 4.3: Most aggregates fall into only a few restricted regions of the morphology state space when
particle anisotropy is increased. Shown are 2𝑑 probability histograms of the triangle density 2 ⟨𝑡⟩

⟨𝑛⟩

and the branching ratio ⟨𝑏⟩
⟨𝑡⟩ . Each subfigure quantifies the probability with which distinct aggregate

morphologies are formed based on interaction matrices randomly sampled from different underlying
Gaussian distributions 𝒩(𝜇 = 0, 𝜎) with 𝜎 ∈ {1, 2, 3, 4, 5, 10}. Histogram bins have dimensions
0.02×0.02. The color bars quantify the probability for a system E to land in each bin, respectively.
The histograms in the subpanels a–e are based on 50000 data points, while histogram f results from
4983 data points.
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Table 4.1: Aggregates are classified into one of the below categories of aggregate morphology based
on the following observables: branching ratio ⟨𝑏⟩

⟨𝑡⟩ , triangle density 2 ⟨𝑡⟩
⟨𝑛⟩ and bond entropy 𝑆bonds. A

dash denotes that there are no conditions on an observable, e.g. all aggregates with 2 ⟨𝑡⟩
⟨𝑛⟩ < 0.2 are

classified as (slim) fibers, regardless of their branching ratio and their bond entropy.

Morphology Branching ratio Triangle density Bond entropy

⟨𝑏⟩
⟨𝑡⟩ 2 ⟨𝑡⟩

⟨𝑛⟩ 𝑆bonds

(Slim) fiber – 0 ≤ ⋯ < 0.2 –

Fiber network – 0.2 ≤ ⋯ < 0.35 –

Fiber of trian-
gles 0 ≤ ⋯ < 0.2 0.86 ≤ ⋯ ≤ 1 0 ≤ ⋯ < ln 4

Decorated fiber 0.45 ≤ ⋯ ≤ 1 0.86 ≤ ⋯ ≤ 1 0 ≤ ⋯ < ln 4

Sponge – 0.65 ≤ ⋯ < 0.86 0 ≤ ⋯ < ln 4

Crystal 0 ≤ ⋯ < 0.45 0.86 ≤ ⋯ ≤ 1 0 ≤ ⋯ < ln 4

Floc – 0.35 ≤ ⋯ < 0.65 –

Liquid – 0.65 ≤ ⋯ ≤ 1 ln 4 ≤ ⋯ ≤ ln 10

4.2 Particle Anisotropy Promotes Aggregate
Order

According to the last section, particles with anisotropic interactions may form well-
defined morphologies, especially when these interactions are strong. This section
highlights this conclusion by providing the probabilities of each aggregate morphol-
ogy in our model (cf. Fig. 3.4). We sample interaction matrices from Gaussian
distributions for 25 pairs of particle affinity and anisotropy. Thereby, we conclude
that the previously observed trend towards well-defined and ordered aggregates per-
sists. In fact, we find that the emergence of ordered aggregates is a direct consequence
of anisotropic interactions because their prevalence is largely independent of the av-
erage affinity of particles. Increasing the anisotropy of interactions promotes both
fibers and crystals. Fibers do generically self-assemble from anisotropic particles that
are repulsive on average, while crystals arise if their interactions are mostly attractive.

We augment the discussion of the previous section by adding another dimension to
the particle properties considered. Instead of keeping the average particle affinity 𝜇
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fixed at zero, we now survey all parameter pairs of 𝜇 ∈ {−2, −1, 0, 1, 2} and parti-
cle anisotropy 𝜎 ∈ {1, 2, 3, 4, 5}. For each pair (𝜇, 𝜎), we randomly sample between
10000 and 50000 interaction matrices from the Gaussian distribution 𝒩(𝜇, 𝜎). Then
we characterize the morphologies of the resulting large aggregates at the gel point by
computing their morphological observables using the tools from Chapter 3. Subse-
quently, we accordingly classify aggregates, employing the scheme from the previous
section (see Table 4.1). Using pie charts, Fig. 4.4 illustrates the resulting probabilities
to observe each aggregate morphology as a function of affinity 𝜇 and anisotropy 𝜎.
Figure 4.4 exhibits multiple trends in self-assembly behaviour.

First, increasing the anisotropy of interactions promotes the occurrence of well-
defined ordered aggregates: different types of fibers, as well as sponges and crystals,
dominate the state space of anisotropic particles. In particular, this trend is mono-
tonic for fibers and crystals, whose prevalence increases regardless of the given particle
affinity. The fact that anisotropic particles enhance the order of self-assembled aggre-
gates is a natural consequence of the energetic competition of the associated binding
motifs. If we increase particle anisotropy 𝜎, then all interactions get stronger due to
|𝛽𝐸| ∼ 𝜎. Thus, an increase in anisotropy amplifies all interaction energies by the
same factor. If distinct interactions are not equally as favorable, this enhances differ-
ences in the interaction energies. The few energetically most favorable binding motifs
then dominate the assembled morphologies because entropy becomes negligible at low
temperatures or large particle anisotropy. As a result, the bond entropy of aggregates
successively decreases, and well-defined ordered aggregates emerge. For low particle
anisotropy, on the other hand, most self-assembled aggregates are amorphous flocs.

Second, the average affinity 𝜇 of particles is strongly correlated with aggregate
bulkiness, i.e. their number of triangles. In Fig. 4.4, this is most apparent for the
particle affinities 𝜇 ∈ {−2, 2}. Bulky morphologies, namely Fibers of triangles, dec-
orated fibers, liquids, and crystals, are much more likely to occur for particles with
attractive interactions, while repulsive particles often yield slim fibers and fiber net-
works. However, this feature is not decoupled from the anisotropy of interactions 𝜎.
For small anisotropy 𝜎 ≲ |𝜇|, aggregates tend to be neither very bulky nor very slim.
In this regime, the entropy gain related to realizing a wide variety of different interac-
tions and binding motifs, both slim and bulky ones, outweighs their comparably weak
energetic competition. Overall, a strong correlation between the triangle density and
particle affinity is natural because the latter raises the energetic benefit of having
more neighbors in assembly.

In this chapter, we have analyzed the statistics of large aggregates in frustrated
self-assembly in detail, relying on results from Chapter 2 and Chapter 3. Thereby,
we showed that only a few categories of well-defined ordered morphologies emerge
dominant for anisotropic particles despite the inherent complexity of their interactions.
In particular, Figure 4.4 demonstrates that within our model, fibers and crystals
represent generic morphologies of aggregates in the self-assembly of complex particles.
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Figure 4.4: Particle anisotropy promotes aggregate order. Shown are the probabilities to obtain each
aggregate morphology when interaction matrices are randomly sampled from a Gaussian distribution
with fixed affinity 𝜇 ∈ {−2, −1, 0, 1, 2} and anisotropy 𝜎 ∈ {1, 2, 3, 4, 5}. Each pie chart contains
information on aggregate morphologies of 10000 to 50000 interaction matrices.

With these conclusions in mind, we next investigate the role of geometrical frustration
in selecting self-assembled morphologies.
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Equipped with a broad understanding of how particle properties influence the assem-
bled morphologies, we can approach the following question: How does geometrical
frustration impact self-assembly? According to our initial proposal, geometrical frus-
tration is widespread for complex anisotropic particles. This is because interactions
between them sensitively depend on their relative arrangement. In assembly, com-
plex particles might therefore be unable to form a favorable interaction with one of
their neighbors without being forced into a very unfavorable interaction with another
neighbor. If geometrical frustration occurs in our model, we conjecture that it will
favor slimmer aggregates like fibers, since it would force dense space-filling aggregates
to incorporate energetically unfavorable binding motifs in lattice triangles. In this
chapter, we put this idea to the test and analyze whether geometrical frustration on
a local scale could be a main physical driver of robust fiber formation in the self-
assembly of complex protein-like particles.

Our model on the Husimi tree is specifically designed towards the analysis of the
local effects of geometrical frustration on the scale of a single lattice triangle. There
are no loops besides the triangles, and interactions are exclusively realized between
nearest neighbors on the lattice. Thus, triangles are the only source of frustration.
To scrutinize the role of geometrical frustration, we contrast aggregate morphologies
in our frustrated system with those that are formed in a comparable unfrustrated
system. For that purpose, we eliminate geometrical frustration by removing the tri-
angles from the lattice. Thus, the unfrustrated Bethe lattice of coordination 𝑓 = 4 is
a suitable reference point (see Fig. 5.1).

In Section 5.1, we consider the Husimi tree and the Bethe lattice with all sites
occupied, which forces maximal frustration. To estimate the frustration associated
with an interaction matrix, we investigate differences in particle arrangement between
the two lattices. We formalize these in the contact map C of particles, which is a
4 by 4 matrix whose elements are the frequencies with which particle face 𝑎 (rows
of the matrix) is bound to face 𝑏 (columns). In Section 5.2, we define our measure
of frustration, which is larger the more different the contact maps are. Finally, we
correlate geometrical frustration on the full lattices with aggregate morphology at the
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gel point based on statistical data from many distinct random interaction matrices
(cf. Chapter 4). We show that Geometrical frustration promotes fiber formation,
while its absence favors crystals.

a b c

Figure 5.1: The Bethe lattice represents an unfrustrated alteration of our lattice, the Husimi tree
of triangles. a, The Bethe lattice of coordination 𝑓 = 4, a tree graph without loops. Particles only
enter two-body interactions. Hence, there is no frustration because favorable bonds cannot come at
the cost of a simultaneous forced unfavorable interaction. b, The Husimi tree of triangles, which we
study in this thesis. The triangles constitute small-scale loops, which may give rise to geometrical
frustration. c, Triangles constitute a minimal setting of geometrical frustration. Within triangles, a
particle may form a favorable interaction with one of its neighbors at the cost of a very unfavorable
one with its other neighbor.

5.1 Full Occupancy Case of Husimi Tree and
Bethe Lattice

Our aggregate-centered framework from Chapter 2 is not well-suited to a fully oc-
cupied lattice because it breaks down beyond the gel point (cf. Section 3.2), where
the gel fraction becomes nonzero. Instead, we employ a variant of the closely related
lattice-centered framework in Subsection 5.1.1 (cf. Section 2.4), which is tailored to-
wards the case that the whole lattice is covered by a single infinite aggregate. In
Subsection 5.1.2, we derive a similar set of self-consistent equations for the partition
function of the fully occupied Bethe lattice. For both lattices, we obtain the average
contact map of each particle as a function of the interactions E.

5.1.1 Husimi Tree
In the grand canonical ensemble, full occupancy, i.e. particle density 𝜌 = 1, is achieved
for infinite fugacity 𝑧 → ∞. In that limit, the partial partition functions 𝑔𝜓 of
subaggregates are related via (cf. Eq. (2.23))

𝑔𝜓 = 𝑧2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑔𝜑𝑔𝜈 . (5.1)
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The corresponding grand canonical partition function of a single aggregate that spans
the whole lattice reads

𝒵(full)
H = ∑

𝜓
𝑔𝜓𝑔𝜓+2 . (5.2)

Equation (5.1) has no finite solutions for 𝑧 → ∞, which we need to draw and sample
aggregates (cf. Appendix B.2). Thus, we solve for the ratio of partition functions

𝑥𝜓 ≔
𝑔𝜓

𝑔1
, (5.3)

so that 𝑥1 = 1 by definition. For 𝜓 ∈ {2, 3, 4} we find the following coupled set
of cubic equations by plugging Eq. (5.1) into the definition of 𝑥𝜓 and dividing both
numerator and denominator by 𝑔2

1:

𝑥𝜓 =
∑𝜑,𝜈 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈

∑𝜑,𝜈 𝑦2,𝜑+2𝑦1,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈
(5.4)

Solving these equations numerically allows the sampling of aggregates for the fully
occupied Husimi tree (see Subsection B.1.3).

Once we have computed the partition functions, we can calculate the contact map,
for which we now derive an expression. Let 𝐶𝑎𝑏 be the frequency of contacts between
face 𝑎 of a randomly chosen particle with face 𝑏 of its neighboring particle. The
contact map C is formally defined as the following 4 by 4 matrix:

C = (𝐶𝑎𝑏)𝑎,𝑏∈{1,2,3,4} (5.5)

In this matrix, each row and each column sum to one due to normalization of the
frequencies 𝐶𝑎𝑏:

4
∑
𝑎=1

𝐶𝑎𝑏 = 1 =
4

∑
𝑏=1

𝐶𝑎𝑏 (5.6)

The frequency 𝐶𝑎𝑏 for an (𝑎, 𝑏) contact of the root particle with one of its neighbors
is given by the statistical weights of the associated terms in the partition function,
i.e. qualitatively

𝐶𝑎𝑏 =̂ (𝑎, 𝑏) terms in partition function
partition function

. (5.7)

These weights are formally encoded in the two partial partition functions 𝑔𝜓 and 𝑔𝜓+2
of the two subaggregates that emerge from the root particle. We use Kronecker deltas
𝛿𝑖𝑗 to single them out. Let

ℎ ≔ 𝛿𝑎,𝜓+1𝛿𝑏,𝜑+2 + 𝛿𝑎,𝜓𝛿𝑏,𝜈+3 + 𝛿𝑎,𝜓+3𝛿𝑏,𝜂+2 + 𝛿𝑎,𝜓+2𝛿𝑏,𝜆+3 , (5.8)

where the four summands represent the four faces of the root particle {𝜓, 𝜓 + 1, 𝜓 +
2, 𝜓 + 3} = {1, 2, 3, 4} each of which could be face 𝑎 ∈ {1, 2, 3, 4}. Using Eqs. (5.1)
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and (5.2), we can write

𝐶𝑎𝑏 =
∑𝜓 ∑𝜑,𝜈,𝜂,𝜆 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑔𝜑𝑔𝜈𝑦𝜓+3,𝜂+2𝑦𝜓+2,𝜆+3𝑦𝜂+3,𝜆+2𝑔𝜂𝑔𝜆ℎ

∑𝜓 𝑔𝜓𝑔𝜓+2

=
∑𝜓 ∑𝜑,𝜈,𝜂,𝜆 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈𝑦𝜓+3,𝜂+2𝑦𝜓+2,𝜆+3𝑦𝜂+3,𝜆+2𝑥𝜂𝑥𝜆ℎ
∑𝜓 ∑𝜑,𝜈,𝜂,𝜆 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈𝑦𝜓+3,𝜂+2𝑦𝜓+2,𝜆+3𝑦𝜂+3,𝜆+2𝑥𝜂𝑥𝜆

.

(5.9)

Using the definition of ℎ, it can be shown that this expression indeed satisfies the
normalization constraint, Eq. (5.6).

We can now predict the self-assembly behavior on the fully occupied Husimi tree
and obtain the corresponding contact map C(H) via Eqs. (5.5) and (5.9).

5.1.2 Bethe Lattice
In this subsection, we develop a set of self-consistent equations for the partition func-
tion 𝒵(full)

B of the Bethe lattice at full occupancy. Subsequently, this yields an expres-
sion for the contact map C(B).

Four independent sublattices originate from each lattice vertex (see Fig. 5.2a). For
𝜓 ∈ {1, 2, 3, 4}, let 𝑔𝜓 be the partial partition function of the sublattice that emerges
from face 𝜓 of the corresponding root particle. As illustrated in Fig. 5.2a, the partition
function 𝒵(full)

B of the whole lattice is given by a product of the partial partition
functions,

𝒵(full)
B =

4
∏
𝜓=1

𝑔𝜓 . (5.10)

At full occupancy, there is a particle on each lattice vertex. Thus, the root particle
binds to four neighboring particles. Beyond each neighboring particle, three equivalent
sublattices emanate in turn. This setting is visualized in Fig. 5.2b. Taking into
account the fact that each neighboring particle has four different possible orientations
𝜑, the partial partition function 𝑔𝜓 of a sublattice is self-consistently given by

𝑔𝜓 =
4

∑
𝜑=1

𝑦𝜓,𝜑 ∏
𝜈≠𝜑

𝑔𝜈 = ∑
𝜑

𝑦𝜓,𝜑

𝑔𝜑
𝒵(full)

B . (5.11)

To compute the partial partition functions numerically, We again consider the ratio
𝑥𝜓 ≔ 𝑔𝜓

𝑔1
, which obeys

𝑥𝜓 =
∑𝜑 𝑦𝜓,𝜑/𝑥𝜑

∑𝜑 𝑦1,𝜑/𝑥𝜑
. (5.12)
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Figure 5.2: We exploit the tree structure of the Bethe lattice to obtain self-consistency relations
for the partition function at full occupancy. a, Four equivalent sublattices originate from the root
particle. Each subaggregate corresponds to a partial partition function 𝑔𝜓, where 𝜓 ∈ {1, 2, 3, 4}
is the face of the root particle from which the sublattice emerges. b, A subaggregate comprises
a particle that binds to the root and three more subaggregates. Here, we show the subaggregate
emerging from face 2 of the root particle. A (2, 3) interaction is realized, which formally corresponds
to the Boltzmann weight 𝑦23 = e−𝛽𝐸23 .

Notably, this self-consistency relation has a simpler structure than the one we found
for the Husimi tree (cf. Eq. (5.4)) and is only quadratic in the partial partition func-
tions. Similarly to the Husimi tree case, solving this equation for 𝑥𝜓 permits the
sampling and drawing of the full occupancy morphology on the Bethe lattice (see
Appendix B.1.3).

We obtain the contact map C(B) of the fully occupied Bethe lattice using a similar
ansatz as for the Husimi tree (cf. Eq. (5.7)). However, now only the subaggregate
originating from face 𝑎 of the root particle can yield an (𝑎, 𝑏) contact. Therefore, the
contact frequencies 𝐶𝑎𝑏 are given by

𝐶𝑎𝑏 =̂ (𝑎, 𝑏) term in 𝑔𝑎
𝑔𝑎

. (5.13)

If we employ (5.11) for 𝑔𝑎 as well as the definition 𝑥𝜓 = 𝑔𝜓/𝑔1, then we find

𝐶𝑎𝑏 =
∑𝜑 𝑦𝑎,𝜑𝛿𝑏,𝜑 ∏𝜈≠𝜑 𝑔𝜈

∑𝜑 𝑦𝑎,𝜑 ∏𝜈≠𝜑 𝑔𝜈

=
𝑦𝑎,𝑏 ∏𝜈≠𝑏 𝑔𝜈

∑𝜑 𝑦𝑎,𝜑 ∏𝜈≠𝜑 𝑔𝜈
(5.14)

=
𝑦𝑎,𝑏/𝑥𝑏

∑𝜑 𝑦𝑎,𝜑/𝑥𝜑
,
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where we divided both numerator and denominator by ∏𝜓 𝑔𝜓 in the last line.

We now have the formal framework in place that allows us to consider the differences
in contact maps and, hence, in relative particle arrangements between the Husimi tree
and the Bethe lattice. The next and last section of this thesis builds on these formulas
to determine the role of geometrical frustration in self-assembly within our model.

5.2 Geometrical Frustration Promotes Fiber
Formation

In Chapter 4, we have compiled statistics on the probabilities of different aggregate
morphologies to arise at the gelation point. Now, our objective is to assess how geo-
metrical frustration influences morphology selection in this regime.

In the introduction, we first put forward the intuition that complex particles may
robustly form fibers due to geometrical frustration on a very local level, namely the
single-particle scale (cf. Chapter 1). For an aggregate to grow in each spatial di-
rection, particles must simultaneously interact with many neighbors. Specifically in
our model, particles would have to realize three-body interactions in a lattice triangle
(cf. Section 2.2). This could entail geometrical frustration, meaning a very favorable
interaction comes at the cost of an unfavorable one. This tradeoff of three-body in-
teractions could make it energetically more favorable for particles to exclusively form
two-particle binding motifs instead. This leads to a slim, linear aggregate extending
only in one spatial direction. Thereby, geometrical frustration is mitigated because
particles only have a minimal number of neighbors in assembly. We prevent this
mitigation mechanism by considering fully occupied lattices. Consequently, a frus-
trated system may select an entirely different relative particle arrangement than an
unfrustrated one to avoid strongly unfavorable conformations. Therefore, geometrical
frustration is larger the more different the contact map of the fully occupied Husimi
tree is compared to the one of the Bethe lattice.

Formally, we define geometrical frustration 𝑓 as the distance between the contact
maps C(H) and C(B) with respect to the 1-norm ‖⋅‖1:

𝑓 ≔ 1
8

∥C(H) − C(B)∥
1

= 1
8

4
∑

𝑎,𝑏=1
|𝐶(H)

𝑎𝑏 − 𝐶(B)
𝑎𝑏 |

(5.15)

By using the 1-norm we define frustration as the frequency of contacts differing be-
tween the two lattices. If particles assume the exact same relative arrangement on
both lattices, this amounts to vanishing frustration, 𝑓 = 0. An entirely different ar-
rangement, meaning that no contacts are the same, implies 100 % frustration, 𝑓 = 1.
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𝑓 ∈ [0, 1] follows from the normalization of the rows and columns of the contact maps
as well as the triangle inequality:

∥C(H) − C(B)∥
1

≤ ∥C(H)∥
1

+ ∥C(B)∥
1

= 8 (5.16)

Using the expressions for 𝐶(H)
𝑎𝑏 and 𝐶(B)

𝑎𝑏 from the last section (see Eqs. (5.9) and
(5.14)), we can calculate the geometrical frustration 𝑓 for an arbitrary interaction
matrix E.

In Chapter 4, we classified aggregates into only a few morphology categories. To
correlate geometrical frustration to aggregate morphology, we revisit our statistical
data for anisotropic particles whose interactions are sampled from the unbiased Gaus-
sian distribution 𝒩(𝜇 = 0, 𝜎 = 5). For each of the corresponding 50000 interaction
matrices, we solve the self-consistency equations of the partition function for the fully
occupied Husimi tree and Bethe lattice (see Appendix Subsection B.1.3). Subse-
quently, we compute the geometrical frustration 𝑓, respectively. Thus, we obtain a
mapping of each interaction matrix to its frustration value and the associated mor-
phology:

E ↦ (𝑓, aggregate morphology) (5.17)

We combine this information for the 50000 random interaction matrices in the form
of a stacked histogram (see Fig. 5.3). Most interaction matrices have a nonvanishing
value of 𝑓, which indicates that geometrical frustration forces a change in confor-
mation, at least in the full occupancy case. The histogram exhibits very prominent
peaks at 𝑓 = 0 and 𝑓 = 1/3. Crystals are abundant for unfrustrated systems with
𝑓 ≃ 0. On the other hand, interaction matrices that yield a comparably high value
of geometrical frustration 𝑓 ≃ 1/3 disproportionately often lead to fibers. This value
implies that 1/3 of the contacts differ between the Husimi tree and the Bethe lattice.

We first intuit why there are peaks at 𝑓 = 0 and 𝑓 = 1/3. These frustrations are
stereotypical for crystals and fibers, respectively. For both morphologies, we illustrate
stereotypical conformations at full occupancy on the Husimi tree and the Bethe lattice
(see Fig. 5.4). As illustrated on the left of Fig. 5.4a, a crystal is already dense and
space-filling. Its size is only limited by the number of available particles in the system.
Indeed, at full occupancy, the same local particle arrangement is conserved for both
the Husimi tree and the Bethe lattice, yielding a vanishing frustration 𝑓 = 0. The
fiber example in Fig. 5.4b is only built from very favorable head-to-tail interactions
at gelation (here in blue-green; cf. Fig. 2.3 for the color code of interactions). This
feature persists at full occupancy on the Bethe lattice. However, on the Husimi tree,
it is impossible to build dense space-filling aggregates using only this type of binding
motif due to geometric constraints enforced by the lattice triangles. The resulting
equilibrium configuration at full occupancy is shown in the center of Fig. 5.4a. 1/3 of
the interactions realized are less favorable cyclic ones (in yellow), yielding 𝑓 = 1/3.
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Figure 5.3: Geometrical frustration is widely spread in the self-assembly of complex particles and
biases morphology selection. Shown is a probability density histogram with bin width 0.01 that
is based on the geometrical frustration 𝑓 of 50000 random interaction matrices and the associated
morphologies (cf. Fig. 3.4 and Fig. 4.4). The interaction energies are all drawn from the same
underlying Gaussian distribution 𝒩(𝜇 = 0, 𝜎 = 5) (in units of 𝑘𝐵𝑇). Fibers are strongly correlated
with high frustration and exhibit a prominent peak in frustration at around 𝑓 = 1/3, while crystals
are most commonly observed for unfrustrated systems with 𝑓 ≈ 0. Although 𝑓 ∈ [0, 1] in principle,
the highest observed value is 𝑓max ≈ 0.65. Despite differing geometrical constraints, assembly on
both lattices is still dictated by the same interaction matrix, making an entirely different particle
arrangement (𝑓 = 1) impossible. The maximum value is attained by a system that yields slim fibers.

There is a simple geometric argument for this particular value: If we undo one edge per
lattice triangle on the Husimi tree, then we obtain the Bethe lattice. The difference
between the two lattices thus essentially lies in the third interaction in the lattice
triangles. This same explanation applies to a broader class of treelike lattices. For
instance, if we considered a treelike graph defined by joining squares at their corners,
then we could similarly undo one bond per square to obtain the same Bethe lattice
of coordination 𝑓 = 4. This would likely yield a peak of frustration at 𝑓 = 1/4. For
a treelike lattice of regular 𝑘-gons joined at their corners, we would expect 𝑓 = 1/𝑘.
This also hints at the fact that frustration may decrease with the size of loops on
the lattice, highlighting the potentially predominant role of geometrical frustration
on small scales.

Lastly, we examine how the probability distribution of geometrical frustration 𝑓
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Figure 5.4: Particles form slim fibers to avoid geometrical frustration, but full occupancy prevents
this mitigation mechanism and forces a conformation change. In both subfigures, stereotypical
examples of aggregate morphology at gelation and at full occupancy on the Husimi tree as well as
the Bethe lattice are shown from left to right. Refer to Fig. 2.3 for the color code of the interactions.
a, Crystals are typically unfrustrated. If the interactions allow the formation of crystals at the
gel point, this self-assembly behavior is often conserved at full occupancy. Both lattices yield the
same relative particle arrangement, corresponding to 𝑓 ≈ 0. b, Fiber systems are often associated
with frustration. Interaction matrices that yield fibers at gelation stereotypically display systematic
differences in relative particle arrangement between both lattices at full occupancy, as indicated by
the different realized interactions. This example system corresponds to 𝑓 ≈ 1/3.

changes with aggregate morphology. For this, we plot separate probability histograms,
see Fig. 5.5. Slimmer or porous morphologies, including fibers, fiber networks, flocs,
and sponges, exhibit a peak at 𝑓 = 1/3. This peak is most distinct for fibers and fiber
networks, which hints at the fact that these morphologies arise to avoid geometrical
frustration. Sponges and flocs are less constrained by the geometry of the lattice.
Beyond that, there is a peak at 𝑓 = 0 in the histograms for morphologies that are
bulky and ordered, namely fibers of triangles, decorated fibers, and crystals. This
shows that these morphologies are usually associated with the absence of frustration.
Since frustration only comes in on the scale of lattice triangles, it is natural that
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morphologies that contain many triangles tend to be unfrustrated. However, liquids
do not feature such a peak at vanishing frustration. Liquids and flocs are ill-defined,
disordered morphologies that use many distinct interactions. On the scale of lattice
triangles, no single combination of binding motifs is selected and propagated periodi-
cally throughout the whole aggregate, as is the case for crystals, fibers of triangles, and
decorated fibers. In particular, there is no clear winner in the energetic competition
of distinct interactions. Thus, there is no systematic bias toward forming the same
interactions on both lattices, entailing no peak at 𝑓 = 0. Still, not all interactions are
equally as favorable which could lead to small differences in conformation depending
on lattice geometry. However, unlike what we observe for fibers (see Fig. 5.4), these
differences do not systematically occur for only one of the three interactions realized
in a triangle. Geometric constraints could have a stronger influence on aggregate
morphology the fewer distinct interactions a system prefers.

In this chapter, we have first introduced a measure of geometrical frustration that
is based on how different relative particle arrangements are at full occupancy on the
Husimi tree compared to an unfrustrated reference system, namely the Bethe lattice.
Geometrical frustration governs the morphology selection of complex particles, which
we showed by correlating aggregate morphology to geometrical frustration. Fiber
formation generically occurs to mitigate and avoid geometrical frustration, allowing
particles to have a minimal number of nearest neighbors. Crystals, conversely, are
often associated with unfrustrated systems, which allow the dense, space-filling prop-
agation of periodic binding motifs.
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Figure 5.5: Slim aggregates, especially fibers and fiber networks, are often formed to avoid geomet-
rical frustration. This figure is based on the same data as Fig. 5.3. Each subfigure visualizes the
probability density of aggregates as a function of geometrical frustration 𝑓. The bin width is 0.01.
Among the 50000 interaction matrices that were sampled in total, a, 5635 yield (slim) fibers, b,
4425 fiber networks, c, 368 fibers of triangles, d, 306 decorated fibers, e, 10435 sponges, f, 8246
crystals, g, 15159 flocs, h, 5424 liquids.
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Conclusion

This thesis establishes a theoretical framework for the lattice self-assembly of anisotropic
particles with complex interactions, including geometrical frustration in a minimal set-
ting, namely lattice triangles. The treelike structure of the Husimi tree enables the
derivation of self-consistent recursion relations for the grand canonical partition func-
tions of individual aggregates. Our approach is tailored towards the characterization
of aggregate morphology in self-assembly, which is not analytically accessible in pre-
viously existing lattice gas models. Our results suggest that aggregates formed by
anisotropic particles with complex interactions fall into only a few different categories
of morphologies. Within the scope of our model, we identify geometrical frustration
as a governing physical principle of morphology selection in self-assembly. Due to our
simple minimalist approach, our model makes multiple approximations. To conclude
this thesis, we discuss these modeling choices and their implications in Section 6.1.
Thereby, we connect our results to existing research on frustrated self-assembly. In
Section 6.2, we preview promising research directions that could further elucidate the
physical laws of frustrated self-assembly.

6.1 Discussion
Our recursion relations rely on the treelike structure of the Husimi tree. While this
feature makes our self-assembly system analytically tractable, it comes with the as-
sumption that aggregates do not contain loops on scales larger than lattice triangles.
Consequently, geometrical frustration due to long-ranged interactions is not existent
in our model, possibly underestimating geometrical frustration. Our approximation
could be tested for validity by performing numerical simulations on the Kagome lat-
tice, which exhibits the same two-dimensional local structure as the Husimi tree (see
Fig. 6.1a). Most categories of morphologies we identified on the Husimi tree can also
exist on the Kagome lattice, including fibers and crystals (cf. Fig. 3.4). We only
expect a different phenomenology for the morphologies that we term fibers of trian-
gles and decorated fibers on the Husimi tree. Due to their curved structure, such
aggregates would form higher-order loops on the Kagome lattice, yielding morpholo-
gies reminiscent of micelles instead. Thus, most self-assembled morphologies on the
Kagome lattice could be consistent with our predictions. This would suggest that the
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a b c

Figure 6.1: Different aspects of the frustrated self-assembly of complex particles can be studied
further on other lattices. a, The Kagome lattice is the two-dimensional counterpart of the Husimi
tree. On this lattice, six triangles form a higher-order loop, which could be associated with additional
geometrical frustration. b, A regular tetrahedron, the 3-simplex. A triangle corresponds to a 2-
simplex. Multiple 𝑑-Simplexes can be joined at their corners to form a treelike lattice that generalizes
the Husimi tree to dimensions 𝑑 ≥ 3. Therewith, the infinity complexity limit of particles, 𝑑 → ∞,
may be investigated. c, The Sierpinski triangle is a fractal lattice. As such, it is amenable to exact
decimation methods from renormalization group theory, which could enable the study of hierarchical
self-assembly.

effects of geometrical frustration on hard particles with nearest-neighbor interactions
are indeed strongest on the single-particle scale.

Some other models of geometrical frustration consider elastic particles [41, 43, 44]
that deform upon binding depending on their misfit. This may lead to a super-
extensive buildup of geometrical frustration that stabilizes aggregates at a finite size.
This aspect of geometrical frustration is ignored in our model. Proteins exhibit com-
plex interactions due to their anisotropy, and they are partially flexible [45, 54]. Thus,
a unifying theory combining anisotropic interactions with particle elasticity could pro-
vide a more accurate description of protein self-assembly. We expect that elasticity
would not qualitatively change the preferred binding motifs of small aggregates. Still,
it could lead to secondary aggregation behavior [58], meaning some large aggregates
change their conformation to prevent the super-extensive buildup of elastic frustra-
tion. Well-defined, periodically ordered aggregates like fibers or crystals could exhibit
shape flattening [41], whereby elastic frustration is uniformly spread over the whole
aggregate, making its contribution per particle size-independent.

In this thesis, we mainly focused on the gel point of intermediate particle density to
acquire statistics of large aggregate morphologies, which is a consequential modeling
choice. We motivated this point of view with the occurrence of large, well-defined
aggregates in biological systems, including protein complexes in cells and pathological
fibers in medical conditions like Alzheimer’s and sickle cell anemia [8, 35, 37]. Con-
sequently, our perspective is best suited for comparable self-assembly systems that
exhibit large but finite aggregates. Besides, geometrical frustration may be particu-
larly relevant in these systems: Particles frequently meet and interact but can still
avoid it by lowering the number of their neighbors in assembly. We expect our conclu-
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sions to be robust with respect to the particle density. In our model, the overall energy
of an aggregate is extensive in its size, meaning the local competition of interactions
is largely unaffected by the total number of particles in the system. Dilute systems
would yield smaller aggregates, but even short fibers can be considered as fibers, for
instance. In dense systems, particles would mostly form the same morphologies un-
less different aggregates are forced so close to each other that additional unfavorable
interactions must be realized. We observed this case in Fig. 5.4a, where geometrical
frustration leads to a breakup of fibers at full occupancy.

We compiled statistics for many random interaction matrices to obtain a broad pic-
ture of the morphology state space of complex anisotropic particles. Our results align
with the previous conclusion of Koehler et al. [48] that aggregates of anisotropic par-
ticles with complex interactions only fall into a few stereotypical categories, although
the associated parameter space of interactions is vast.

We assume that the interaction energies of distinct particle face pairs can be in-
dependently and identically sampled from a Gaussian distribution. We motivate this
procedure via the central limit theorem because the overall interactions between com-
plex proteins result from many microscopic interactions between their surface amino
acid residues that are likely only weakly correlated (see Chapter 4). Thereby, we also
reference the concept of “hot regions” composed of multiple amino acid residues that
contribute dominantly to the overall interaction [57]. If protein-protein interactions
were dictated by only a small ratio of all amino acid residues, this could imply that
the distribution of protein-protein interactions has a heavier tail than the Gaussian
distribution. If anything, this would make protein interactions even more anisotropic.
In line with our results, we could thus imagine that proteins predominantly self-
assemble into well-defined ordered aggregates in vivo. A statistical analysis of protein
aggregates observed in experiments could enable a quantitative comparison with our
results.

Regarding the distribution of interaction energies, no statistical data is available for
proteins, unfortunately. Binding energies can only be estimated from the prevalence
of contacts in the Protein Data Bank [59]. However, in geometrically frustrated self-
assembly, these two quantities are not strictly correlated, as numerous examples of
aggregates in this thesis show. In light of this lack of information on protein-protein
interaction energies, we cannot exclude the possibility that our results are biased by
the Gaussian sampling procedure of interactions. Thus, it would be interesting to
check whether our conclusions are robust with respect to our choice of random distri-
bution of interactions.

Finally, it is nontrivial to define geometrical frustration for (dilute) self-assembly
systems. For the comparably simple antiferromagnetic Ising model on a triangular
lattice [60], geometrical frustration is hard-coded into the Hamiltonian, and every lat-
tice vertex is occupied by a spin. Spins cannot satisfy the most favorable interaction
with all their neighbors and are hence frustrated. By contrast, self-assembling parti-
cles in fibers may still be able to satisfy favorable interactions with all their neighbors,
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but only because they do have fewer neighbors. In this work, we based geometrical
frustration on differences in the contact maps of the Husimi tree and the Bethe lattice
for the case that both of them are fully occupied by particles. This definition provides
a common baseline for all aggregate morphologies in our model. Thereby, we argued
that anisotropic particles with complex interactions form fibers to avoid geometrical
frustration. Our definition of frustration does not explicitly depend on the interaction
energies. This represents a pragmatic perspective on geometrical frustration, which
is focused on its effects on morphology and not on its source, namely the interac-
tions themselves (although the two are related). Based on significant differences in
the probability distributions of frustration for different morphologies, our measure
seems to have captured at least some aspect of geometrical frustration. However, our
definition is not generally applicable to self-assembly systems, especially to experi-
mental ones that allow no reference to the full occupancy case. A broader definition
that comprises many disparate self-assembly systems could allow the identification of
common features across diverse settings in the future.

6.2 Outlook
A robust physical understanding of which features of the interaction matrix are most
relevant in our model could help predict the outcome of self-assembly more generally.
As pointed out in the introduction, there is an ever-increasing variety of techniques
for synthesizing self-assembling components. Systematic data-driven approaches to
designing building blocks for desired morphologies are still in their infancy [18]. Our
model provides an easy way to probe the assembly outcomes of arbitrary nearest-
neighbor interactions between anisotropic particles without relying on computation-
ally expensive methods. We chose affinity and anisotropy as the main descriptors of
our interaction matrices. Although we observe unmistakable trends in self-assembly
behavior (cf. Fig. 4.4), they are no reliable predictors of the self-assembly outcome.
Thus, a deeper understanding of the relationship between our microscopic interactions
and macroscopic aggregate morphology would be beneficial. The three qualitatively
different types of interactions, which also motivated our choice of color code for aggre-
gates could provide a starting point (cf. Fig. 2.3). There are head-to-tail interactions,
which may naturally yield fibers; cyclic interactions, which are associated with crys-
tals; and head-to-head interactions, which favor dimers. Simply based on energetics
and geometric constraints, one could compute the most favorable combination of ag-
gregate morphologies as a function of the total number of particles in the system.
For instance, if only 3 particles are present, there is an energetic competition between
short fibers using two head-to-tail interactions, oligomers formed by three cyclic inter-
actions, and a head-to-head dimer together with an isolated monomer, among others.
Another possible descriptor is the propagability introduced by Koehler et al. [48], i.e.
the particles’ ability to assemble into periodic structures.

In our simplified model, anisotropic particles interact with 4 nearest neighbors
at most. However, protein complexes and protein-protein interaction networks may
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involve many more different binding partners per protein [61]. From a modeling view-
point, the number of interactions could be increased by placing particles on a lattice
of simplexes, which represent the generalization of triangles or tetrahedra to arbitrary
dimensions (see Fig. 6.1b). If simplexes of dimension 𝑑 ≥ 3 are joined at their corners,
a treelike lattice reminiscent of the Husimi tree is obtained. Particles on a lattice of
this type can have many more neighbors, which implies an increase in distinct in-
teractions and a particle complexity reminiscent of proteins. It would be interesting
to see, whether geometrical frustration dominates the self-assembly behavior in the
infinite complexity limit. Building on our framework for the Husimi tree, recursion
relations for the partition functions could be derived. It would be a challenge to in-
troduce a formal language that can describe the plethora of possible relative particle
orientations. As an alternative, interactions could be chosen to be isotropic and geo-
metrical frustration made explicit by including a term in the Hamiltonian that grows
nonlinearly with the number of neighbors of each particle in the assembly.

Hierarchical self-assembly is a promising approach to scaling up the self-assembly
of microscopic particles to the macroscale [22, 62, 63]. This concept involves the
formation of structures on successive levels or stages of organization, with each level
hierarchically building upon the previous one. The Sierpiński triangle represents an
example of a hierarchical lattice that could be utilized to theoretically study this type
of self-assembly (see Fig. 6.1c). Lattices like the Sierpiński triangle are also amenable
to exact renormalization group methods, which could elucidate prospective universal-
ity classes of self-assembled morphologies [64]. Interestingly, just recently, a natural
protein that self-assembles into Sierpiński triangles was discovered [65].

The self-assembly of complex particles seems inseparably intertwined with the con-
cept of geometrical frustration. However, to date, no common quantitative physical
framework of geometrical frustration for disparate self-assembly systems exists. The
prospective future research directions previewed here could guide future attempts to
unify our physical understanding of geometrically frustrated self-assembly.
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A.1 Choice of Vanishing Interactions for Empty
Sites

Throughout this thesis, we have only explicitly considered the case that the surface
energy of aggregates vanishes, i.e. that empty sites neither interact with particles nor
with each other. Generally, this does not have to be the case. We first show in Sub-
section A.1.1, that for fixed 𝑁 our choice of vanishing interactions for empty sites
only corresponds to a shift in the total energy of the system, which leaves its physics
invariant. Thereby, we follow the presentation of Appendix B1 in [48]. Subsequently,
we extend this conclusion to our grand canonical formalism via an appropriate simul-
taneous shift of the chemical potential 𝜇 in Subsection A.1.2.

A.1.1 Shift in the Total Energy Leaves Physics Invariant

Let 𝐸00 denote the energy of the interaction between two empty sites and 𝐸𝜑0 that
of face 𝜑 of a particle with an empty site (𝜑 ∈ {1, 2, 3, 4}). As in the main text,
𝐸𝜑𝜈 is the energy of the interaction between faces 𝜑 and 𝜈 of two different particles.
We label the total number of each of the corresponding contacts in the system with
𝑁⋅, e.g. 𝑁00 for empty-empty contacts. In the general case of nonvanishing solvent
interactions, the total energy of the system is

ℋtot = 𝑁00𝐸00 +
4

∑
𝜑=1

𝑁𝜑0𝐸𝜑0 + ∑
𝜑≤𝜈

𝑁𝜑𝜈𝐸𝜑𝜈 . (A.1)

Adding a linear combination of conserved quantities to this energy does not change
the physics of the system. In our case, the total number of bonds 𝑁bonds (equivalently
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the number of lattice edges) and the total number of 𝜑-faces 𝑁𝜑 are conserved:

𝑁bonds = 𝑁00 + ∑
𝜑

𝑁𝜑0 + ∑
𝜑≤𝜈

𝑁𝜑𝜈 (A.2)

𝑁𝜑 = 𝑁𝜑0 + ∑
𝜈≠𝜑

𝑁𝜑𝜈 + 2𝑁𝜑𝜑 = 𝑁 (A.3)

We shift the total energy as follows:

ℋtot = ℋtot − 𝑁bonds𝐸00 − 𝑁 ∑
𝜑

(𝐸𝜑0 − 𝐸00)

= ∑
𝜑≤𝜈

𝑁𝜑𝜈(𝐸𝜑𝜈 − 𝐸00 − (𝐸𝜑0 − 𝐸00) − (𝐸𝜈0 − 𝐸00))

≕ ∑
𝜑≤𝜈

𝑁𝜑𝜈𝐸𝜑𝜈

(A.4)

The interaction matrix

𝐸𝜑𝜈 = 𝐸𝜑𝜈 + 𝐸00 − 𝐸𝜑0 − 𝐸𝜈0 (A.5)

thus describes an equivalent system where empty sites do not interact, as in the main
text.

A.1.2 Extension to the Grand Canonical Ensemble

This restriction to systems with vanishing interactions of empty sites is also war-
ranted, if the total number of particles 𝑁 is only implicitly fixed through as in the
grand canonical ensemble, which we now show.

The self-consistency relation of the aggregate partition functions, Eq. (2.18), can
be generalized to the case that empty sites do interact:

𝐺𝜓 = 𝑦𝜓0𝑦𝜓+1,0𝑦00 + 𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2𝑦𝜓0𝑦𝜑+3,0 + 𝑦𝜓,𝜑+3𝑦𝜓+1,0𝑦𝜑+2,0)𝐺𝜑

+ 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 .
(A.6)

We can map these relations to the case that the interactions of empty sites vanish,
which we considered in the main text. First, the Boltzmann weights are mapped
according to Eq. (A.12):

𝑦𝜓𝜑 ≔
𝑦𝜓𝜑𝑦0

𝑦𝜓0𝑦𝜑0
(A.7)

If we let
𝐺𝜓 ≔

𝐺𝜓

𝑦𝜓0𝑦𝜓+1,0𝑦0
(A.8)
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and

𝑐 ≔ 𝑐
∏𝜑 𝑦𝜑0

𝑦0
(A.9)

then 𝐺𝜓 and 𝑐 satisfy the self-consistency relations from Eq. (2.18):

𝐺𝜓 = 1 + 𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝐺𝜑 + 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 (A.10)

To summarize, by simultaneously shifting the chemical potential according to Eq. (A.9)

𝜇 = 𝜇 + 𝐸00 − ∑
𝜑

𝐸𝜑0 (A.11)

and the interaction matrix

𝐸𝜑𝜈 = 𝐸𝜑𝜈 + 𝐸00 − 𝐸𝜑0 − 𝐸𝜈0 (A.12)

the interactions of empty sites can be assumed to vanish without loss of generality.

A.2 Formal Properties of the Gel Point
This appendix provides a collection of technical results that are complementary to
the discussion of the gel point in Section 3.2.

A.2.1 Upper Bound for Gel Fugacity
We prove that the fugacity at gelation 𝑐g is finite.
At the gel point,

⟨𝑛⟩ =
∞

∑
𝑛=1

𝑛𝑤𝑛𝑐𝑛

𝒵
(A.13)

diverges to infinity. Akin to the standard geometric series, this is the case if

𝑤1/𝑛
𝑛 𝑐 ≃ 1 ⇔ 𝑐 ≃ 1

𝑤1/𝑛
𝑛

(A.14)

for large 𝑛 → ∞. If we can find a lower bound to 𝑤𝑛, then 𝑐g is finite. So how does
𝑤𝑛 scale with 𝑛?
𝑤𝑛 quantifies the probability weight of aggregates of size 𝑛 and we can bound it from
below by

𝑤𝑛 ≥ 𝛺𝑛e−𝛽ℋmax(𝑛) ≥ 𝛺𝑛 (e−4𝛽|𝐸max|)𝑛 (A.15)

In the last inequality, we used that the maximum energy of an aggregate of size 𝑛 is
bounded from above ℋmax(𝑛) ≤ 4𝑛|𝐸max|, because each particle can at most have 4
interactions, each with “maximum unfavorability” |𝐸max|.
We can find 𝛺𝑛 through the partition function in the absence of interactions, 𝑦𝜓𝜑 ≡
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𝑦 = 1 (see Eqs. (2.11) and (2.18)):

𝒵 =
∞

∑
𝑛=1

𝛺𝑛𝑐𝑛 = 4𝑐𝐺2 (A.16)

and
𝐺 = 1 + 8𝑐𝐺 + 16𝑐2𝐺2 . (A.17)

We select the physical solution branch that satisfies 𝐺(𝑧 → 0) = 1, and find

𝒵 = (1 − 8𝑐 −
√

1 − 16𝑐)2

256𝑐3 . (A.18)

Taylor expanding around 𝑐 = 0 yields

𝛺𝑛 = 4𝑛+1 (2𝑛 + 1)!
(𝑛 − 1)!(𝑛 + 3)!

. (A.19)

Using the Stirling approximation in the large 𝑛 limit, we find the scaling of 𝛺𝑛:

𝛺1/𝑛
𝑛 ≃ 4 (2𝑛 + 1)2

(𝑛 − 1)(𝑛 + 3)
≃ 16 for 𝑛 → ∞ (A.20)

Summarizing, we have

𝑤1/𝑛
𝑛 ≳ 16e−4𝛽|𝐸max| for 𝑛 → ∞ . (A.21)

To conclude, this implies:

𝑐g ≤ e4𝛽|𝐸max|

16
(A.22)

A.2.2 Gelation Is Equivalent to the Divergence of d𝐺𝜓
d𝑐

We first prove that
⟨𝑛⟩ → ∞ ⇔ d

d𝑐
𝒵 → ∞ . (A.23)

In the main text, we have already argued that d
d𝑐𝒵 → ∞ is necessary for gelation (cf.

Eq. (3.16)). In our model (see Eq. (3.3)),

⟨𝑛⟩ =
∞

∑
𝑛=1

𝑛𝑤𝑛𝑐𝑛

𝒵
= 𝑐

𝒵
d
d𝑐

𝒵 (A.24)

and 𝑐g is finite (see Subsection A.2.1). Thus, if 𝒵 is finite, there is nothing to show.
Without loss of generality, we assume that 𝒵 = ∑ 𝑤𝑛𝑐𝑛 diverges as well. Due to the
positivity of each probability weight, 𝑤𝑛 > 0, ⟨𝑛⟩ is then greater than any natural
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number 𝑛∗:

⟨𝑛⟩ >
∞

∑
𝑛=𝑛∗

𝑛𝑤𝑛𝑐𝑛

𝒵
≥ 𝑛∗

∑∞
𝑛=𝑛∗ 𝑤𝑛𝑐𝑛

𝒵
→ 𝑛∗ (A.25)

This implies ⟨𝑛⟩ → ∞ and concludes the first step of the proof.

Moreover,
d
d𝑐

𝒵 = ∑
𝜓

𝐺𝜓𝐺𝜓+2 + 2𝑐 ∑
𝜓

d𝐺𝜓

d𝑐
𝐺𝜓+2 → ∞ (A.26)

is equivalent to

𝐺𝜓∗ → ∞ or
d𝐺𝜓∗

d𝑐
→ ∞ for some 𝜓∗�{1,2,3,4} . (A.27)

Analogously to 𝒵, divergence of partial partition functions implies divergence of their
derivatives with respect to 𝑐. In addition, since all the partial partition functions
are strictly monotonic in each other, condition (A.27) equivalently holds for any 𝜓 ∈
{1, 2, 3, 4}. Thus, we finally conclude

⟨𝑛⟩ → ∞ ⇔
d𝐺𝜓

d𝑐
→ ∞ for all 𝜓�{1,2,3,4} . (A.28)
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This appendix outlines the numerical methods that we used throughout this thesis.
Section B.1 first explains how we obtain the physical solutions for the partition func-
tion in different settings using Mathematica. Based on this, in Section B.2, we show
how we randomly sample and draw aggregates in Python.

Remark. Note that the interaction energies 𝐸𝜑,𝜈 always only enter the system’s
equations in the form of Boltzmann weights 𝑦𝜑,𝜈 = e−𝛽𝐸𝜑,𝜈 . Thus, we consider the
interaction energies as dimensionless parameters 𝛽𝐸𝜑,𝜈 throughout this appendix.

B.1 Mathematica: Solving Systems of Equations
In the main text, we have derived exact self-consistency relations for the partition
function, both for our aggregate-centered and the lattice-centered framework (see
Eqs. (2.18) and (2.26)). While these relations allow us to obtain analytical expres-
sions for observables in our system, we have to rely on numerical methods to solve
these coupled polynomial equations.

What makes this nontrivial is the fact that systems of polynomial equations admit
a large number of different solutions, generally. In our model, only one of them is
physical (cf. Subsection 3.2.2), and we want to robustly find it numerically for any
given parameter set of interest, i.e. the interactions E (see Eq. (2.1); sometimes com-
plemented by a fixed fugacity 𝑧). If the physical solution is known analytically for a
simple case, then this solution can be used as the initial condition of a system of im-
plicit ordinary differential equations (ODEs). These ODEs describe how the physical
solution changes upon variation of some suitable variable. In our case, this variable
is either the fugacity 𝑧 = e𝛽𝜇 or the inverse thermal energy 𝛽 = 1/𝑘𝐵𝑇, because the
physical solution can analytically be obtained for the formal initial conditions 𝑧0 = 0
and 𝛽0 = 0. The appropriate ODEs can be derived from the self-consistency relations
by differentiating with respect to the variable that should be varied formally. Since
the ODEs are linear in the derivatives, they can, in principle, be brought into explicit
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ordinary differential equation form, as was done in the main text multiple times for
derivatives of the partition functions (cf. Subsection 3.2.2 and Section 3.3). There-
fore, the Picard-Lindelöf Theorem for ordinary differential equations applies to the
ODEs we consider. Thus, the physical solution always stays unique (also cf. Subsec-
tion 3.2.2).

Using the general idea briefly outlined above, we obtain the physical solution
for the partition function in the following three formal settings using Mathematica:
the lattice-centered framework with fixed fugacity (Subsection B.1.1), the aggregate-
centered framework at the gel point (Subsection B.1.2) and the case of full-occupancy
on the Bethe lattice and Husimi tree (Subsection B.1.3).

B.1.1 Husimi Tree at Fixed Lattice Fugacity
In Section 3.1, we have drawn example aggregates at a fixed fugacity 𝑧 in the lattice-
centered framework, for a few example interaction matrices E. Here, we present the
numerical procedure with which we found the numerical values of the corresponding
partial partition functions. These are needed to recursively sample and draw an ag-
gregate (cf. Section B.2).

Recall that the partition function of the lattice is given by (see Eq. (2.25))

𝒵lat = 1 + 𝑧
4

∑
𝜓=1

𝑥𝜓𝑥𝜓+2 . (B.1)

Here, the (rescaled) partial partition functions 𝑥𝜓 obey (see Eq. (2.26))

𝑥𝜓 =
1 + 𝑧 ∑4

𝜑=1(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝑥𝜑 + 𝑧2 ∑𝜑,𝜈 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈

1 + 2𝑧 ∑4
𝜑=1 𝑥𝜑 + 𝑧2 ∑𝜑,𝜈 𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈

.

(B.2)
The interactions E enter the equations in the form of the Boltzmann weights 𝑦𝜑𝜈 =
e−𝛽𝐸𝜑𝜈 . Regardless of the interactions, however, for vanishing fugacity 𝑧 = 0, this
system only has one solution:

𝑥𝜓(𝑧 = 0) = 1 (B.3)

This solution is physical and corresponds to the case that there is a vanishing number
of particles in the system, meaning they never meet and never interact. If we differen-
tiate Eq. (B.2) with respect to 𝑧, then we obtain an ODE of 𝑥𝜓 and d𝑥𝜓

d𝑧 in the variable
𝑧. In the main text, we considered the fugacities 𝑧 = e𝛽𝜇 for 𝜇 ∈ {−4, 0, 4}. In the
Mathematica code in Fig. B.1, the function singleSol takes a chemical potential 𝜇
and the 10 independent interaction energies (𝐸11, 𝐸12, 𝐸13, 𝐸14, 𝐸22, 𝐸23, 𝐸24, 𝐸33, 𝐸34, 𝐸44)
as input. It then numerically computes the solution to the associated ODE by using
the built-in Mathematica function NDSolve with the option Method -> {"EquationSimplifi-
cation" -> "Residual"}, that is suitable for implicit ODEs. singleSol returns the
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unique physical solution for the partial partition functions 𝑥𝜓 at 𝑧 = e𝛽𝜇.

Figure B.1: We use the built-in Mathematica function NDSolve can to numerically solve ODEs for
physical solutions to our model equations. Here, we show a screenshot of the Mathematica code
that calculates the physical solution to the (rescaled) partial partition functions 𝑥𝜓 for fixed lattice
fugacity 𝑧.

B.1.2 Aggregates on the Husimi Tree at Gelation

In Section 3.2 as well as in Chapter 4, we draw and sample aggregates at the gel
point using our aggregate-centered formalism. We follow a similar idea to the one
discussed in the previous subsection. However, now we consider many random inter-
action matrices by independently and identically sampling the dimensionless energies
𝛽𝐸𝜑,𝜈 from a Gaussian distribution 𝒩(𝜇, 𝜎) (see Fig. B.2).

Figure B.2: We sample many interaction matrices from a Gaussian distribution 𝒩(𝜇, 𝜎) to com-
pile a statistics of aggregate morphology. In this thesis, we considered all pairs of affinity
𝜇 ∈ {−2, −1, 0, 1, 2} and anisotropy 𝜎 ∈ {1, 2, 3, 4, 5}. For 𝜇 = 0, we sampled 50000 inter-
action matrices, and for the other affinities, we sampled 10000.

In this case, we rely on numerical solutions to the coupled system of 5 polynomial
equations that relates the fugacity 𝑐g and the partial partition functions 𝐺𝜓. As a
reminder, these equations are the self-consistency relations of our aggregate-centered
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formalism (see Eq. (2.18))

𝐺𝜓 = 1 + 𝑐
4

∑
𝜑=1

(𝑦𝜓+1,𝜑+2 + 𝑦𝜓,𝜑+3)𝐺𝜑 + 𝑐2 ∑
𝜑,𝜈

𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝐺𝜑𝐺𝜈 (B.4)

and the necessary gelation condition (see Eq. (3.21))

⟨𝑛⟩ → ∞ ⇒ det A = 0 . (B.5)

We solve these equations for the physical solution at gelation (𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝑐)|g
by considering a related system of ODEs obtained via differentiating the equations
above with respect to 𝛽. For its initial condition, we consider the system at the gel
point for 𝛽 = 0, for which we can analytically calculate the solution. 𝛽 = 1/𝑘𝐵𝑇 = 0
corresponds to the infinite temperature limit of our model, where interactions do not
contribute and all the Boltzmann weights are identical

𝑦𝜑,𝜈 = e−0×𝐸𝜑,𝜈 = 1 . (B.6)

As a consequence, we obtain the physical solution

(𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝑐)|g (𝛽 = 0) = (4, 4, 4, 4, 1
16

) . (B.7)

When numerically solving the thus defined system of ODEs, we can ignore units by
formally considering the dimensionless inverse thermal energy 𝛽 = 𝑘𝐵𝑇final

𝑘𝐵𝑇 and energies
𝐸𝜑𝜈 = 𝐸𝜑𝜈

𝑘𝐵𝑇final
. Thus, if we vary the temperature from 𝑇 = ∞ to the temperature

of interest 𝑇 = 𝑇final, this corresponds to varying 𝛽 = 0 to 𝛽 = 1, where 𝛽𝐸𝜑𝜈 =
𝛽final𝐸𝜑𝜈. Using NDSolve from Mathematica, we solve the associated ODE to obtain
the physical solution for the dimensionless energies of interest 𝛽final𝐸𝜑𝜈 ∼ 𝒩(𝜇, 𝜎)
(see Fig. B.3).

B.1.3 Bethe Lattice and Husimi Tree at Full Occupancy
In Chapter 5, we compare the particle contact maps of the Husimi tree and the Bethe
lattice at full occupancy to quantify frustration. Therewith, our objective is to cor-
relate differences in conformation at full occupancy to the corresponding aggregate
morphology we observe at the gel point. Hence, we consider the set of 50000 interac-
tion matrices that we sampled from 𝒩(𝜇 = 0, 𝜎 = 5) in Chapter 4 (also cf. previous
subsection). To compute our measure of geometrical frustration for each of these (see
Eq. (5.15)), we need the partial partition functions of the Husimi tree and the Bethe
lattice at full occupancy. Here, we outline our numerical procedure for calculating
them.

We follow the same steps as in the previous subsection. We consider a fixed set
of dimensionless interaction energies 𝛽𝐸𝜑𝜈 = 𝐸𝜑𝜈/𝑘𝐵𝑇final. Recall, the (rescaled)
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Figure B.3: We numerically solve ODEs in the variable 𝛽 = 𝑘𝐵𝑇final/𝑘𝐵𝑇 ∈ [0, 1] to obtain the
physical solutions (𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝑐)|g for the Bethe lattice and the Husimi tree at full occupancy,
using the built-in Mathematica function NDSolve, as shown in the screenshot. We provide the known
physical solution at 𝛽 = 0 as an initial condition, and then find the solution for the temperature
of interest 𝛽 = 𝑘𝐵𝑇final/𝑘𝐵𝑇 = 1. We efficiently solve the ODEs for many different (flattened)
interaction matrices energies via a ParallelMap.

partial partition functions 𝑥𝜓 of the full Husimi tree obey the following system of
self-consistent equations (see Eq. (5.4)):

𝑥𝜓 =
∑𝜑,𝜈 𝑦𝜓+1,𝜑+2𝑦𝜓,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈

∑𝜑,𝜈 𝑦2,𝜑+2𝑦1,𝜈+3𝑦𝜑+3,𝜈+2𝑥𝜑𝑥𝜈
, (B.8)

where 𝑥1 = 1 by definition. The self-consistent equations for the Bethe lattice are
(see Eq. (5.12))

𝑥𝜓 =
∑𝜑 𝑦𝜓,𝜑/𝑥𝜑

∑𝜑 𝑦1,𝜑/𝑥𝜑
. (B.9)

At infinite temperature 𝑇, we have 𝑏𝑒𝑡𝑎 = 𝑘𝐵𝑇final
𝑘𝐵𝑇 = 0, meaning 𝑦𝜑𝜈 = 1. In that

case, the self-consistent equations are solved by

((∗)
2 ,(∗)

3 ,(∗)
4 )∣

𝛽=0
= (1, 1, 1) . (B.10)

for ∗ ∈ {B, H}. As in the previous subsection, we numerically solve the ODE obtained
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Figure B.4: We numerically solve ODEs in the variable 𝛽 = 𝑘𝐵𝑇final/𝑘𝐵𝑇 ∈ [0, 1] to obtain the
physical solutions (𝑥1 = 1, 𝑥2, 𝑥3, 𝑥4)|full for the Bethe lattice and the Husimi tree at full occu-
pancy, using the built-in Mathematica function NDSolve. We provide the known physical solution
at 𝑏𝑒𝑡𝑎 = 0 as an initial condition, and then find the solution for the temperature of interest 𝛽 = 1.
We efficiently solve the ODEs for many different (flattened) interaction matrices energies via a
ParallelMap.

by differentiating the above systems of equations with respect to 𝛽 using NDSolve
(see Fig. B.4). This yields the partial partition functions at the final temperature of
interest 𝑇final, corresponding to 𝛽 = 1.

B.2 Python: Sampling and Drawing Aggregates
We use Python to randomly sample and draw aggregates throughout this thesis.
Thereby, we consider three different settings: the Husimi tree at a fixed lattice fugacity
(see Section 3.1), the Husimi tree at the gel point (see Subsection 3.2.3 and Chapter 4)
and the Husimi tree as well as the Bethe lattice at full occupancy (see Chapter 5).
Our sampling procedure only relies on the numerical solutions for the partial parti-
tion functions and the fugacity from the previous appendix on Mathematica. In this
appendix, we detail each step of our sampling and drawing workflow in Python for
the Husimi tree at the gel point. These steps apply analogously to the other settings
above.

0. Import required packages (see Fig. B.5).
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1. Provide the 10 independent interaction energies (after taking symmetry into
account)

(𝐸11, 𝐸12, 𝐸13, 𝐸14, 𝐸22, 𝐸23, 𝐸24, 𝐸33, 𝐸34, 𝐸44) (B.11)

and the corresponding physical solution for the partial partition functions 𝐺𝜓
and the fugacity 𝑐 (see Fig. B.6; cf. Subsection B.1.2). Therewith, we compute
the statistical weight of each term on the r.h.s. of the self-consistency relations
(see Eq. (2.18)).

2. Call the function aggregate() to randomly sample and draw an aggregate
recursively based on these statistical weights (see Fig. B.7).

We present the inner workings of the function aggregate() in more detail in the
following. First, it requires an input of the colors of bonds between particles. We
choose these colors from the viridis colormap according to the color code in Fig. 2.3
(see Fig. B.8). As shown in Fig. B.9, aggregate() places the root particle of an
aggregate with the orientation being randomly chosen according to the corresponding
weights in the partition function

𝒵 = 𝑐
4

∑
𝜓=1

𝐺𝜓𝐺𝜓+2 = 2𝑐(𝐺1𝐺3 + 𝐺2𝐺4) . (B.12)

Depending on the orientation of the root particle, we then call the functions orient1
and orient3 or orient2 and orient4 to initiate the two subaggregates that origi-
nate from it. These functions randomly choose a binding motif (here called branch)
according to the statistical weights computed in step 1. Each binding motif can be
drawn by using the functions triangle, leftline or rightline with appropriate
parameters (see Fig. B.10). Correspondingly, we define a function for each binding
motif that draws it, taking into account the correct placement of neighboring particles
and the realization of color-coded bonds (see Fig. B.11). Each thus drawn neighboring
particle again constitutes a subaggregate, according to its orientation, that is initiated
by calling one of the functions orient1, orient2, orient3, or orient4. The Python
code continues to draw new binding motifs until the maximum chosen recursion depth
of the lattice is reached or all subaggregates have terminated. A subaggregate ter-
minates when the term 1 is randomly chosen, corresponding to no new neighboring
particles.
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[6]: import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib.patches as mpatches
import matplotlib.patches as mpatches
import matplotlib.colors as mcolors
from math import sin, cos, exp, pi, radians
from functools import partial

plt.rcParams['figure.figsize'] = [5, 5] # for square canvas
plt.rcParams['lines.linewidth'] = 3 # specify line thickness in plots;␣

↪default=1.5

1

Figure B.5: Required Python packages for our sampling and drawing procedure of aggregates.

dummy

June 27, 2024

[4]: # provide interaction energies and associated partition functions and fugacity
energies = np.array([0,0,0,0,0,0,0,0,0,0])
G1, G2, G3, G4, c = 4, 4, 4, 4, 1/16

# define interaction Boltzmann weights (respect symmetry)
y11, y12, y13, y14, y22, y23, y24, y33, y34, y44 = np.exp(-energies) # beta=1
y21, y31, y32, y41, y42, y43 = y12, y13, y23, y14, y24, y34

# calculate statistical weight of each term in the self-consistency relations
s1 = np.

↪array([1,c*y23*G1,c*y14*G1,c*y24*G2,c*y11*G2,c*y21*G3,c*y12*G3,c*y22*G4,c*y13*G4,c**2*y23*y14*y43*G1*G1,c**2*y23*y11*y44*G1*G2,c**2*y23*y12*y41*G1*G3,c**2*y23*y13*y42*G1*G4,c**2*y24*y14*y13*G2*G1,c**2*y24*y11*y14*G2*G2,c**2*y24*y12*y11*G2*G3,c**2*y24*y13*y12*G2*G4,c**2*y21*y14*y23*G3*G1,c**2*y21*y11*y24*G3*G2,c**2*y21*y12*y21*G3*G3,c**2*y21*y13*y22*G3*G4,c**2*y22*y14*y33*G4*G1,c**2*y22*y11*y34*G4*G2,c**2*y22*y12*y31*G4*G3,c**2*y22*y13*y32*G4*G4])
s2 = np.

↪array([1,c*y33*G1,c*y24*G1,c*y34*G2,c*y21*G2,c*y31*G3,c*y22*G3,c*y32*G4,c*y23*G4,c**2*y33*y24*y43*G1*G1,c**2*y33*y21*y44*G1*G2,c**2*y33*y22*y41*G1*G3,c**2*y33*y23*y42*G1*G4,c**2*y34*y24*y13*G2*G1,c**2*y34*y21*y14*G2*G2,c**2*y34*y22*y11*G2*G3,c**2*y34*y23*y12*G2*G4,c**2*y31*y24*y23*G3*G1,c**2*y31*y21*y24*G3*G2,c**2*y31*y22*y21*G3*G3,c**2*y31*y23*y22*G3*G4,c**2*y32*y24*y33*G4*G1,c**2*y32*y21*y34*G4*G2,c**2*y32*y22*y31*G4*G3,c**2*y32*y23*y32*G4*G4])
s3 = np.

↪array([1,c*y43*G1,c*y34*G1,c*y44*G2,c*y31*G2,c*y41*G3,c*y32*G3,c*y42*G4,c*y33*G4,c**2*y43*y34*y43*G1*G1,c**2*y43*y31*y44*G1*G2,c**2*y43*y32*y41*G1*G3,c**2*y43*y33*y42*G1*G4,c**2*y44*y34*y13*G2*G1,c**2*y44*y31*y14*G2*G2,c**2*y44*y32*y11*G2*G3,c**2*y44*y33*y12*G2*G4,c**2*y41*y34*y23*G3*G1,c**2*y41*y31*y24*G3*G2,c**2*y41*y32*y21*G3*G3,c**2*y41*y33*y22*G3*G4,c**2*y42*y34*y33*G4*G1,c**2*y42*y31*y34*G4*G2,c**2*y42*y32*y31*G4*G3,c**2*y42*y33*y32*G4*G4])
s4 = np.

↪array([1,c*y13*G1,c*y44*G1,c*y14*G2,c*y41*G2,c*y11*G3,c*y42*G3,c*y12*G4,c*y43*G4,c**2*y13*y44*y43*G1*G1,c**2*y13*y41*y44*G1*G2,c**2*y13*y42*y41*G1*G3,c**2*y13*y43*y42*G1*G4,c**2*y14*y44*y13*G2*G1,c**2*y14*y41*y14*G2*G2,c**2*y14*y42*y11*G2*G3,c**2*y14*y43*y12*G2*G4,c**2*y11*y44*y23*G3*G1,c**2*y11*y41*y24*G3*G2,c**2*y11*y42*y21*G3*G3,c**2*y11*y43*y22*G3*G4,c**2*y12*y44*y33*G4*G1,c**2*y12*y41*y34*G4*G2,c**2*y12*y42*y31*G4*G3,c**2*y12*y43*y32*G4*G4])
p1 = s1/s1.sum()
p2 = s2/s2.sum()
p3 = s3/s3.sum()
p4 = s4/s4.sum()

1

Figure B.6: To sample and draw aggregates from a given example system, we provide the interaction
energies as well as the partial partition functions and the fugacity.
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[5]: scaling = 0.6 # draw successive levels of aggregates smaller by factor of 0.6␣
↪for illustrative purposes

x0, y0 = 0, 0 # root particle sits at center of figure
margin = 2.1 # fix figure margins to exclude excessive white space
max_recursion_depth = 5 # only draw the center part of aggregates
minsize = 0 # optional: only draw aggregates of size n > minsize
num_aggregates = 3 # randomly sample and draw a fixed number of aggregates from␣

↪the system
fig_counter = 1

for i in range(num_aggregates):

# Dynamically create figure variable name
fig_name = 'fig{}'.format(fig_counter)
globals()[fig_name], ax = plt.subplots()

# Sample and draw aggregate
n = 0
aggregate()

# Layout of Axes
ax.axis('equal')
ax.axis('off')
ax.set_xlim(x0-margin, x0+margin)
ax.set_ylim(y0-margin, y0+margin)

# only show the large aggregates
if n > minsize:

plt.show()
print(fig_name)
fig_counter += 1 # Increment figure count for the next figure

else:
plt.close(globals()[fig_name])

1

Figure B.7: We draw multiple aggregates from the same system using the function aggregate (see
Fig. B.9). The variable max_recursion_depth enforces that only the immediate vicinity of the root
particle is drawn. If aggregates are infinite in size, this also prevents crashing of Python. Using
dynamically created figure names, we can visually inspect different drawn aggregates to pick and
save one or more examples.
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[2]: c11 = mpl.colors.rgb2hex(cm.viridis(0.))#'#000000'
c12 = mpl.colors.rgb2hex(cm.viridis(1.))#'#E3B5CC'
c13 = mpl.colors.rgb2hex(cm.viridis(0.5))#'#E5D461'
c14 = mpl.colors.rgb2hex(cm.viridis(1.))#'#D289AD'
c21 = c12
c22 = mpl.colors.rgb2hex(cm.viridis(0.))#'#141414'
c23 = mpl.colors.rgb2hex(cm.viridis(1.))#'#C15C8F'
c24 = mpl.colors.rgb2hex(cm.viridis(0.5))#'#D3BB22'
c31 = c13
c32 = c23
c33 = mpl.colors.rgb2hex(cm.viridis(0.))#'#292929'
c34 = mpl.colors.rgb2hex(cm.viridis(1.))#'#A33E70'
c41 = c14
c42 = c24
c43 = c34
c44 = mpl.colors.rgb2hex(cm.viridis(0.))#'#3D3D3D'

1

Figure B.8: We choose the colors of bonds between particles from the viridis colormap of matplotlib
based on the type of interaction they realize (cf. Fig. 2.3).
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[3]: def aggregate(x0=0,y0=0,scale=1,depth=0): # draws the root particle and␣
↪initiates the aggregate

plt.plot([x0], [y0], marker='o', markersize=10, color="black")
global n
n += 1
root = np.random.choice(np.array([1,2]), p = 1/(G1*G3+G2*G4)*np.

↪array([G1*G3,G2*G4]))
if root == 1:

orient1(x0,y0,pi/2,scale,depth)
orient3(x0,y0,-pi/2,scale,depth)

if root == 2:
orient2(x0,y0,pi/2,scale,depth)
orient4(x0,y0,-pi/2,scale,depth)

# Sample subaggregates depending on (root) particle orientation {1,2,3,4}

def orient1(x0,y0,angle,scale,depth):
branch = np.random.choice(branches1, p = p1)
# if branch=1 the subaggregate is terminated!
if (not type(branch) is int) and (depth < max_recursion_depth):

branch(x0,y0,angle,scale,depth+1)

def orient2(x0,y0,angle,scale,depth):
branch = np.random.choice(branches2, p = p2)
if (not type(branch) is int) and (depth < max_recursion_depth):

branch(x0,y0,angle,scale,depth+1)

def orient3(x0,y0,angle,scale,depth):
branch = np.random.choice(branches3, p = p3)
if (not type(branch) is int) and (depth < max_recursion_depth):

branch(x0,y0,angle,scale,depth+1)

def orient4(x0,y0,angle,scale,depth):
branch = np.random.choice(branches4, p = p4)
if (not type(branch) is int) and (depth < max_recursion_depth):

branch(x0,y0,angle,scale,depth+1)

1
Figure B.9: The inner workings of the function aggregate. Based on the statistical weights of
the different root particle orientations, it calls appropriate orient* functions that constitute two
subaggregates. Within these subaggregate functions, a random binding motif is chosen and the
function branch that draws it is called (see Fig. B.10 and Fig. B.11).
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# Define functions that draw: a triangle, a single bond to the left or the␣
↪right,

# and call functions for subaggregates depending on particle orientation

def triangle(color1,color2,color3,lbranch,rbranch,x0,y0,angle,scale,depth):
plt.plot([x0,x0+scale*cos(angle+pi/6)],[y0,y0+scale*sin(angle+pi/

↪6)],color1) # left bond
plt.plot([x0,x0+scale*cos(angle-pi/6)],[y0,y0+scale*sin(angle-pi/

↪6)],color2) # right bond
plt.plot([x0+scale*cos(angle+pi/6),x0+scale*cos(angle-pi/

↪6)],[y0+scale*sin(angle+pi/6),y0+scale*sin(angle-pi/6)],color3) # top bond
global n
n += 2
lbranch(x0+scale*cos(angle+pi/6),y0+scale*sin(angle+pi/6),angle+pi/

↪3,scale*scaling,depth) # left subaggregate
rbranch(x0+scale*cos(angle-pi/6),y0+scale*sin(angle-pi/6),angle-pi/

↪3,scale*scaling,depth) # right subaggregate

def leftline(lcolor,lbranch,x0,y0,angle,scale,depth):
plt.plot([x0,x0+scale*cos(angle+pi/6)],[y0,y0+scale*sin(angle+pi/

↪6)],lcolor) # left bond
global n
n += 1
lbranch(x0+scale*cos(angle+pi/6),y0+scale*sin(angle+pi/6),angle+pi/

↪3,scale*scaling,depth) # left subaggregate

def rightline(rcolor,rbranch,x0,y0,angle,scale,depth):
plt.plot([x0,x0+scale*cos(angle-pi/6)],[y0,y0+scale*sin(angle-pi/

↪6)],rcolor) # right bond
global n
n += 1
rbranch(x0+scale*cos(angle-pi/6),y0+scale*sin(angle-pi/6),angle-pi/

↪3,scale*scaling,depth) # right subaggregate

# Function aliases for use in np.random.choice()

# subaggregates originating from G1
y23G1 = partial(leftline,c23,orient1)
G1y14 = partial(rightline,c14,orient1)
y24G2 = partial(leftline,c24,orient2)
G2y11 = partial(rightline,c11,orient2)
y21G3 = partial(leftline,c21,orient3)
G3y12 = partial(rightline,c12,orient3)

2

Figure B.10: We define functions that draw a triangle motif, a left bond motif or a right bond
motif, coming from an existing particle, respectively. The functions lbranch and rbranch contain
information on the new subaggregates that originate from this binding motif (also cf. Fig. B.11).
The input parameters fix the colors of the thus formed bonds, the orientations of the neighboring
particles (which are needed for the new subaggregates), and the coordinates of the desired drawings
on the figure canvas.
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[3]: # Function aliases for use in np.random.choice()

# subaggregates originating from G1
y23G1 = partial(leftline,c23,orient1)
G1y14 = partial(rightline,c14,orient1)
y24G2 = partial(leftline,c24,orient2)
G2y11 = partial(rightline,c11,orient2)
y21G3 = partial(leftline,c21,orient3)
G3y12 = partial(rightline,c12,orient3)
y22G4 = partial(leftline,c22,orient4)
G4y13 = partial(rightline,c13,orient4)
y23y14y43G1G1 = partial(triangle,c23,c14,c43,orient1,orient1)
y23y11y44G1G2 = partial(triangle,c23,c11,c44,orient1,orient2)
y23y12y41G1G3 = partial(triangle,c23,c12,c41,orient1,orient3)
y23y13y42G1G4 = partial(triangle,c23,c13,c42,orient1,orient4)
y24y14y13G2G1 = partial(triangle,c24,c14,c13,orient2,orient1)
y24y11y14G2G2 = partial(triangle,c24,c11,c14,orient2,orient2)
y24y12y11G2G3 = partial(triangle,c24,c12,c11,orient2,orient3)
y24y13y12G2G4 = partial(triangle,c24,c13,c12,orient2,orient4)
y21y14y23G3G1 = partial(triangle,c21,c14,c23,orient3,orient1)
y21y11y24G3G2 = partial(triangle,c21,c11,c24,orient3,orient2)
y21y12y21G3G3 = partial(triangle,c21,c12,c21,orient3,orient3)
y21y13y22G3G4 = partial(triangle,c21,c13,c22,orient3,orient4)
y22y14y33G4G1 = partial(triangle,c22,c14,c33,orient4,orient1)
y22y11y34G4G2 = partial(triangle,c22,c11,c34,orient4,orient2)
y22y12y31G4G3 = partial(triangle,c22,c12,c31,orient4,orient3)
y22y13y32G4G4 = partial(triangle,c22,c13,c32,orient4,orient4)
branches1 = np.

↪array([1,y23G1,G1y14,y24G2,G2y11,y21G3,G3y12,y22G4,G4y13,y23y14y43G1G1,y23y11y44G1G2,y23y12y41G1G3,y23y13y42G1G4,y24y14y13G2G1,y24y11y14G2G2,y24y12y11G2G3,y24y13y12G2G4,y21y14y23G3G1,y21y11y24G3G2,y21y12y21G3G3,y21y13y22G3G4,y22y14y33G4G1,y22y11y34G4G2,y22y12y31G4G3,y22y13y32G4G4])

1

Figure B.11: We define partial functions of the functions triangle, leftline or rightline, that
preset parameters specific to each binding motif (cf. Fig. B.10). These partial functions can be called
when the corresponding binding motif is randomly sampled.
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