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In living cells, proteins self-assemble into large functional structures based on specific interactions
between molecularly complex patches. Because of this complexity, protein self-assembly results from a
competition between a large number of distinct interaction energies, of the order of one per pair of patches.
However, current self-assembly models typically ignore this aspect, and the principles by which it
determines the large-scale structure of protein assemblies are largely unknown. Here, we use Monte Carlo
simulations and machine learning to start to unravel these principles. We observe that despite widespread
geometrical frustration, aggregates of particles with complex interactions fall within only a few categories
that often display high degrees of spatial order, including crystals, fibers, and oligomers. We then
successfully identify the most relevant aspect of the interaction complexity in predicting these outcomes,
namely, the particles’ ability to form periodic structures. Our results provide a first extensive
characterization of the rich design space associated with identical particles with complex interactions
and could inspire engineered self-assembling nano-objects as well as help us to understand the emergence
of robust functional protein structures.
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I. INTRODUCTION

Multiple copies of a single protein often self-assemble to
fulfill their biological functions [1]. The resulting assembly
morphologies may be complexes of a few subunits, e.g.,
membrane channels, large but finite higher-order assem-
blies akin to viral capsids, or unlimited structures such as
cytoskeletal fibers [2]. The interactions between individual
proteins are dictated by the amino acids at their surface.
These amino acids interact through a wide range of physical
effects, including hydrophobic-hydrophilic interactions,
polar and electrostatic forces, steric repulsions and shape
complementarity [3–6], implying a wide range of interac-
tion affinity and specificity [7–9]. Despite the complexity of
these interactions, the products of protein aggregation
overwhelmingly fall into a small number of stereotypical
aggregate morphologies, which include oligomers [10],
one-dimensional fibrillar structures [11–13], and liquid

condensates of finite [14] or unlimited three-dimensional
sizes [15]. Three-dimensional crystals are also observed
in vivo [16–18] and in vitro [19], and are widely used to
crystallographically investigate protein structure. These
morphologies thus display a range of different dimension-
alities and orientational order of the proteins.
The relationship between the molecular structures of the

protein surfaces that come into contact upon binding—
which we refer to as “patches” in the following—and the
morphology of the resulting aggregates is not well under-
stood. It is, for instance, difficult to discriminate between
the amino acids that are involved in a protein-protein
interaction and those that remain unbound [20,21]. On a
more practical level, we lack an effective framework to
predict protein crystallization as a function of solvent
conditions [17]. When a well-defined aggregate morphol-
ogy is obtained, it is typically sensitive to subtle changes
in interprotein interactions. A single mutation can thus
trigger the self-assembly of a soluble protein into fibers
in vitro [22]. In vivo, proteins found in different organisms
with almost identical morphologies may nonetheless
assemble through completely different patches [23–25].
Many proteins are thus increasingly believed to be
equipped with multiple competing sticky patches, which
may or may not dominate the final assembly depending on
potentially subtle factors. This competition may underpin
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the widely observed structural polymorphism in protein
self-assembly [26,27].
A popular theoretical approach to the relationship

between protein interactions and the resulting self-
assembly phase diagram is the use of so-called patchy
particle models, where anisotropically patterned particles
interact through a small set of short-range interactions [28].
Varying the number and the position of sticky patches on
the particles influences both the orientational order of the
particles locally [29,30] and the dimensionality and size
of the aggregate [31–33]. Patchy particle models are useful
for predicting the morphology resulting from the assembly
of some specific proteins [34]. While some studies pro-
vide a partial exploration of the design space of patchy
particles [35–37], there is no systematic understanding of
the relationship between the particle interactions and the
aggregate morphology.
Existing theoretical approaches to protein self-assembly

leave a crucial aspect of protein interactions largely unex-
plored: the fact that pairs of patches have essentially
independent interaction energies, due to both the variety
of physicochemical interactions involved and the combi-
natorial complexity of patch geometries. In this sense, their
interactions are nontransitive: The fact that two patches
stick to a third does not necessarily imply that they would
stick to (or repel) one another. To illustrate the complex
interplay resulting from the interaction between com-
peting patches, in Fig. 1(a), we consider a particle that
is asymmetrically patterned with three types of patches
whose interactions are detailed in Fig. 1(b). The complexity
of these interactions makes them pair specific, and one
cannot be deduced from the knowledge of the others: A
particle with n distinct patches has about n2 independent
pair interactions between patches, in contrast with simple
interactions governed by a single scalar quantity such as the
electrical charge, which would result in only around n
independent interactions. Such a large set of interactions
generically gives rise to a competition between competing
local structures, all involving some suboptimal interactions
[Figs. 1(c) and 1(d)]. Optimizing the morphology of the
aggregate in the presence of this so-called frustration is a
notoriously nontrivial task and usually results in polymor-
phism [37–39]. Geometrical frustration leads to size
limitation of the aggregate in other contexts, such as the
self-assembly of elastically deformable particles in two and
three dimensions [40–42]. It also influences the crystalline
order in lattice particles [43,44].
In this paper, we investigate how a large number of

independent interactions influences the morphologies
formed by self-assembling lattice particles. In Sec. II, we
introduce aminimal lattice-basedmodelwith 21 independent
continuous interaction parameters and show that it produces
a range of equilibrium aggregate morphologies in numerical
simulations.We then usemachine learning in Sec. III to show
that, despite the complexity of the interactions, the resulting
morphologies can be grouped within a small number of

categories with the same aggregate dimensionality and
orientational order. Particles with highly asymmetric inter-
actions can result in nontrivial morphologies reminiscent of
those found in proteins, e.g., fibers or self-limited assemblies,
and in Sec. IV, we show that such aggregates typically form
as a way to avoid geometrical frustration. Finally, Sec. V
presents a first foray in understanding the relationship
between particle interactions and aggregate morphology
by using machine learning to compare the prediction
accuracy of different descriptors, each aimed to isolate
specific features of our interaction parameters.

II. ARBITRARY INTERACTIONS YIELD DIVERSE
AGGREGATE MORPHOLOGIES

We design a minimal model of particles with directional
interactions, each of them of arbitrary strength and sign. As
shown in Fig. 2(a), we consider identical hexagonal lattice
particles on a triangular lattice. Two neighboring particles
who come into contact through their faces a and b
(a; b∈ ½1..6�) experience an interaction energy Jab. We
denote the set of all interactions as J and refer to it as the
“interaction map” of the problem. Without loss of general-
ity, we set the thermal energy kBT to one and all interaction
energies between a particle and an empty site to zero

(b)(a)

(c) (d)

More of the best interaction Fewer unfavorable interactions

FIG. 1. Complex asymmetric interactions leading to geometric
frustration. (a) Particles are asymmetrically patterned with “lock-
and-key” interacting patches. The arrow and colors indicate the
particle orientation. (b) Each pair of patches is governed by its
own interaction strength, resulting in a large number of inde-
pendent interactions. For instance, the squared lock and the round
lock both bind to the round key but not to each other. (c) When a
particle interacts with two others through two of the best
interactions, this leads to an unfavored interaction between these
two neighbors. (d) An alternative, possibly more favorable
arrangement gives up one of the best interactions to avoid the
resulting unfavored interaction.
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(Appendix B 1), implying that J fully characterizes the
energetics of a system of particles. There are 6 × 6 pairs of
faces, but since Jab ¼ Jba by symmetry, J has only 21
nonredundant elements corresponding to the interactions
schematized in Fig. 2(b). This large number of indepen-
dent energies allows us to capture the large complexity
illustrated in Fig. 1 without reference to the microscopic
physical origin of each interaction.
To characterize the influence of J on particle self-

assembly, we look for the equilibrium state of low-
density systems in the canonical (NVT) ensemble
using Monte Carlo simulated annealing. We implement
single-particle and cluster Monte Carlo moves to reach the
equilibrium configuration at a modest computational cost
(seeAppendixA 1 for details). Our procedure does notmean
to model a realistic dynamic for self-assembly. We verify
that the simulation results do not depend on the chosen
annealing duration or particle density (Appendix B 2).
We first illustrate the range of possible outcomes of the

simulations in Fig. 2(c) by choosing eight stereotypical
interaction maps, which we pictorially depict in the corner
of each panel. In panel (1), a fully isotropic and attractive
interaction map produces a compact aggregate devoid of
orientational order akin to a liquid droplet. By contrast,
panel (2) and panel (3) present highly anisotropic, attractive
interaction maps that promote the short- or long-range
orientational ordering of the particles. Thus, they respec-
tively produce a polycrystal and a ordered crystal.
Interaction map (4) also promotes a small number of

particle contacts, but unlike in the previous examples,
these can only be realized in particles with different
orientations, resulting in the formation of a spongelike
morphology. Panel (5) displays particles with competing
interactions: One face of a particle can bind to several
others, as evidenced by the presence of several blue entries
for the same line in the interaction map. This process leads
to the formation of a gel, where smaller clusters of a few
particles are connected to each other while the whole
structure retains a large interface with the solvent. If a
particle only has sticky patches located opposite each other,
it forms a fiber, as in panel (6). Finally, a single attractive
interaction favoring misaligned particles yields hexamers in
panel (7), and the absence of interactions in panel (8) results
in a gas. These categories recapitulate many morphologies
observed in aggregates of proteins or patchy particles, thus
outlining the ability of complex interactions to induce
complex aggregates even in our comparatively simple
lattice-based model.
Beyond these simple examples, we use arbitrary inter-

action maps to show that our model qualitatively recapit-
ulates the effects of the competition between sticky patches
in proteins. In Fig. 3, we thus show two almost-identical
interaction maps leading to very different aggregate mor-
phologies depending on which one of two competing sets
of interparticle contacts is more stable than the other. To
highlight the differences between these two sets, in each
panel we display the contact map hNi, which gives the
overall frequency of each pair of particles in the simulation.

(a)

(c)

(b)

Liquid Polycrystal Crystal Sponge Gel Fiber Oligomer Monomer

FIG. 2. Simple sets of local interactions leading to a large diversity of aggregates (a) Lattice particles interact through their six
patchlike faces. The interaction depends on the particles’ relative orientations. (b) The set of all possible interparticle orientations can be
represented in a symmetric 6 × 6 matrix. The contents of the matrixlike interaction map J can thus be summarized by specifying the
lower triangular part of this matrix. (c) Equilibrium configurations of systems of 500 particles are shown for eight easily interpretable
interaction maps. The lower triangular part of the interaction map J is represented in the lower-left corner of each panel, with blue and
red squares, respectively, representing interactions energies Jab ¼ −10, 10 in units of kBT. The labels on the bottom right of each panel
indicate our nomenclature of the morphologies.
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While the most frequent contacts correspond to favorable
contacts in the interaction map, not all favored interactions
are observed, which demonstrates that having many arbi-
trary, continuous interaction values leads to a relationship

between the interaction map and contact map that is both
highly sensitive and nontrivial.

III. AGGREGATE MORPHOLOGIES FALL
WITHIN A FEW STEREOTYPICAL CATEGORIES

As aggregate morphologies sensitively depend on the
exact values of the underlying interactions, one may
wonder whether new aggregate categories beyond the eight
pictured in Fig. 2(c) could emerge for a fully general
interaction map. To begin to answer this question, here we
simulate a large number of randomly chosen interactions
maps and classify the resulting morphologies with the help
of a machine learning algorithm.
To guide our exploration, we reason that two major

determinants of a particle’s self-assembly behavior are its
affinity, i.e., its average propensity to stick to other identical
particles, and its asymmetry, i.e., its deviation from an

(a) (b)

FIG. 3. Similar interaction maps leading to very different
aggregate morphologies. The two interaction maps of panels
(a) and (b) have the same favored and unfavored interactions yet
result in very different final morphologies (a sponge and a fiber
per our nomenclature).

Oligomer Gel

Fiber Polycrystal Gel Oligomer Fiber

GelCrystal Polycrystal

Polycrystal Oligomer Fiber Crystal

Crystal

Liquid Liquid Monomer Monomer Monomer

Sponge Sponge Fiber Oligomer

Sponge

FIG. 4. Random interactions reproduce the aggregate diversity observed in simple interaction maps. For each value of affinity and
asymmetry, we show a randomly drawn interaction map (bottom-left matrix, with the color scale of Fig. 3), a snapshot of the result of the
simulated annealing, and the aggregate category, as in Fig. 2. Here and in the following, the lattice has 60 × 60 sites, and there are 500
particles. We verify in Fig. 15 that the aggregate morphologies are unchanged when considering 10 times more particles at similar density.
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isotropic interaction profile. Experimentally, the former can,
in principle, be tuned independently of the latter through,
e.g., depletion interactions. We thus choose to respectively
model the affinity and asymmetry using two independent
parameters, μ and σ. We draw each of the 21 independent
parameters of our interaction map independently of the
others from the following Gaussian distribution:

PðJabÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðJab − μÞ2

2σ2

�
: ð1Þ

We show typical aggregates resulting from several ðμ; σÞ
values in Fig. 4. At low asymmetry σ, liquids or monomers
dominate depending on the affinity μ, consistent with the
absence of orientational preference of the particles. Larger
values of the asymmetry yield diversemorphologies. Despite
some variability—e.g., the varying widths and branching
rates of the fibers in Fig. 4—all aggregate morphologies fall
within the categories enumerated in Fig. 2(c) (see labels on
each image).
We make our morphological classification more system-

atic by generating a large number of interaction maps
and studying the resulting aggregates. We choose 45
different ðμ; σÞ couples corresponding to five values of
affinity and nine values of asymmetry: μ∈ f−4;−2; 0; 2; 4g,
σ ∈ f0.1; 1; 3; 5; 7; 9; 11; 13; 15g. For each of these, we
generate 200 interaction maps and run the numerical
annealing procedure described above. We characterize each
morphology by computing a few geometric properties,
namely, the average aggregate size, porosity, and surface-
to-volume ratio. Out of the resulting 9000 aggregate mor-
phologies, we manually classify 738 randomly chosen ones
within our eight categories. As is apparent from Figs. 16–23,
we do not find the need for any new category during this
process. We then use this manually labeled set of categorical
data to train a simple feed-forward neural network to predict
the label of a given aggregate morphology using the
corresponding interaction map, contact map, and aforemen-
tioned geometric properties as descriptors. For any set of
descriptors, the network outputs a set of eight scores that sum
to one, each assigned to a category. We choose the category
with the highest score as the classifier’s prediction. This
procedure yields reliable results, with 99.7% correct pre-
dictions on the training set and 99.3% correct predictions on
the test set (see Appendix A 2 for details on the method and
the classification). For instance, we show in Appendix B 5
that the network successfully segregates large aggregates
with different levels of orientational order between the
sponge, crystal, polycrystal, and liquid categories. We use
the network to classify our whole data set of 9000 morphol-
ogies and evaluate the quality of each prediction from the
value of the highest probability,whichwe refer to as the score
of the prediction. An ideal, unambiguous classifier should
give scores close to unity, much larger than the almost 1=8th
probability associated with a random classification of cat-
egories of approximately equal sizes. Figure 5 shows the

histogram of the scores for our classifier with a vertical
logarithmic scale. For each category, a large majority of the
scores are close to unity, with only 8.2% of themorphologies
having a score below 0.9 (3.3% below 0.7). Low scores
typically occur in systems where two morphologies are
present simultaneously, as shown in Fig. 25. This successful
outcome confirms that our eight categories are sufficient to

Monomer

Sponge Crystal Polycrystal Liquid

Oligomer Fiber Gel

FIG. 5. Classification of the aggregates without ambiguity with
machine learning. We show, in log scale, the histogram of the
prediction scores of the neural network for the whole data set
(gray) and for the data classified in each category (in the insets,
the axes are the same as the main figure). Most of the prediction
scores (the probabilities to belong to the predicted category) are
close to unity, suggesting an unambiguous classification.

Liquid
Polycrystal
Crystal
Sponge
Gel
Fiber
Oligomer
Monomer

FIG. 6. Asymmetric interactions frequently lead to aggregates
of reduced sizes or dimensionality. Each pie chart shows the
statistics of aggregate categories formed from random interaction
maps as a function of affinity and anisotropy. The 9000 randomly
drawn interaction maps are binned according to the measured
affinity and anisotropy, with precision of 1kBT. Each pie chart
summarizes the information of 50 to 289 interaction maps.
Aggregate categories are determined by supervised machine
learning. The same graph with the data binned according to
the affinity and anisotropy of the distribution is shown in Fig. 26.
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classify our sample of morphologies without significant
ambiguities and that the category that an aggregate belongs
to can be determined by specifying the particle interactions
alongside a few geometrical characteristics.
By applying our classifier to all the unlabeled aggregates

among our 9000 interaction maps, we conduct an extensive
statistical analysis of the influence of the affinity μ and the
asymmetry σ on the aggregate morphology. We present our
results in Fig. 6, which confirms the tendencies identified in
Fig. 4. Very sticky particles thus favor the formation of
infinite aggregates (liquid, crystal and sponges, in blue and
on the left of the diagram), while repulsive, high-symmetry
particles form monomers (the bottom-right part of the
diagram is mostly light green). By contrast, nontrivial
aggregates form mostly for particles that are repulsive on
average and highly asymmetric (upper-right region of the
diagram). A more specific characterization, however,
appears difficult from these data alone, as most values
of ðμ; σÞ within this region produce very diverse collections
of morphologies.

IV. PARTICLES FORM SLENDER, SMALL,
OR POROUS AGGREGATES TO AVOID

GEOMETRICAL FRUSTRATION

To further elucidate the relationship between interactions
and aggregate morphology within the nontrivial repulsive
or asymmetric region of Fig. 6, we reason that geometrical
frustration (Fig. 1) should penalize the formation of
compact crystals and liquid aggregates. According to this
reasoning, particles that display many incompatible inter-
actions should tend to form aggregates of lower size, lower
dimensionality, or with higher porosity.
We define a quantitative measure of frustration whose

design is illustrated in Fig. 7. The interaction map of panel
(a) implies a competition between two local structures. In
the first structure, shown in panel (b), the geometry of the
particles imposes a larger-scale geometrical constraint.
Specifically, it imposes that two favorable interactions
can only be obtained at the cost of an unfavorable one.
As a result, the motif of panel (c), which only comprises
favorable interactions, albeit weaker ones, is favored over-
all. We propose that the amount of geometrical frustration
associated with an interaction map can be quantified as the
amount of favorable interaction energy that is “lost” due to
the aforementioned geometrical constraints. This quantity
can be measured by comparing the equilibrium energy of a
numerical simulation, where these constraints are present
[panel (d)], to a situation where these constraints are
removed [panel (e)]. To engineer such a situation, we
imagine a mean-field system where each particle is broken
down into its six constitutive faces and where all faces are
free to associate in pairs irrespective of their provenance
(see Appendix A 3 for the calculation of NðmÞ). As a result,
the formation of the two most favorable interactions no

longer forces an unfavorable interaction, as illustrated in
panel (e).
Operationally, for a given interaction map J, we denote

by hNðsÞi and NðmÞ, respectively, the average contact map
obtained from our simulations and the contact map
obtained from this new, constraint-less, free-energy min-
imization. We then define our measure of the relative
frustration as

f ¼ hEðsÞi − EðmÞ

hEðsÞi ; ð2Þ

where the average simulated energy reads

hEðsÞi ¼
X
a≤b

hNðsÞ
abiJab ð3Þ

and similarly for EðmÞ.
Our example of Fig. 7 illustrates the putative effect of

frustration on the aggregate morphology. Because the
configuration of panel (b), where all particles are aligned,
is ruled out by frustration, the system tends to select
the more complex configuration of panel (c). This local
configuration could, in principle, lead to a dense aggregate,
e.g., a crystal of alternating particles. In practice, however,
such a dense aggregate would require forming additional

(d)

(a)

(e)With geometric 
constraints

Without geometric 
constraints

1
2

3

4
5

(b) (c)

2 3

1

4 5

1

1

4
5

1
5

2

Motif favored 
for one particle

Motif favored 
globally

FIG. 7. Quantifying geometrical frustration as the energy
surplus associated with the geometric constraints. (a) Interaction
map J leads to a fiber (same color codes as Fig. 3). (b) When a
single particle (here, on the top left) realizes the most favorable
interactions with its neighbors, it leads to an unfavorable
interaction between these neighbors (labeled “3” here). (c) Min-
imizing the energy of the three particles together leads to the same
fiber motif observed in panel (a). (d) In the simulation, we
measure the contact map hNðsÞi that takes into account the
geometric constraints associated with such local particle arrange-
ments. (e) By contrast, in our constraint-free minimization, we
determine the contact maps that minimize the energy NðmÞ
without constraints of this type. We quantify frustration as the
relative energy difference between the protocols illustrated in
these last two panels (f ¼ 0.75 in that example).
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contacts besides those represented in panel (c), and those
contacts are penalized by weak repulsive interactions that
appear as light red squares in Fig. 7(a). Those repulsive
interactions constitute a new source of frustration for any
hypothetical dense aggregate. We thus predict that densely
packing such particles in a simulations box without any
empty sites would result in a fairly large frustration f. By
contrast, the dilute system of panel (a) avoids all unfav-
orable interactions by forming a fiber, resulting in a lower
value of f. More generally, we speculate that an effective
way for a dilute system to avoid unfavorable interactions is
to incorporate empty sites in its morphology. The incentive
to do so should be larger in interaction maps that result in a
large “dense frustration” fdense, implying that this dense
frustration could be correlated with the final aggregate
morphology.
To test this correlation and the idea that the formation of

small, slender, or porous aggregates leads to a reduction in
frustration, we compute fdense and fdilute for each inter-
action map in our sample of 9000, according to Eq. (A6).
Here, fdense is calculated from simulation results of systems
with the same interaction map and number of particles, but
with density 1. The examples outlined in Fig. 8(a) validate
our speculations: The five interaction maps on the left
display a high dense frustration, which relax in a dilute
setting by taking advantage of empty sites. By contrast, the

two rightmost particles display low levels of dense frus-
tration. When diluted, they form compact aggregates with
an internal organization resembling the dense systems. By
contrast with the first group of five, in these systems, the
boundaries of the dilute aggregate are less energetically
favorable than the bulk, implying a dilute frustration higher
than its dense counterpart. These trends are confirmed
statistically in the histograms and averages of Figs. 8(b) and
8(c). We thus conclude that most of our systems are
frustrated and that a high frustration in dense systems is
associated with a noncompact dilute morphology that
enables a reduction of the frustration.

V. ABILITY TO ASSEMBLE INTO
PERIODIC MOTIFS PREDICTS
THE AGGREGATE CATEGORY

While our findings on the role of frustration provide
insights into the physics that underpins the self-assembly of
particles with complex interactions, the histograms of
Fig. 8(b) overlap too much for the number f to serve as
a reliable predictor of the resulting aggregation category. To
better understand the most crucial aspects of the interaction
map, here we again train neural networks to predict the
outcome of self-assembly, but this time, we intentionally
provide them only with partial information.

(a)

(b) (c)

FIG. 8. Particles avoid frustration by self-assembling into noncompact aggregates. In a dense system, individual particles have no
choice but to interact with their neighbors, resulting in an overall higher frustration than in dilute systems. (a) Example of dense and
dilute equilibrium configurations and corresponding relative frustrations as defined in Eq. (2) for seven representative interaction maps.
The last two examples are exceptions to the average trend of higher dense frustration. Dense configurations are simulated for 484
particles in a lattice of 22 × 22 sites. (b) Histogram of the probability density of relative frustration for each of our seven categories of
aggregating (nonmonomer) systems. (c) Corresponding averages.
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From a formal point of view, our Monte Carlo simulation
outputs the aggregation category corresponding to an
interaction map from the specification of its 21 independent
components. We first verify that a neural network can
emulate this computation given a large enough training set
to learn the full high-dimensional phase diagram. More
specifically, we perform a closely related test on our sample
of 9000 by providing a neural network with the interaction
map, as well as the average avðJÞ and standard deviation
stdðJÞ of the energies of interaction map J. The quantities
avðJÞ and stdðJÞ are closely related to μ and σ, with the
difference that the former relates to an individual J and the
latter to the underlying probability distribution [Eq. (1)]. As
shown in Fig. 9, the resulting prediction accuracy is close to
100%. Compared to this ideal case, a neural-network
prediction based on fewer than 23 scalar values—referred
to as “features” in the following—should be less accurate as
it proceeds from a more limited amount of information. To
get a sense of the expected decrease in accuracy upon a
decrease in the number of features, we train neural net-
works based on a restricted amount of information by not
providing them with some of the components of the
interaction map (see details in Appendix A 4). As shown
in Fig. 9, under this protocol, the predictive power of the
neural networks decreases monotonically as the number of
features decreases. In the most extreme case, the accuracy
falls to less than 60%, when only the measured avðJÞ and
stdðJÞ are provided.
While our wholesale masking of the interaction map sets

our expectation for the accuracy expected from a given

number of features, we reason that some better-chosen
descriptors could outperform this baseline. Here, we look
for such descriptors as a means to identify the aspects of the
interaction maps most relevant to the outcome of self-
assembly. In a first test of this idea, we ask whether the
aggregate morphology could simply be determined by the
specification of which of its interactions are attractive vs
repulsive, irrespective of their intensity. Such an outcome
would be contrary to our previous discussions of the role of
frustration in our system, whereby a subtle balance between
the magnitude of several interactions determines which
local structures are actually chosen by the system.We see in
Fig. 9 that a neural network provided solely with avðJÞ,
stdðJÞ, and the signs of the individual interactions (not their
magnitudes) performs almost as poorly as one that only has
access to avðJÞ and stdðJÞ. This finding thus further
strengthens our conclusion that frustration plays an impor-
tant role here.
In a second approach, we reason that some components

of the interaction map are more conducive than others to the
formation of aggregates of large sizes. Interactions that
promote identical orientations between neighboring par-
ticles may thus favor crystals, as in example (2) of Fig. 2(c).
By contrast, if only one of these three interactions is
favorable, fibers tend to form. We refer to these as “line
interactions” and attempt to predict the aggregation cat-
egory from their three values alongside avðJÞ and stdðJÞ.
As shown in Fig. 9, this procedure far outperforms the five-
feature baseline. We interpret this success by noting that
line interactions enable the formation of periodic aggre-
gates and that an enhanced ability to form such aggregates
in one or two directions is a strong predictor of the
formation of fibers and crystals.
To further exploit this insight, we note that the speci-

fication of line interactions only captures the ability to form
periodic structures with a period equal to one, while many
of our aggregates display higher-order periodic structures.
We design a more suitable predictor inspired by example
(4) of Fig. 2(c). In this example, a fiber emerges from a
combination of two interactions where particles are anti-
aligned, resulting in a periodicity of two lattice sites. This
suggests that in this case, the nearest-neighbor line inter-
action discussed above can usefully be replaced by an
effective second-nearest-neighbor interaction mediated by
an antialigned particle. As illustrated in Fig. 10(a), we
analogously define effective nth-neighbor interactions by
filling the n − 1 sites joining two identically oriented
particles with particles in the most energetically favorable
orientations. Here, we disregard particles outside of the
straight line joining the particles and consider all three
possible orientations of the identically oriented particles.
As shown in Fig. 10(b), positioning the three nth neighbor
interactions on our triangular lattice mimics the configu-
ration encountered in our original definition of the line
interactions, albeit with a larger mesh size. We illustrate our

PROPAGABILITY

FIG. 9. Propagability, a measure of the ability to form periodic
motifs, which is a very successful predictor of aggregate
morphology. Purple squares: A neural network can accurately
predict the aggregation category when provided with the full
aggregation map (rightmost purple square), although this ability
rapidly degrades when masking some of the features of this map
(grayed-out area in the inset). Green gradient: Strategies that
result in an accuracy above the purple symbols outperform this
crude baseline. This category includes the specification of the line
interactions (green diamond symbol) and propagability (blue
circle). By contrast, the sole sign of each interaction energy is a
very poor predictor of the morphology (orange cross).
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procedure for the interaction map of Fig. 10(c), for which
all effective interactions for n ranging from 1 to 5 are
displayed in Fig. 10(d). We find that the best periodic motif
arises for a value n ¼ n�, which in this case equals 2. This
finding indicates that the system’s best chance at forming a
periodic aggregate is for a period 2. By further examining
the direction-specific period-2 energies e�1, e

�
2, e

�
3 displayed

as colors in Fig. 10(d), we find that only one of them is very
favorable, which suggests that fibers should be most
favorable among the period-2 structures, consistent with
the result of the Monte Carlo simulation of Fig. 10(c). The
examples of Fig. 10(e) further indicate that a larger number
of favorable n ¼ n� motifs is associated with denser
aggregates. This suggests that the specification of the
energy of these motifs could be indicative of the final
morphology of the aggregate.
To put this intuition on a more quantitative basis, for each

of our interaction maps, we compute the vector
(avðJÞ; stdðJÞ; e�1; e�2; e�3; n�), or “propagability” of the
interaction map, and assess its power as a six-feature
predictor of the aggregate morphology (Appendix A 5).
We find that its 92% success rate far outperforms our other
attempts, which we describe in Appendix B 6. By and
large, these alternative attempts are based on averages of
several interactions. They are thus presumably less suc-
cessful than the propagability at capturing details of the
particles’ preference for certain local organizational, as well
as their ability to tile the plane, both of which are tied to the
presence of geometrical frustration. The second panel of

Fig. 10(e) illustrates a nontrivial effect of the competition
between several interactions and the usefulness of avðJÞ
and stdðJÞ in the propagability. In this example, only one of
the three periodic motifs probed by the propagability is
favorable, implying that particles tend to assemble into
fibers. However, a relatively large stdðJÞ implies the likely
existence of many additional attractive interactions. These
interactions cause new fibers to form off the side of existing
fibers, resulting in the formation of oligomers that are
essentially clumps of short sticky fibers. This morphology
is indeed correctly predicted by our propagability-based
neural network. More broadly, we show in Fig. 29 that
the predictive power of the propagability decreases sig-
nificantly when we remove avðJÞ and stdðJÞ from it,
although it still remains very high compared to the other
predictors we investigated. We thus conclude that the
ability of the particles to form a structure that can propagate
in one of several lattice directions determines the aggregate
morphology.

VI. DISCUSSION

The model introduced here reveals the effect of a type of
complexity that is largely disregarded in existing self-
assembly models, namely, nontransitive, pair-specific,
highly asymmetric interactions. Despite the enormity of
the associated parameter space, we find that they produce
only a few stereotypical morphologies reminiscent of those
encountered in protein aggregates. This finding suggests

(e)

(d)

(b)

(a) (c)

FIG. 10. Interaction map’s propagability as a measure of the energy of its best periodic motifs. (a) Linear periodic motifs assessed by
enumerating the orientations of the gray particles and choosing the combination of orientations with the lowest energy. (b) Three motifs
of the previous panel characterizing the three main lattice directions, in the context of our triangular lattice. (c) An example interaction
map. (d) All n ≤ 7 periodic motifs associated with this interaction map, with the associated energies per particle indicated as colored
squares. The period of the best motif (n ¼ n� ¼ 2) is highlighted. In this example, only one of the three n ¼ n� motifs is energetically
favorable, leading to a fiber morphology. (e) Other examples of n ¼ n� motifs and associated energies.
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that the frustrated self-assembly of complex particles
may be dominated by a few universality classes, whereby
few of the details of the local interactions between particles
are relevant to understanding the resulting large-scale
morphologies.
This interpretation is supported by our ability to predict

these morphologies from our propagability, i.e., a coarse-
grained version of the interactions between neighboring
particles. While revealing the mechanisms at work within
the examples presented here, this descriptor leaves out
several important features, including the role of particles
lying in the “holes” between the straight gray lines of
Fig. 10(b). It nevertheless indicates that a more systematic
renormalization group approach could allow us to go
beyond qualitative statements and quantitatively identify
which features of the interaction map are most relevant to
the aggregates’ large-scale morphology. Our lattice model
offers an ideal setting for such approaches. It is indeed
amenable to decimation techniques developed in the early
days of the study of critical phenomena [45], unlike
existing models for self-assembly in the presence of
frustration, which typically feature particles with continu-
ous translational degrees of freedom. Thus, the simple
lattice model introduced in this paper provides a generic
and rigorous framework to determine universal features of
self-assembly in future studies.
The universality classes discussed here could provide a

major step in unifying observations of common features in
many disparate models of frustrated self-assembly.
Frustration has indeed traditionally been attributed to the
presence of particles with ill-fitting shapes [46] or to the
presence of incompatible interactions. A simple example of
the latter is the case of the antiferromagnetic Ising model
[47], and more recent studies have also considered con-
tinuous order parameters [44,48]. Such effects have tradi-
tionally been studied in dense media, where frustration may
strongly influence the local organization of the system but
tends to vanish upon repeated renormalization [43]. By
contrast, in the context of self-assembling dilute particles,
frustration influences the shape of the boundary of the
aggregate and may thus remain relevant on large scales.
This result leads to fibrous objects and morphologies with
internal holes in a wide range of settings, ranging from
particles with a frustrated internal degree of freedom to
colloidal self-assembly on a curved surface [40,49–53].
Qualitatively, such morphologies are well explained by the
frustration avoidance mechanism discussed in the present
work and illustrated in Fig. 8. However, no common
language has yet emerged to quantitatively describe the
associated structure selection mechanisms independent of
the details of each model.
Such a robust physical framework could help predict the

outcome of protein self-assembly. Indeed, determining
protein-protein interfaces and oligomer shapes of unknown
proteins remains difficult for proteins for which detailed
structural information is not available in the Protein

Data Bank (PDB) [54]. So far, estimates of the binding
energies of protein contacts are primarily performed by
measuring how often these contacts are observed in the
PDB [55]. Our results, however, emphasize that pair
interactions that are not observed are not necessarily
unfavorable. Instead, geometrical frustration leads to a
nontrivial relation between the interaction map and the
contact map. Moreover, in living cells, transitions from one
protein aggregate morphology to another occur following
changes related to individual binding sites (for example,
through phosphorylation or binding to a ligand [56,57]) or
to a global shift in the binding (free) energies (e.g., through
a change in temperature [58]).
Those modifications of the binding energies and their

influence on the aggregate morphology are typical exam-
ples of the types of complexity formalized for the first time
by our model. Additionally, three-dimensional extensions
thereof would display an even larger level of such complex-
ity from additional sources of frustration due to twisting
and chiral effects as well as the presence of more numerous
independent interactions, e.g., 84 for cubic particles.
Self-assembly is a valuable tool to build complex

materials on small scales, for instance, using colloids,
proteins, or DNA-based subunits whose interactions can
be tailored, to a very large extent [59–61]. The diversity of
aggregate morphologies observed here could inspire such
designs, from self-limited oligomers to fibers with widths
larger than the size of one particle. This mechanism of self-
limitation for colloidal self-assembly has not been reported
previously [62] and could be used as a design strategy for,
e.g., DNA origami [63]. We also observe porous materials,
a category with useful storage and mechanical properties
[64]. We do not observe aggregates of fractal dimensions
[65] or quasicrystals [66], which is not an indication that
such aggregates could not be observed with particles of
complex interactions—rather, these morphologies are
intrinsically repressed in lattice models. Overall, we sug-
gest that self-assembly based on a collection of many
identical particles with highly asymmetric interactions
could provide a more robust alternative to traditional
designs based on multiple constituents, in which even very
small nonspecific interactions can be very detrimental to
the self-assembly yield [67].
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APPENDIX A: METHODS

1. Monte Carlo simulation

We determine the equilibrium configuration of particles
with a given interaction map with Monte Carlo Metropolis-
Hastings simulated annealing coded in C++. Here, we
explain the Monte Carlo steps and annealing protocol.
The justification for the parameter choices are given in
Appendix B 2. Most of the methods described in
Appendixes A and B were also described in Ref. [68].
A fixed number of particles is placed on a two-

dimensional triangular lattice with periodic boundary con-
ditions. Throughout the study, we choose a lattice of
Nsites ¼ 30 × 30 lattice sites and 100 particles (except in
the systems shown in Figs. 2–7, where the system size is
smaller to ensure better visualization). We explore the
configurations of the system by changing the particles’
orientations and positions. We index the equilibration steps
by an integer t. At each t, the configuration of the system is
described by the positions and the orientations of all the
particles. We only change the configuration of at most one
particle per step t. The energy of the system reads

EðtÞ ¼
X
a≤b

NabðtÞJab: ðA1Þ

At each step, we perform an elementary Monte Carlo
move. We thus draw, with a uniform probability, which
particle, or group of particles, will change configuration.

With probability 1 − τ, only a single particle changes
position or orientation, and with probability τ, we per-
form a cluster move, thus updating the position or ori-
entation of several particles at the same time. Collective
moves of particles have indeed been shown to accelerate
Monte Carlo sampling [69,70].
With probability ð1 − τÞ × 1=2, the chosen particle

changes orientation. The new orientation is drawn uni-
formly among the orientations that are different from the
current one. With probability ð1 − τÞ × 1=2, the particle
changes position on the lattice. The new position is drawn
uniformly among the empty sites of the lattice. Therefore,
the particles not only diffuse to neighboring sites but rather
teleport to arbitrarily distant available sites, favoring faster
equilibration. We illustrate those Monte Carlo moves in
Figs. 11(a) and 11(b).
With probability τ × 1=2, we attempt a swap of two site

clusters. We first randomly draw two sites of the lattice and
the radius r of the hexagonal shaped cluster of sites. We
choose a cluster of radius r with a probability scaling as
1=r2. In the example shown in Fig. 11(c), the chosen
clusters are of radius r ¼ 1. The radius of the cluster is
between r ¼ 1 (7 lattice sites) and r ¼ 7 (169 lattice sites).
The two clusters have the same size. If they overlap, we do
not attempt the move. Otherwise, two groups of sites are
swapped, and the orientations of the particles on the
nonempty sites are conserved. With probability τ × 1=2,
we attempt a rotation of a cluster of sites, as in Fig. 11(d).
The size of the cluster is chosen randomly as is its new
orientation.
At each step, we compute the new energy of the system

E0 and compare it to the old energy E. In practice, we only

Single particle swap Single particle ip Cluster swap Cluster ip(a) (b) (c) (d)

FIG. 11. Equilibrating the system by attempting to swap or flip single particles or clusters of particles. (a) A randomly chosen single
particle and an empty site are swapped. (b) A single randomly chosen particle is flipped (rotated). (c) Two randomly chosen hexagonal
clusters of radius 1 are swapped. (d) One randomly chosen hexagonal cluster of radius 2 is flipped.
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recompute the energy from the bonds of the moved
particle(s) and its old and new neighbors. The move is
accepted according to a Metropolis criterion with temper-
ature T (always accepted if E0 < E, accepted with a
probability p ¼ exp½−ðE0 − EÞ=ðkBTÞ� if E0 > E).
We minimize the free energy of each system using

simulated annealing. We perform 100 equally spaced
inverse temperature steps starting at 1=ðkBTÞ ¼ 0 and
ending at 1=ðkBTÞ ¼ 1. Within each temperature step,
we perform a number of Monte Carlo steps equal to
7200 × Nparticles, where Nparticles denotes the number of
particles in the system. After annealing, we perform 7200 ×
Nparticles Monte Carlo steps at kBT ¼ 1 while averaging
Nab. The results presented here are averages over five
repeats of the whole annealing procedure for each inter-
action map. We consider 9000 distinct interaction maps
and therefore run 45 000 simulations. Each of them
represents 3 CPU hours, and the total amount of CPU
time used for this study is therefore of the order 135 000
CPU hours.

2. Machine-learning classification

To train the algorithm that recognizes the aggregation
category, we first manually label 738 images of equilibra-
tion results such as the ones shown in Fig. 4. We train a
dense neural network to classify 80% of the labeled data
(the training set), and we test its performance on the rest of
the labeled data (the test set). We then use this neural
network to classify the rest of the data set that was not
labeled manually. The result of the classification on all the
data is shown in Fig. 6. Here, we explain how the neural
network is built and trained, and show that it reliably
classifies our data.
Let us consider an individual interaction map, which we

index by i in the following. We first run an equilibration
simulation for map i and create an input vector Xi to
describe the output according to the procedure described in
Appendix A 2 a. The output vector of the classification
algorithm is an eight-component vector Yi whose individ-
ual components represent the probability of the aggregate
belonging to each of our eight categories. For hand-labeled
aggregates, the true value Ytrue

i of this vector is known. For
instance, Ytrue

i ¼ ð0; 1; 0; 0; 0; 0; 0; 0Þ for the aggregate of
Fig. 2(c)(2) because the aggregate belongs to the second
aggregation category (namely, crystals). The training of the
algorithm consists in minimizing the distance betweenYtrue

i

and the predicted Ypred
i as described in Appendix A 2 b.

a. Input vector

The input vector is composed of the interaction map (21
numbers); the density map, i.e., the proportion of each type
of interaction, including the empty-empty and empty-full
interactions (28 numbers); and of geometric indicators,
including the averaged size, the averaged number of

vacancies per particles in an aggregate, and the averaged
surface-to-volume ratio of each aggregate (three numbers).
The density map, the geometric indicators, and the orienta-
tional orders are averaged over five different simulations
with the same interaction maps. These numbers are usually
referred to as features.
For each hand-labeled interaction map, we multiply

input vectors with the same label to take into account
the symmetries of the system. Indeed, the interaction map
and density map are defined up to the relabeling of the
angles ϕi of Fig. 2(a). This relabeling corresponds to a
cyclic permutation of the lines and the columns in the
interaction map. Two interaction maps J and J0 are thus
physically equivalent if they verify

J0 ¼ Pk · J · P−k with P ¼

0
BBBBBBBB@

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

1
CCCCCCCCA

and k∈ ⟦0; 6⟧: ðA2Þ

Similarly, two interaction matrices J and J0 are equivalent
up to a mirror transformation of the particle if they verify

J0 ¼ M · J ·M−1 with M ¼

0
BBBBBBBB@

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1
CCCCCCCCA
:

ðA3Þ

For each interaction map, we enumerate the cyclic
permutation and mirror transformation of the interaction
map and add the 11 corresponding distinct input vectors to
the data set. As a consequence, the neural network learns
that two systems are equivalent after this transformation,
and the classification does not depend on the arbitrary
choice of the permutation of the interaction map. It also has
the advantage of increasing the number of data by a factor
12, without having to run more simulations or classify more
images.
We label 93 systems as monomers, 53 as oligomers, 59

as fibers, 50 as gels, 159 as sponges, 159 as crystals, 114 as
polycrystals, and 51 as liquids. Those examples are spread
among all values for affinity and asymmetry (μ and σ). For
this data set, we have the input vector X and the true label
vector Ytrue, which collects the values of all Ytrue

i . The final
total input of the algorithm X is composed of 738 × 12
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input vectors, each containing 21þ 28þ 3 ¼ 52 features.
We normalize each feature by its average value over the
whole data set.

b. Neural network

Here, we choose the structure of the neural network and
the learning parameters such that the accuracy of the
prediction on both the training and the test set is close
to 100%. As is often the case in machine learning, these
choices are arbitrary, and another neural-network architec-
ture could give similar results [71].
To transform the input X into the predicted labels Ypred,

we use a dense network of five layers implemented with the
PYTHON library keras. Each layer is, respectively, com-
posed of 100, 200, 400, 100, and 30 neurons. At each layer,
we use the rectified linear unit function. The network is
trained by minimizing the cross-entropy loss function. The
optimizer is adam. We also implement an L1 and L2
regularization, with factors 10−4 and 10−5. We optimize the
loss function for 1500 iteration (epochs) on different
batches of 128 data (minibatches). We measure a training
accuracy of 99.7% and a test accuracy of 99.3% on the
labeled data set.
With this neural network, we then classify the rest of the

data set that was not labeled manually. We ensure that the

labeled and unlabeled data have comparable distribution by
labeling a sufficient amount of data for all values of the
affinity and asymmetry, and in each aggregation category.
We thus label between 7 and 26 aggregates out of the 200
data for each value of the couple (μ, σ).

3. Frustration and naive minimization

As a baseline for the physics of aggregation in the
absence of geometrical constraints, we determine the
proportion of each face pair in a system where their paring
is completely unconstrained, save for the conservation of
the number of bonds and number of particles. The free
energy of such a system reads

FðfNabgÞ ¼
X
a≤b

NabJab − kBT
X
a≤b

Nab

Nbonds

�
ln

Nab

Nbonds
− 1

�
;

ðA4Þ

where the indices a and b run between 0 and 6 and the faces
labeled “0” refer to an empty site in the following. We
ensure the conservation of the number of bonds, and the
number of faces are ensured with 7 Lagrange multipliers (λ
and fλaga∈ ⟦1;6⟧). We therefore solve the following set of
equations numerically for kBT ¼ 1.

NðminÞ
ab ¼ ∂

∂Nab

�
FðfNabgÞ þ λ

�P
a≤b

Nab − Nbonds

�
þ P

a≥1
λa

�P
b
Nab þ Naa − Nparticles

��
P
≤a≤b

Nab ¼ Nbonds

P
b
Nab þ Naa ¼ Nparticles:

ðA5Þ

We then measure the frustration as the positive energy
difference between the minimal energy result determined
from the Boltzmann distribution and the equilibrium energy
determined in the numerical simulation,

ΔEf ¼
X
a≤b

ðNðsÞ
ab − NðmÞ

ab ÞJab: ðA6Þ

This energy difference is due to the favored interactions that
could not be realized in the numerical simulation because
they lead to an extra interaction that is not accounted for in
the energy minimization. We then compute the relative
energy difference by dividing frustration by E, the energy
of the system measured in the simulation,

f ¼ ΔEf=E: ðA7Þ

We compare the frustration in dense and dilute conditions.
We first measure the frustration fdilute [Eq. (A7)] for the
9000 simulated annealing results introduced in the previous

section. These simulations are in dilute conditions (500
particles in a lattice of 60 × 60 sites). We then perform
simulated annealing for the same 9000 interaction maps in
dense conditions—484 particles in a lattice of 22 × 22 ¼
484 sites—while conserving the annealing protocol—100
temperature steps and 7200 Monte Carlo steps per temper-
ature and per particle in the system. Finally, we compute the
associated frustration fdense as before. Because the measure
of frustration is normalized by the number of particles, the
small difference in the total number of particles in these
calculations is irrelevant. We then compare fdense and fdilute
for the 9000 interaction maps (Fig. 8). We conclude that
forming sparse or dimensionally reduced systems is a way
to reduce frustration when it is high in the dense conditions.

4. Evaluating a measure of the interaction
with machine learning

Here, we describe our use of machine learning to
predict the outcome of aggregation from partial information
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on an interaction map, as in Fig. 9. As described in
Appendix A 2 b, we have at our disposal a list of labeled
interaction maps, each assigned to an aggregate category.
We train a neural network to predict the aggregate category
from partial information on the interaction map following
the procedure described in Appendix A 2 a, with the
exception that we use only half of our sample of 9000
for computational speed. We denote the vector containing
the partial information by XðpartialÞ. We then assess its
accuracy, as reported on the vertical axis of Fig. 9. To
ensure that our result does not depend on our choice of
training sample, we redistribute the data into the training
and test sets, repeat this process 20 times, and report the
average result. The specific subset of 4500 systems out of
9000 is redrawn randomly each time but always includes
the 738 manually labeled data, the other being labeled with
the method described in Appendix A 2.
For each initial data setXðpartialÞ, we keep the architecture

of the neural network unchanged (six layers composed of
100, 200, 500, 200, 100, and 30 neurons, respectively) and
use the same training procedure as in Sec. III. The rest of
the learning parameters, such as the regularization factors
or the number of epochs, are identical to those of the
network described in Appendix A 2.

5. Measure of the propagability

Here, we describe our procedure to compute the prop-
agability from the interaction map by enumerating the
possible periodic lines of the particles and measuring their
energy per particle. For a given initial orientation φ0, and a
given periodicity n, we enumerate all 6n−1 orientations
fφkg of the particles such that a line is in the configuration
(φ0;φ1; ::φn−1;φ0), which we refer to as a periodic motif.
The effective coupling for a given initial orientation φ0

and a given periodicity n, which we denote by Jeffðn;φ0Þ, is
the minimal possible energy for a periodic motif over our
enumeration of its orientations,

Jeffðn;φ0Þ ¼ min
φ1;…φn−1

Jφ0φ1
þ Jφ1φ2

þ � � � þ Jφn−1φ0

n − 1
: ðA8Þ

From a given interaction map, the computation of the
values of Jeffðn;φ0Þ is a straightforward operation on the
entries of the matrix. Because of the rotation invariance of
the system, we only compute this value for φ0 ¼ 0, π=3,
and 2π=3. We also only compute this number for n ≤ 6
because, since the particle only has six orientations, there
cannot be any most-favorable one-dimensional periodic
motif of more than six particles. Computing one value for
Jeff is, at maximum, an enumeration of 65 configurations,
which is accessible numerically.
For a given periodicity n, the organization of the gray

particles of Fig. 10(a), such that each of the energies e1ðnÞ,
e2ðnÞ, and e3ðnÞ is at a minimum, is then simply computed
from the effective interactions of Eq. (A8):

JeffðnÞ ¼ (Jeffðφ0 ¼ 0; nÞ; Jeffðφ0 ¼ π=3; nÞ;
Jeffðφ0 ¼ 2π=3; nÞ): ðA9Þ

Here, we do not count the interactions with the particles
that may or may not be present between the gray lines of
Fig. 10(b). The number of such particles for the largest
motifs considered here is indeed well beyond our ability to
enumerate them.
We then choose the best periodicity n� to be the one

where the minimum of the three line energies is the
lowest, n� ¼ argmin

n;i
½eiðnÞ�. An alternative definition of

the propagability where n� ¼ argmin
n

½e1ðnÞþe2ðnÞþe3ðnÞ�
leads to a poorer prediction accuracy. The propagability is
thus defined as the list of six features, all computed from the
interaction map J: the three components of the optimal
effective coupling vector Jeffðn�Þ ¼ ½e1ðn�Þ; e2ðn�Þ; e3ðn�Þ�,
the optimal periodicity n�, the particle affinity avðJÞ, and the
asymmetry stdðJÞ. Because we evaluate periodic lines of
identical length n together, we authorize some of those lines
to be of period n=2 or n=3 to match a longer and favored
periodic line. For instance, in Fig. 10(e), the second motif of
the polycrystal is of period 1, but themotif of lowest energy is
the first line, of period 2. For this reason, we could consider
motifs of length larger than 6 to allow for commensurate
motifs of periods 4 and 5, for instance. Yet, we reason that we
did not observe aggregate periodicity larger than 6 and that
this computation is not accessible numerically.

APPENDIX B: DETAILED THEORETICAL
ARGUMENTS AND SUPPORTING DATA

1. Choice of an interaction map
with vanishing surface energy

In the interactionmapintroducedinFig.2,weonlyaccount
for the interaction energy between the faces of two particles.
In principle, we could also define an interaction energy
between a particle face and an empty site of the lattice, or
betweentwoemptysitesof the lattice.Here,weshowthat, ina
systemwithafixednumberofparticles, these interactionscan
be set to any arbitrary value without loss of generality.
We refer to sites of the lattice where a particle is present as

full and those where there is no particle as empty. While we
label a full-full interaction using the notation Jab as in the
main text, we denote the energy of an empty-full interaction
by Ja0 and that of an empty-empty interaction by J00.
In the general case of nonzero Ja0 and J00, we generalize

Eq. (A1) to write the total energy of the system as

E ¼ J00N00 þ
XNfaces

a¼1

Ja0Na0 þ
XNfaces

a¼1

Xa
b¼1

JabNab: ðB1Þ

Hexagonal particles give rise to Nfaces þ 1 ¼ 7 conserved
quantities. These quantities are the total number of bonds
and the number of a faces:
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Nbonds ¼ N00 þ
XNfaces

a¼1

Na0 þ
XNfaces

a¼1

Xa
b¼1

Nab; ðB2Þ

Na ¼ Na0 þ
X
b≠a

Nab þ 2Naa; ðB3Þ

and since each particle has one of each type of face, we
have

∀ a∈ ⟦1; Nfaces⟧; Na ¼ Nparticles: ðB4Þ

Wemay thus subtract a linear combination ofNbonds andNa
from the system energy E without changing the physics of
the system. We specifically choose a new shifted energy

E0 ¼ E − J00Nbonds −
XNfaces

a¼1

ðJa0 − J00ÞNparticles

¼
XNfaces

a¼1

Xa
b¼1

(Jab − J00 − ðJa0 − J00Þ − ðJb0 − J00Þ)Nab

¼
XNfaces

a¼1

Xa
b¼1

ðJab þ J00 − Ja0 − Jb0ÞNab

¼
XNfaces

a¼1

Xa
b¼1

J0abNab; ðB5Þ

which boils down to the definition of a new interaction map
J0ab ¼ Jab þ J00 − Ja0 − Jb0 for which the energies of the
full-empty and empty-empty bonds are zero, as assumed
throughout the main text.

2. Equilibration

To demonstrate that our simulations result in well-
equilibrated systems, here we show that with our annealing
protocol, the measured final composition of a system and
aggregate morphology are independent of the number of
annealing steps, particle density, number of particles, and
percentage of cluster moves in the annealing, if we go
beyond the chosen simulation parameters.
For the interaction maps shown in Fig. 4, we measure the

energy per particle as a function of the number of
Monte Carlo steps performed per temperature and per
lattice site. The results are shown in Fig. 12, together with
images of an equilibrium configuration at different time
steps. As expected, the energy per particle decreases with
the duration of the equilibration, up to a limit after which
increasing the number of steps does not decrease the
energy. We choose the number of steps for the simulation
to be such that the relative lowering of the energy resulting
from a doubling of the number of steps is smaller than 2%.
We find that this result can be obtained by performing
14400 Monte Carlo steps per temperature and per particle.
This threshold corresponds to the horizontal dashed line on

the energy evolution in Fig. 12. The images in the figure
confirm that the configuration of the system does not
change by increasing the number of steps to 14400 per
temperature step per site either.
We then justify the need to implement a small percentage

of cluster moves in the simulated annealing to correctly
determine the system’s equilibrium configuration. We
compare the energy per particle and aggregate morphology
for systems that were equilibrated with a rate τ of cluster
moves (as explained in Fig. 11). We show these results in
Fig. 13. For a few systems—such as ð−4; 11Þ, (2, 15), and
(4, 15)—the energy per particle is smaller, of a few tens of
kBT, when the rate of cluster moves is nonzero. Moreover,
aggregate cluster moves allow aggregates of small sizes to
assemble into gels, such as the systems (0, 11) and (4, 15).
This happens only if there are some attractive interactions
between the small aggregates, and on the contrary, imple-
menting cluster moves does not change the equilibrium
morphology of aggregates that we label as oligomers,
such as ð−2; 7Þ or (2, 11). In our study, we therefore
chose a rate of 5% cluster moves during the simulated
annealing to guarantee that we are close to the equilibrium
configuration.
We study the influence of the density of particles on the

aggregate morphology in Fig. 14. We vary the size of the
system (Nsites ¼ L × L) and keep the number of particles
Nparticles ¼ 500 constant. When the system is of density one
(L ¼ 22), the energy per particle can be very different from
the dilute systems, as discussed in relation with Fig. 8 of the
main text. As illustrated in Fig. 14, however, for smaller
densities, the energy per particle does not vary with the
system size in most cases when L increases. However, for
aggregates with energy per particle of the order of the
temperature (we recall that kBT ¼ 1) such as examples
(2,3) and (4,3) in Fig. 14, the energy per particle increases
with the system size. This finding suggests that for very
dilute systems, the entropic contribution to the free energy
becomes larger than the enthalpic one. Except for these
situations, the aggregate morphologies are not modified
upon increasing the system density, and the particles’
organization remains the same.
Finally, we study the influence of the total number of

particles on the observed aggregate shapes while keeping a
constant density and a similar annealing protocol. The
examples of Fig. 15 reveal that increasing the number of
particles up to 5000 particles changes the system energy
for dense aggregates of maximal sizes because it decreases
the relative number of particles at the surface of the
aggregate (which scales like the square root of the
number of particles). For systems of smaller sizes or
dimension, however, the energy per particle is unchanged.
More importantly, the aggregate’s morphology remains
identical if we increase the number of particles for all
those examples. This result proves that the equilibrium
configuration of 500 particles is sufficient to generically
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FIG. 12. Sufficient equilibration steps. Beyond 7200 steps per temperature and lattice site (horizontal dashed line), the energy and the
system configuration are unchanged by increasing the annealing time. Shown are the equilibrating curve and system snapshot at
different numbers of steps. The horizontal dashed line is a relative energy difference of 2%, with the energy measured for the maximal
number of steps. The vertical scale is 2kT for all plots. For each system, the interaction maps are similar to that of Fig. 4, and the values
of affinity and asymmetry ðμ; σÞ are indicated in the top right of each energy profile. Error bars indicate the standard error averaged over
ten simulations.
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FIG. 13. Aggregate morphology independent of the rate of cluster moves during the annealing. More than 5% of cluster moves during
the annealing (vertical dashed line), the energy, and the system configuration are unchanged by increasing the rate of cluster moves.
Equilibration of the curve and system snapshot at different numbers of cluster moves is shown. The horizontal dashed line is a relative
energy difference of 5% with the minimum energy measured. The vertical scale is 1.5kT for all plots. For each system, the interaction
maps are similar to that of Fig. 4, and the values of affinity and asymmetry ðμ; σÞ are indicated in the top right of each energy profile.
Error bars indicate the standard error averaged over ten simulations.
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FIG. 14. Aggregate morphology independent of the particle density in dilute systems. We vary the size of the system (Nsites ¼ L × L)
while keeping the number of particles constant at 500. For each system, the interaction maps are similar to that of Fig. 4, and the values
of affinity and asymmetry ðμ; σÞ are indicated in the top right of each energy profile. We show the energy per particle as a function of the
lattice size. In most cases, the energy does not vary with the system size. For a system of low energy, such as
ðμ; σÞ ¼ ð2; 3Þ; ð4; 3Þ; ð4; 7Þ, the entropic contribution is sufficiently important for the energy to increase with system size. The
vertical dashed lines correspond to the chosen number of system size for this study, i.e., 60 × 60 lattice sites. The vertical scale is 2kT for
all plots. The number of Monte Carlo steps of the annealing is always 7200 × Nparticles.
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characterize the relation between the interaction map and
the aggregate morphology.

3. Definition of the aggregate categories

Here, we show that the eight aggregate categories we
introduced in the main text satisfactorily describe all the
morphologies resulting from the aggregation of particles
with random interactions. We explain the criterion we use

for the manual labeling of the data and show that a neural
network accurately learns to recognize these categories.
Finally, we show that the rare systems for which the
classification is ambiguous correspond to aggregates where
two morphologies coexist in the same system.
In Fig. 16–23, we show 50 examples of manually labeled

aggregates per category. The visual criteria we use to dis-
tinguish between categories are the presence of interactions

FIG. 15. Aggregate morphology independent of the number of particles. The energy and the system configuration are unchanged by
increasing the number of particles at fixed density. We show the equilibrating curve and system snapshot at different numbers of cluster
move rates. The horizontal dashed line denotes a relative energy difference of 5% with the minimum energy measured. The vertical
dashed lines correspond to the chosen number of particles for this study, i.e., 500 particles. The vertical scale is 2.8kT for all plots. For
each system, the interaction maps are similar to that of Fig. 4, and the values of affinity and asymmetry ðμ; σÞ are indicated in the top left
of each energy profile. Error bars indicate the standard error averaged over ten simulations.
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FIG. 16. Monomer systems of noninteracting particles.
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FIG. 17. Oligomers systems of noninteracting identical aggregates.
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FIG. 18. One-dimensional aggregates labeled as fibers.
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FIG. 19. Aggregates of finite size that do not have orientational order across the whole aggregate, or large aggregates that have no
surface tension. These aggregates are labeled as gels here.
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FIG. 20. Aggregates that contain all or almost all particles in the simulation, display orientational order, and are porous. These
aggregates are labeled as sponges here.
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FIG. 21. Aggregates that contain all or almost all particles in the simulation, display orientational order, and are not porous. These
aggregates are labeled as crystals here.
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FIG. 22. Aggregates of short-ranged orientational order or with several competing orientational orders. These aggregates are labeled as
polycrystals here.
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FIG. 23. Dense aggregates that contain all or almost all particles in the simulation but do not display aggregate-wide orientational
order. These aggregates are labeled as liquids here.
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(monomers do not have interactions, as opposed to all the
other categories), the dimensionality (monomers and
oligomers are 0D, fibers are 1D, and gel, sponge, crystals,
polycrystals, and liquids are 2D), the presence of orienta-
tional order (crystals and sponges display orientational
order, liquids do not, polycrystals and gels display only
short-range orientational order), and the porosity (sponges
are porous and crystals are not).
Some examples are not trivial to classify. Here, we

illustrate our criteria by discussing some borderline cases.
We label examples (6), (10), or (23) of Fig. 16 as monomers
and not oligomers because, despite the presence of a few
oligomers in the system, they do not always involve the
same interactions, and a large fraction of the particles are
unbound. We label examples (8), (32), or (49) of Fig. 19 as
gels and not fibers because, despite the one-dimensional
organization of the particles, it is not persistent enough to
prevent those fibers from forming loops. We label examples
(19), (26), and (43) of Fig. 19 as gels and not sponges
because the crystalline organization is not systematically
observed among the aggregates and because these aggre-
gates do not minimize the amount of surface particles by
adopting a spherical shape.
We label as crystals only the aggregates that are mono-

crystals. In the crystal category, we include the aggregates
displaying disclination lines, Fig. 21(17,24,34), or point
defects, Fig. 21(16). Conversely, polycrystals exhibit sev-
eral competing orientational orders, Fig. 22(25,28), or
short-range orientational order, Fig. 22(20,24,48). On the
contrary, the liquids do not exhibit any visible orientational
order, Fig. 23.
Figure 5 presents evidence that the neural network learns

our eight categories well. Specifically, it shows that for each

system, the neural-network-computed probability of the
most likely category is close to unity. In Fig. 24, we
additionally show that there are very few misclassifications,
either on the training or the test set, emphasizing that the
characteristics used in our manual labeling are well learned
by the neural network.
In Fig. 25, we also show some of the few examples for

which the neural-network categorization is ambiguous, i.e.,
for which the prediction score defined in the main text is
not close to unity. It concerns aggregates that have proper-
ties associated with two categories. Example (8) is a crystal,
but it has several disclination lines locally, similar to a fiber.
Example (11) is a sponge, but it has a nonspherical shape
similar to the gels. Particles in example (16) assemble into
trimers, and those trimers assemble into one-dimensional
structures, such that the aggregate is classified as a fiber.
Example (25) is a mixture of trimers and monomers. The
examples of misclassification indicate that there are no
entirely new aggregate morphologies that do not enter any
of our eight categories.

4. Phase diagram

Figure 6 shows data binned according to the measured
average and standard deviation of each interaction map. In
Fig. 26, we show the same graph with the data binned
according to the affinity μ and anisotropy σ of the
probability distribution of Eq. (1) used to generate the
interaction map. Both phase diagrams have the same
tendencies: Interaction maps with small asymmetries and
large affinities mostly form oligomers and monomers; those
with small asymmetries and small affinities form two-
dimensional aggregates. Finally, interaction maps with
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FIG. 24. Neural network correctly classifying the aggregates into our eight categories. We show the confusion matrix Cij (number of
systems classified into category j by the neural network, labeled as belonging to category i) for the training set (a) and the test set (b).
The entries of the two matrices sum to 738 × 12, the number of labeled systems.
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FIG. 25. Aggregates with an ambiguous classification in between two categories. We show an image of the equilibrium configuration,
the interaction map on the bottom left, and the probability vector outputted by the neural network on top. The limits of the plots are
between 0 and 1, the categories are ordered as in the rest of the paper, and the colors are as in Fig. 6.
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large asymmetries and large affinities form diverse aggre-
gate morphologies. These findings suggest that our phase
diagram is robust to details in the binning procedure of its
coordinates.

5. Entropy of the particle’s local surrounding
discriminates between the aggregates of infinite size

We characterize the orientational order of the aggregates
by measuring the entropy associated with the local envi-
ronment of each particle. Since we run simulations of dilute
systems, this method is more appropriate than measuring a
structure factor, the interpretation of which would be
rendered difficult by the effect of the aggregate boundaries.
Here, we define this entropy and show that it is generically
low for sponges and crystals, intermediate for polycrystals,
and large for liquids.
For each final aggregate structure produced by our

simulations, we determine the local environment of each
particle, i.e., the set of pair interactions it has with its six
neighbors. If we fix the orientation of the particle in the
center, there are seven possible situations for each of its
neighboring sites: It can be a particle in one of the six
possible orientations, as well as an empty site. Therefore,
there are 76 possible local environments. We show exam-
ples of such local environments in the inset of Fig. 27(a).
The number of local environments observed in a system

characterizes how ordered it is: In a crystal with one particle
per unit cell, all the particles will have the same local
environment, while in a high-temperature liquid where all
the particles have fully random orientations, all possible,
local, full-full environments are equally likely.
From the count of all the local environments observed

within a system, we then measure the entropy of this
system. We denote by α the index associated with a local
environment and by pα the frequency with which this local
environment is observed. The entropy then reads

s ¼ −
X76
α¼1

pα log2ðpαÞ: ðB6Þ

The maximum value s ¼ log2ð76Þ ¼ 16.8 of this entropy is
achieved when all local environments are equally likely.
On the other hand, if all the particles are in the same
environment, the entropy is s ¼ 0. We show several typical
examples of the systems in Fig. 27(a). When the aggregates
are perfectly ordered, such as in examples (1) and (5), one
local environment dominates while the other corresponds to
the environment of the particle at the aggregate’s boundary.
We estimate the value of the entropy s for all our

simulation results and find that it correlates with the
aggregate category. Figure 27(b) shows the histograms
of entropy values for the systems classified in all of our four
categories corresponding to dense aggregates. We compute
the entropy over five snapshots of 500 particles using
Eq. (B6). While the sponges and crystals have entropy
below 5, the polycrystals have entropy values centered
around 5, and most liquids have entropy values above 10.
This measure also shows that we observe similar entropy
values for crystals with a few defects, e.g., system (8) in the
figure, and for polycrystals with two similar competing
orientational orders [system (9)].

6. Finding the best predictor
of the aggregation category

Figure 9 shows the learning accuracy of a few descrip-
tors, suggesting that the propagability is an excellent
descriptor of the aggregation category despite its relatively
small size (it comprises six features). We have also
considered many other, less-effective descriptors, which
we detail here. Each descriptor contains the average and
standard deviation of the contact map in addition to the
features discussed below.
Our first alternative descriptor is based on a similar idea

as that depicted by the purple squares of Fig. 9. These
symbols correspond to descriptors comprised of a par-
tially masked interaction map. While in that example
we masked the rightmost columns of the matrix represen-
tation of the interaction map, i.e., all interactions corre-
sponding to a subset of the faces of the particle, we
may choose to mask the interactions corresponding to a

Liquid
Polycrystal
Crystal

Sponge
Gel
Fiber

Oligomer
Monomer

FIG. 26. Phase diagram of Fig. 6, which is not substantially
modified when plotted as a function of the value of affinity
and anisotropy of the distribution used to generate the
interaction maps.
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specific angle of interaction. This idea and the correspond-
ing masked matrix elements are illustrated in Fig. 28. The
resulting prediction accuracies are illustrated by dark green
diamonds in Fig. 29. Overall, this methodology outper-
forms the masking baseline of the main text, and combi-
nations including the line interactions are the most effective
among the descriptors of this class.
Instead of simply masking some of the information

contained in the interaction map, we also assess descriptors
computed from its full specification, similar to propag-
ability. We first use the six values of the averaged face
interaction, i.e., 1

6

P
b Jab for a∈ ⟦1; 6⟧. The resulting

accuracy is indicated by the red downward-facing triangle
in Fig. 9 and falls almost exactly on the purple baseline. We
next use the four averages of the “angle interaction”

categories defined in Fig. 28, which perform almost as
well as the propagability (light green triangle in Fig. 9).
In the main text, we show that knowing the sign of the

interaction is not sufficient to predict the aggregate mor-
phologies, which implies that their strengths are crucial for
this purpose. Conversely, here we ask whether knowing
only the unordered list of interaction strengths enables good
predictive power. We thus randomly shuffle the entries of
each interaction map, leading to the orange star in Fig. 29.
This predictor performs about as badly as the signs-only
predictor, highlighting the importance of the particles’
geometry.
Finally, we compare the learning performances when

avðJÞ and stdðJÞ are not given to the neural network. Even
when the whole J matrix is given by the learning, the
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FIG. 27. Characterization of the local ordering of our aggregates through the entropy associated with a particle’s local environment,
highly consistent with our machine-learning characterization. (a) For 16 systems among the sponge, crystal, polycrystal, and liquid
categories, we show a snapshot of the aggregate, the value of the entropy s measured according to Eq. (B6), and the three most
represented local environments in the inset, as well as the percentage of particles within this environment. (b) The distribution of entropy
values for aggregates in each of the mentioned categories shows that sponges and crystals have low entropy, polycrystals have
intermediate entropy, and liquids have high entropy.
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performances are increased by about 10% by directly
giving the values of avðJÞ and stdðJÞ to the algorithm,
revealing that those combinations are important to deter-
mine the aggregate category (as we already understood
from Fig. 6); in particular, it is not trivial to learn nonlinear
combinations of J, such as stdðJÞ. Even in the absence of
avðJÞ and stdðJÞ, the propagability (empty blue circle)
clearly outperforms the other measure, confirming that it
captures the important physical properties of the interac-
tion map.
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