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The self-assembly of particles into organized structures is a key feature of living organisms and a major
engineering challenge. While it may proceed through the binding of perfectly matched, puzzle-piece-like
particles, many other instances involve ill-fitting particles that must deform to fit together. These include
some pathological proteins, which have a known propensity to form fibrous aggregates. Despite this
observation, the general relationship between the individual characteristics of the particles and the overall
structure of the aggregate is not understood. To elucidate it, we analytically and numerically study the self-
assembly of two-dimensional, deformable ill-fitting particles. We find that moderately sticky particles tend
to form equilibrium self-limited aggregates whose size is set by an elastic boundary layer associated with
collective deformations that may extend over many particles. Particles with a soft internal deformation
mode thus give rise to large aggregates. In addition, when the particles are incompressible, their aggregates
tend to be anisotropic and fiberlike. Our results are preserved in a more complex particle model with
randomly chosen elastic properties. This indicates that generic proteinlike characteristics such as allostery
and incompressibility could favor the formation of fibers in protein aggregation, and suggests design
principles for artificial self-assembling structures.
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I. INTRODUCTION

Functional structures in living cells are often self-
assembled from several copies of a single protein, from
microtubules and clathrin cages to viral capsids in the shape
of cylinders or spheres [1–3]. The radius of such assemblies
is dictated by the curvatures of the individual particles that
precisely fit together to form them. Similarly, artificial self-
assembly often relies on fitting well-adjusted particles
together to build structures with a controlled size [4–7].
In other instances, however, the shapes of the individual

particles are ill-fitting and do not obviously dictate the
structure of the aggregate. This is the case in the patho-
logical aggregation of normally soluble proteins, i.e., of
proteins not evolutionarily optimized to self-assemble
into a well-defined structure [8–11]. Despite the diversity
of the shapes and interactions involved, the aggregation

of these ill-fitting proteins produces fibrous structures
with remarkable consistency. These fibers display varied
widths and internal structures [12–14], and the proteins
within are often significantly deformed in ways that
depend on the assembly protocol [15]. Deformations
are common in proteins, and many display physiologi-
cally relevant deformation modes that facilitate self-
assembly [16,17], perform a motor function [18],
participate in their biochemical activity [19], or serve to
mechanically transmit a signal, a function known as
allostery [20,21]. Nevertheless, the generic implications
of the deformability of proteins on their ill-fitting aggre-
gation is not understood.
Beyond proteins, particle deformations have long been

suggested as a mechanism to regulate aggregate size in self-
assembly [22]. In this picture, ill-fitting particles are forced
to deform as they tightly bind to one another. As more and
more particles are added to the aggregate, the distortions
build up and may become so severe as they prevent any
further assembly. The accumulation of stresses resulting
from such distortions limits the size of aggregates in
theoretical models of particles with internal elastic degrees
of freedom [23,24] or finite-range interactions [25], and
may govern the structure of DNA origami assemblies
[26,27] as well as prevent the indefinite bundling of
preexisting protein fibers [28–31].
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This idea that aggregates are shaped by the geometrical
incompatibility of their components is the object of an
emergent field known as geometrically frustrated assembly
[32]. This field distinguishes between two possible ways in
which the energy of the aggregate may grow as more
particles are added [33]. In the first one, referred to as
cumulative frustration, the energy of the aggregate grows
superextensively with its mass. The energetic cost of
adding a new particle thus diverges for large aggregates,
implying that the aggregate size remains limited at equi-
librium. The second scenario, noncumulative frustration,
describes situations where the cost of adding a new particle
is bounded from above by a constant. There, the outcome of
an equilibrium aggregation process depends on the binding
energy of the new particle. If it exceeds this constant, then
aggregation may proceed to arbitrarily large sizes. This is
relevant for particles that can be “flattened,” i.e., deformed
to such an extent that their originally ill-fitting shapes
become compatible [34]. Such elastic flattening thus
provides aggregating particles with a way to escape self-
limited assembly and must be considered in experimental
contexts where the particles are not perfectly rigid.
Noncumulative frustration can, however, also lead to
aggregate size limitation if the particle binding energy is
too low. In general, the relationship between the internal
mechanics of a deformable particle and the cumulative
character of the frustration of the aggregates it forms is not
understood.
Beyond merely fixing the overall size of an aggregate,

the accumulation of deformations can dramatically alter its
shape and structure. Stress accumulation has thus been
proposed to drive shape transitions [35], including from
cylindrical to tapelike fiber bundles [36,37]. Finally, it can
also drive sticky, deformable particles to form anisotropic
aggregates that grow into infinite one-dimensional struc-
tures reminiscent of pathological protein fibers [38]. The
underlying mechanism and the nature of the particle
properties that determine the dimensionality of the final
aggregate, however, remain elusive.
The idea that aggregates are shaped by the frustration of

their components is not limited to deformable objects, and
also applies to packings of hard particles [39]. One such
situation arises when a collection of sticky spheres, which
in two dimensions pack best by arranging into a triangular
lattice, are made to rest on a curved substrate [40]. In this
setup, imposing that each particle retains a local environ-
ment with six neighbors implies cumulative frustration.
Nevertheless, unbounded assembly can be restored if the
aggregate is allowed to incorporate defects to mitigate the
accumulation of frustration [24,41,42]. Defect incorpora-
tion thus represents an alternative to shape flattening to
achieve noncumulative frustration. Such situations also
lead to the formation of slender, fiberlike aggregates in
theoretical models [43–45] as well as colloidal and nano-
particle experiments [46,47]. Systems where the frustration

is carried by an additional spinlike internal degree of
freedom of the particles also form slender aggregates
[42]. Most of those designs, however, rely on particles
with simple, regular geometrical characteristics, and little is
known about the generic assembly behavior of frustrated
particles with more complex properties.
In this paper, we model the assembly of deformable

particles in two dimensions. We consider the limit of small
frustration, which prevents the incorporation of defects into
our aggregates, and provide a detailed analytical under-
standing of the emergence of self-limited and fibrous
aggregates. We first introduce a minimal model based on
highly symmetrical particles. We demonstrate that its
physics is dominated by an emergent boundary layer of
thickness l, which characterizes a crossover of the aggre-
gate from cumulative to noncumulative frustration. We map
our model to a continuum description in the limit of large l.
We use this description to compare the energies of several
candidate structures and establish an aggregation phase
diagram, which we then validate using numerical simu-
lations. Finally, we introduce a much broader, more
complex class of elastic particles, and demonstrate that
the results derived in the idealized model still apply there,
including in cases where the values of l are moderate.

II. ELASTIC AGGREGATION MODEL

To understand the interplay between particle deforma-
tions and aggregate structure, we first discuss a minimal
one-dimensional example where ill-fitting particles deform
upon aggregation. This leads to a deformation gradient
from moderately deformed particles at the edge of the
aggregate to highly deformed ones in its bulk. We then
introduce a two-dimensional model that allows for a much
wider diversity of aggregate structures, including fibers and
planes. This model is analytically intractable in its general
form, which leads us to design a continuum limit to enable
further analysis.

A. One-dimensional toy model

We consider a collection of identical isosceles trapezoids
[Fig. 1(a)]. Each such particle can aggregate with its left
and right neighbors by fusing its vertical sides with theirs.
In the special case where the trapezoids are well adjusted,
i.e., if they are rectangles, such a binding does not require
any deformation. Conversely, particles whose top and
bottom faces have different lengths are ill-fitting and must
deform to bind. We model the energetic cost of this
deformation using four springs: two representing the top
and bottom faces of the particles (yellow and red) with rest
lengths 1� ϵ and spring constant k, and two connecting
springs with spring constants kc=2 and rest lengths ϵ that
tend to center the top and bottom faces (blue). Summing the
contributions of these four springs, we write the deforma-
tion energy of the central particle of Fig. 1(b) as
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eðiÞd ¼ k
2
½ðx↑iþ1 − x↑i Þ− ð1þ ϵÞ�2 þ k

2
½ðx↓iþ1 − x↓i Þ− ð1− ϵÞ�2

þ kc
4
ðx↑iþ1 − x↓iþ1 − ϵÞ2 þ kc

4
ðx↓i − x↑i − ϵÞ2; ð1Þ

where the fx↑i g, fx↓i g denote the coordinates of particle
corners. In this model, particles have two nonexclusive
strategies at their disposal to overcome their ill-fitting
shapes, which allows them to aggregate. First, they may
choose to preserve the ill-fitting lengths of their yellow and
red springs. This requires the particles to shift their top and
bottom sides to accommodate their neighbors. This shear
deformation mode imposes an internal shift within the
particle that grows linearly with the size of the aggregate.
Because of this increasing shift, the energetic cost of adding
a new particle thus diverges as more and more particles are
added, giving rise to cumulative frustration. By contrast,
the second option available to the particles is to, respec-
tively, stretch and compress their top and bottom sides,
thereby flattening their shapes into well-adjusted rectan-
gles. Equation (1) ensures that this stretching can be
performed at a finite cost per particle, implying that this
deformation mode corresponds to noncumulative frus-
tration. The model of Eq. (1) does not involve any explicit
prestresses, including some would not make any difference
within the linear response regimes studied here and in the
rest of this work.
We next minimize the energy of Eq. (1) with respect to

the coordinates x↑=↓i of the particle corners. Defining the

shift between an upper and lower corner as δi ¼ x↑i − x↓i ,
the resulting force balance conditions imply that inside the
aggregate (detailed derivation in Supplemental Material
[48]):

kðδiþ1 − 2δi þ δi−1Þ ¼ 2kcδi ⇒ δi ∝ ϵ sinhði=lÞ; ð2Þ

where we define i ¼ 0 as the center of the aggregate and
where

l ∼
kc≪k

ffiffiffiffiffiffiffiffiffiffiffiffi
k=2kc

p
: ð3Þ

The full prefactor of the last expression of Eq. (2) is fixed
through the force balance condition at the aggregate’s left
and right edges. For aggregates much smaller than l, the
particles deform chiefly through the cumulative shearing
mode discussed above. The typical shift between the top
and bottom of a particle is then of order Nϵ, implying an
energetic cost per particle ecumul ≈ kcðNϵÞ2. By contrast,
large aggregates are characterized by an exponential decay
δi ∝ ϵ expð−ji − iedgej=lÞ close to the aggregate’s edge.
Qualitatively, this indicates that the particles that display
significant shear (characterized by δi ≠ 0) are located
within a boundary layer. The cumulative character of this
shear mode, however, prevents it from propagating
throughout the aggregate. This induces a crossover from
the cumulative shear mode to the noncumulative stretching
mode. The latter mode results in the flattening (δi ≃ 0) of
the particles that lie deep in the aggregate. There, each
yellow and red spring is deformed by a typical amount ϵ,
implying an energy per particle enoncumul ≈ kϵ2. The impos-
sibility to propagate cumulative frustration over arbitrarily
long distances is particularly apparent in the kc=k → 0
limit. In this limit, shearing an individual particle is much
easier than stretching it. Nevertheless, the crossover always
happens, although with a diverging boundary layer size l.
This divergence, which is apparent in Eq. (3), is easily
understood by interpreting l as the aggregate size N for
which ecumul ≈ enoncumul. Mechanistically, this small-kc
regime is characterized by comparatively very rigid yellow
and red springs. Because of this high stiffness and the free
boundary condition, these springs always assume their
equilibrium length when located close to the edge of the
aggregate. Going deeper into the aggregate, each blue
spring exerts a small compressive (tensile) force on the
yellow (red) chain. These forces add up over long distances,
implying a progressive change of the yellow and red strain
over a length scale l much larger than the particle size.

B. Two-dimensional particle model

One-dimensional aggregates are very simple geometri-
cally and are entirely characterized by the number of
particles that they contain. Aggregation in higher dimen-
sion allows for a much broader variety of aggregate

FIG. 1. The assembly of ill-fitting particles results in collective
deformations shown here in a minimal 1D model. (a) Left,
individual particle at rest; right, colored springs schematizing the
elasticity of the particles. In this 1D model, particles are allowed
to aggregate only along the horizontal direction. Their corners
then become colocalized (black arrows), which requires
deforming at least some of the springs. (b) Schematic of a
one-dimensional particle aggregate showing the state of the
springs therein. While the yellow and red springs are able to
assume different lengths in the vicinity of the edge of the
aggregate, they are forced to have the same lengths in the bulk.
The resulting energetic penalty hampers the formation of space-
filling, bulky aggregates. In two or three dimensions, a similar
penalty may result in the formation of fibrous aggregates.
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structures. To study the emergence of complex shapes
there, we introduce a two-dimensional model based on
hexagonal particles. Well-adjusted particles are represented
by regular hexagons. Ill-fitting hexagons, by contrast, have
alternating protruding (yellow) and withdrawn (red) cor-
ners [Fig. 2(a)]. The corners belonging to each category
form a yellow and a red equilateral triangle whose sides are
springs with rest lengths 1� ϵ and a spring constant k. The
(blue) sides of the hexagon itself play the role of connecting
springs with spring constant kc and are at rest when the
yellow and red equilateral triangles are themselves at rest
and centered. These hexagonal particles are threefold
symmetric, which rules out an intrinsic, particle-level
preference for forming one-dimensional fibers. Any fiber
formed from their aggregation will thus be an emergent
symmetry-broken structure. The response of these particles
to shear and uniform compression cannot be independently
varied while holding kc=k (and therefore, the boundary
layer size) constant. To enable particles that range from
fully compressible to incompressible, we thus additionally
endow both yellow and red triangles with an areal rigidity.
We implement it through an energy e↑=↓area ¼ kareaðA↑=↓ −
A↑=↓
0 Þ2=2A↑=↓

0 , where ↑ and ↓, respectively, refer to the
yellow and red triangles, and A (A0) are the associated
triangle areas (rest areas).
The quadratic spring and areal energies introduced above

all vanish in the particle’s resting state. Any deformation
away from this state implies an energetic cost, and such
deformations are required to accommodate particle bind-
ing. In our model, two particles can bind along a blue side
by merging one yellow and one red corner each. The
merging of corners with different colors is not allowed.
Each pair of bound sides is rewarded by an energy −g
regardless of the particles’ state of deformation, which
defines a zero-range interaction between particles. These
rules favor the assembly of hexagons into a triangular
“particle lattice” [Fig. 2(b)] where all pairs of neighboring
particles are bound, which we consider throughout. The
aggregate topology, i.e., the specification of which particles
bind to which others through which sides, can thus be
entirely described by considering a triangular lattice and
specifying a list of the lattice sites that are occupied by a

particle. In the following, we use the symbol T to refer to
this topology. Since the binding energy is fully determined
by the number of bound particle sides, it depends only
on T .

C. Continuum formalism

Finding the most favorable aggregate in our 2D particle
model requires two steps: to compute the optimal defor-
mation energy for each fixed topology T and then to
determine which topology has the lowest optimal energy.
Here we introduce a continuum approximation that renders
the first step analytically tractable in several important
cases. This approximation is formally valid in the limit
where the 2D counterpart of the boundary layer size l is
much larger than the particle size.
To define our continuum limit, we note that in large

aggregates where all sites of the particle lattice discussed
above are occupied (i.e., without holes), the yellow and red
springs arrange into triangular spring lattices. In the regime
kc ≪ k where connecting (blue) springs are much softer
than triangle (yellow and red) springs, the strain within the
yellow and red triangular spring lattices varies slowly over
space. This is reminiscent of our mechanistic discussion of
our one-dimensional model. As a result, we can assimilate
each of these triangular spring lattices to a continuum sheet,
giving rise to a continuum elastic energy

Ed ¼
ZZ �

λ

2
ð∂αu↑α −2ϵÞ2þμ

�
∂αu

↑
β þ∂βu

↑
α

2
− ϵδαβ

�2�
dA

þ
ZZ �

λ

2
ð∂αu↓α þ2ϵÞ2þμ

�
∂αu

↓
β þ∂βu

↓
α

2
þ ϵδαβ

�2�
dA

þ
ZZ

κc
2
ðu↑α −u↓αÞ2dA; ð4Þ

where the superscripts ↑ and ↓ refer to the yellow and red
sheets, respectively, and where the summation over
repeated indices is implied, while δ denotes the
Kronecker delta. The displacement fields u↑=↓ðrÞ of either
sheet are computed with respect to the infinite-aggregate,
bulk state where all hexagons are regular, a state akin to a
row of length-one rectangles in the one-dimensional model.
Neither elastic sheet is at rest in this reference state, and r is
the position vector in this state. The displacement gradient
∂αu

↑=↓
α thus plays the same role as the finite difference

ðx↑=↓iþ1 − x↑=↓i − 1Þ of Eq. (1). The first integral of Eq. (4) is a
two-dimensional generalization of the first term of Eq. (1)
and gives the elastic energy of an isotropic elastic sheet
with Lamé coefficients λ and μ whose resting state is
characterized by an isotropic strain ∂αu

↑
β ¼ ϵδαβ. As a

reminder, μ is the usual shear modulus, and the sheet’s
Young’s modulus and Poisson ratio are Y ¼ 4μðλþ
μÞ=ðλþ 2μÞ and ν ¼ λ=ðλþ 2μÞ. The integration element

FIG. 2. 2D model of ill-fitting self-assembly. (a) Individual
particles have two kinds of vertices, which define three inter-
connected elastic networks. (b) As the particles are aggregated by
matching the vertices with the same color, individual particles
undergo deformations.
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dA runs over the reference area A. Finally, the last integral
captures the energy of the connecting springs. It penalizes
any shift between the centers of the yellow and red triangles
of a given particle, and therefore any difference in the
displacements of the two sheets.
The harmonic form of Eq. (4) is valid for small

deformations, which can be obtained for any aggregate
topology considered here given a small enough ϵ. Within
this limit, the particles’ binding energy can be described
through

Eb ¼ γL; ð5Þ

where γ is a line tension, and L is the total length of the
aggregate edge in the reference state, including any internal
holes. The parameters of the continuum model are mapped
onto those of the 2D particles in Supplemental Material
[48,49], yielding

μ ¼
ffiffiffi
3

p

4
k; ð6aÞ

ν ¼
ffiffiffi
3

p
kþ 2karea

3
ffiffiffi
3

p
kþ 2karea

; ð6bÞ

κc ¼ 2
ffiffiffi
3

p
kc; ð6cÞ

γ ¼ 4ffiffiffi
3

p g: ð6dÞ

The binding energy of an aggregate depends only on
topology T , which we denote as EbðT Þ. By contrast,
the deformation energy Ed½T ; fu↑=↓ðrÞg� depends both on
the topology and on the displacement fields u↑=↓ðrÞ. As
described in the beginning of this section, the optimal
energy associated with a given aggregate topology is thus,

EðT Þ ¼ EbðT Þ þ min
fu↑=↓g

EdðT ; fu↑=↓gÞ: ð7Þ

Once this minimization is performed, finding the most
favorable aggregate structure requires finding the topology
T that minimizes EðT Þ.

III. AGGREGATION PHASE DIAGRAM

To establish an aggregation phase diagram, we consider
a system with a fixed but large number of particles and ask
which binding topology minimizes the total energy of the
system. We first use our continuum formalism to compute
the energies of an infinite bulk, an elongated fiber, and a
disklike aggregate, thus offering a first comparison of the
stability of two-, one- and zero-dimensional structures. We
then numerically compare the energies of a wider range of
putative aggregate structures in our discrete particle model.
Finally, we confirm the converging results of these two

approaches using numerical simulations devoid of a priori
constraints on the aggregate topology.

A. Continuum phase diagram

In a 2D space-filling, infinite aggregate, all particles are
flattened into a regular hexagonal shape. The continuum
energy of Eq. (4) is then minimal for u↑ ¼ u↓ ¼ 0,
yielding an optimal energy per unit reference surface

ebulk ¼ μ
1þ ν

1 − ν
4ϵ2: ð8Þ

Denoting the reference area per particle by a, the total
energy of a set of N particles thus reads Naebulk in the
large-N limit. This quantity is extensive in N, implying that
the system’s frustration is noncumulative. The binding
energy is proportional to the perimeter of the aggregate
(Eb ∝

ffiffiffiffi
N

p
), and is thus negligible.

To determine whether fiber formation is favored over
bulk aggregation, we minimize Eq. (4) over fu↑=↓ðrÞg for
an infinite strip of width W and find (see Supplemental
Material [48])

u↑ðxÞ ¼ −u↓ðxÞ ¼ lϵ
�
ð1þ νÞ sinhðx=lÞ

coshðW=2lÞ
�
x̂; ð9Þ

where x is the direction perpendicular to the fiber and
where

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

2κc

s
: ð10Þ

The quantity λþ 2μ is known as the P-wave modulus of the
sheet and characterizes the cost of compressing it along one
axis without allowing it to deform in the perpendicular
direction. As in the one-dimensional case, the emergent
length scale l thus arises from the competition between a
deformation mode associated with cumulative frustration
(the triangle-shifting mode characterized by κc) and another
associated with noncumulative frustration (the compression
characterized by λþ 2μ). Similar to Eq. (1) and Fig. 1(b),
the profile of Eq. (9) implies bulklike, highly deformed
particles in the center of the fiber, while close to the edges
the red and yellow sheets gradually relax within a boundary
layer of width l. For large enough W, this situation
corresponds to an energy profile where the central particles
are energetically expensive, while the greater freedom near
the edge of the aggregate implies a region where the elastic
energy density is reduced (Fig. 4). Defining the dimension-
less line tension Γ ¼ 2γ=½ð1þ νÞlebulk�, the line tension
cost associated with the fibers’ edges reads Eb ¼ 2ΓNa=W,
and the mean energy per unit surface reads

efiberðWÞ
ebulk

¼ 1− ð1þ νÞ tanhðW=2lÞ
W=l

þ ð1þ νÞ Γ
W=l

: ð11Þ
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On the right-hand side of this equation, the first term of the
sum represents the elastic energy of a particle deep inside the
bulk. The second stands for the mean reduction of this cost
due to the fact that some particles lie close to the aggregate
edge and are therefore able to take advantage of triangle
shifting to lower their elastic energy. Finally, the last term
describes the line tension associated with the absence of
particle binding at the aggregate edge. In the ϵ → 0, small-
particle-mismatch limit, all deformation energies scale as ϵ2.
Thus, the parameter Γ encloses both the γ and the ϵ
dependence of all self-assembly outcomes studied in this
paper. When Γ < 1, efiberðWÞ displays a minimum at a finite
fiber width W�. This optimal width diverges in the limit
Γ → 1, and the corresponding fiber is always more stable
than the bulk [Fig. 3(a)]. To understand this stability, consider
a semi-infinite aggregate that fills half of the plane. While its
energy per unit surface far from its edge is equal to ebulk, the
presence of the edge brings about two energetic contribu-
tions. The first is a bare line tension cost γ per unit edge
length. The second is the deformation energy gain in the
boundary layer, which is of the order of ebulk per unit area.
Since thewidth of the layer isl, the resulting energy gain per
unit edge length is of the order of lebulk. For γ ≲ lebulk,
forming a new edge thus results in a net energy gain. At the

scaling analysis level, this is equivalent to Γ < 1. This
argument implies that infinite bulks can lower their energy
by breaking up into fibers in this regime. However, if these
fibers are made so narrow that their widths become of order l
or smaller, the boundary layers associated with their two
edges start to overlap. Such narrow fibers can claim only a
fraction of the deformation energy reduction described above.
As a result, very narrow fibers are penalized. This implies the
existence of an optimal widthW� that is of order l when Γ is
of order 1 but smaller than 1. Finally, we note that in this
translationally invariant geometry, the deformation in the y
direction completely decouples from that along the x axis in
the ν ¼ 0 limit. The system then effectively becomes one
dimensional, and the energy of Eq. (11) maps exactly onto
previously published one-dimensional models [24,25], as
well as onto the continuum limit of the one presented above.
In an aggregate whose resting shape is a disk of radius R,

the displacement field is given by (see Supplemental
Material [48])

u↑ðrÞ ¼ lϵ
2ð1þ νÞI1ðr=lÞ

I0ðR=lÞ þ I2ðR=lÞ þ ν½I0ðR=lÞ − I2ðR=lÞ�
r̂

ð12Þ

FIG. 3. Large binding energies favor bulk aggregation and incompressible particles tend to form fibrous aggregates. (a) Analytical
phase diagram derived from Eqs. (8), (11), and (13). Fiber widths always diverge when approaching the transition to the bulk.
Conversely, in disks the radius discontinuously jumps from a finite value toþ∞ at the transition. The point where the three phases meet
is Γ ¼ 1, ν ¼ 1=2. (b) Phase diagram based on the numerical comparison of the energies of the aggregates shown in Fig. 5(a) for l ¼ 5.
The fiber region of the phase diagram is larger than in the continuum model, and the disk radius R again jumps discontinuously at the
transition with the bulk. Smaller values of l lead to a very similar phase diagram, albeit with an extended “bulk with holes” region (see
Supplemental Material [48]). Monte Carlo simulations for the conditions indicated by the small squares are shown as small panels and
are consistent with the phase diagram. The particles are color coded by energy, recapitulating the predicted concave energy profiles
predicted in Fig. 4 for relatively low values ofW=l. The bottom line of snapshots uses 300 particles and a box of 30 × 30 sites, while the
others use 200 particles and a box of 60 × 60 sites.
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and u↓ðrÞ ¼ −u↑ðrÞ. Here, r denotes the radial coordinate,
and the Iα’s are the modified Bessel functions of the first
kind. Just like Eqs. (2) and (9), Eq. (12) predicts an
exponential decay of the boundary displacement at the
edge of large aggregates. Again, the deformation cost is
smaller at the aggregate edge than in its center, yielding an
average energy per unit area

ediskðRÞ
ebulk

¼ 1−
ð1þ νÞ½I0ðR=lÞ− I2ðR=lÞ�

I0ðR=lÞ þ I2ðR=lÞ þ ν½I0ðR=lÞ− I2ðR=lÞ�
þ ð1þ νÞ Γ

R=l
: ð13Þ

The three terms of the right-hand-side of this equation have
the same physical meaning as those of Eq. (11). This
expression displays an optimal finite aggregate size R� at
low values of Γ. As in the fiber case, this optimal disk is
more stable than the bulk up to values of Γ of order 1,
although the exact criterion differs due to the curved
geometry of the interface [Fig. 3(a)].
Our phase diagram indicates that fibers are more stable

than disks for large Poisson ratios; i.e., they are favored in
the aggregation of incompressible particles (characterized
by ν ¼ 1 in 2D). To understand this, we compare a vertical
fiber and a disk at ν ¼ 1. Symmetry forbids vertical
(orthoradial) displacements in the fiber (disk), allowing
only horizontal (radial) displacements. However, no such
displacement is possible without violating the incompress-
ibility condition of the yellow or red sheet. As a result, the
sheets must remain in their resting states, implying dis-
placements u↑x ¼ −u↓x ¼ 2ϵx (u↑r ¼ −u↓r ¼ ϵr) to lowest

order in ϵ with respect to the fictitious bulk reference state.
All the deformation cost thus comes from the connecting
springs. The resulting connecting spring energy per unit
area reads 8κϵ2x2 (2κϵ2r2), proportional to the square of the
distance from the center of the aggregate. This energy
density is where the difference between fibers and disks
manifests itself. On the one hand, this energy density is
higher for fibers than disks, favoring the latter. On the other
hand, the edge of a fiber is just as long as its centerline,
while the center of a disk is much smaller than its perimeter.
As a result, a smaller proportion of connecting springs are
highly extended in the fiber than in the disk, making the
former energetically cheaper. Combining these two effects
reveals that an aggregate of area A and boundary length L
has a total elastic energy 8=3 × κϵ2A3=L2 if it is a fiber, and
4 × κϵ2A3=L2 if it is a disk. The former is lower than the
latter, and thus, for ν ¼ 1 fibers are more favorable than
disks regardless of line tension. Let us now consider the
opposite limit of low Poisson ratio ν ¼ 0 (or equivalently,
λ ¼ 0). There, the red and yellow elastic sheets are not
incompressible anymore. They thus have nonvanishing
elastic energies, and imparting a curvature to the interface
of the aggregate results in a change of these energies.
Consider first a straight fiber, where neither sheet can relax
its prestrain in the direction y of the fiber. Since these
prestrains are equal to ϵ and since for ν ¼ 0 they decouple
from deformations in the direction orthogonal to the fiber,
this implies an energy density μϵ2 per sheet associated with
this longitudinal prestrain. By contrast, in the curved
interface associated with a disk, these strains are not
longitudinal anymore, but become hoop strains in the
orthoradial direction. Such strains are relaxed by an amount
uθθ ¼ �u=R when the red (yellow) elastic sheet moves
away from (toward) the center of the disk by a distance u
(−u). This results in a lower energy density μðϵ − u=RÞ2
per sheet, which favors disks over fibers. We further
discuss the intermediate cases 0<ν<1 in Supplemental
Material [48].

B. Comparison of premade discrete aggregate
structures

The phase diagram of Fig. 3(a) focuses on continuum
sheets, leaving open the question of whether the formation
of holes within the aggregate or regimes where the particle
size is comparable to the boundary layer thickness could
result in different aggregation behaviors. To assess its
robustness to these effects, we numerically implement
our discrete particle model on a computer. We consider
several aggregates with predetermined topologies including
periodic bulks with and without holes, fibers of various
widths as well as hexagonal aggregates approximating
disks of different radii [Fig. 5(a)]. Isolated particles are
taken into account as disks with one particle. We use a
conjugate gradient algorithm to minimize the energy of
each aggregate over the position of all particle corners,

FIG. 4. Energy density of a fibrous aggregate as a function of
the position x and width W obtained by inserting Eq. (9) into the
integrand of Eq. (4). Here, x=W ¼ �1=2 corresponds to the
aggregate’s edge. The full nonmonotonic structure of the boun-
dary layer is only visible for aggregates significantly larger than
the boundary layer thickness l (l=W ≤ 1=4 in these examples).
The overall elastic energy of thin fibers is nonetheless always
lower than that of their wider counterparts, implying that a high
line tension Γ is required to favor the latter.
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analogous to the minimization over the deformation field in
Eq. (7). We build three different fiber structures by cutting
the bulk along distinct directions. One of the fibers is left-
right asymmetric and spontaneously curves, although that
curvature vanishes in the large-W limit. In practice, we
obtain the energy of infinitely long fibers by extrapolating
from long ones with increasing lengths.
To compute the aggregation phase diagram, we minimize

the deformation energy of aggregates with width (radii)
ranging from 1 to 35 (25) for l ¼ 5 and for values of ν
ranging from 0 to 1. For each value of Γ in Fig. 3(b), we
select the aggregate with the lowest total energy. Bulks with
holes, which in our model have zero deformation energy,
dominate the assembly only at very small surface tensions.
The rest of the phase diagram is essentially identical to the
continuum one, except for an expansion of the fiber region
against both bulks and disks. This may be due to the
increased stability of curved fibers, which are always more
stable than their straight counterparts.

To assess the consistency of the morphology of finite-l
aggregates with the continuum (l → ∞) expectation of
Fig. 3(a), we numerically determine the most favorable
fiber width and disk radius for a range of l and Γ in
Fig. 5(b). While the two approaches are guaranteed to agree
only in the large-l limit, in practice the continuum
approximation yields very accurate predictions all the
way down to values of l equal to the particle size. This
indicates that the boundary layer physics revealed by our
continuum model remains an excellent qualitative and
quantitative description of the aggregation process even
when the stiffness of the connecting springs kc is compa-
rable to that of the others (kc ≲ k ⇔ l≳ 1). The length l
thus provides a robust tool to predict the typical number of
particles in the cross section of a fiber or a disk.

C. Monte Carlo validation of the phase diagram

As a final validation of our phase diagram, we remove
any restriction on the aggregate’s structure and use a
Monte Carlo algorithm to evolve its topology. We simulate
a triangular lattice where each site can be empty or
occupied by a particle. We start with randomly placed
particles and attempt Monte Carlo moves where a randomly
chosen particle is moved to a randomly chosen empty site.
We compute the optimal energy of the resulting new
topology using our conjugate gradient method. The move
is accepted according to a Metropolis criterion with
temperature T. Since the deformation energy is optimized
before the application of the Metropolis criterion, this
temperature applies only to the system’s topological
degrees of freedom. To look for an approximation of the
system’s topological ground state, we perform a simulated
annealing procedure whereby T is slowly lowered from a
large value to zero over the course of the simulation.
The computational cost and limited particle number

in our simulation make it difficult to construct a full
Monte Carlo phase diagram. Instead, we simulate select
parameter regimes to validate our main findings.
Specifically, we perform three line scans at l ¼ 5 whose
final aggregation states are shown in the small panels of
Fig. 3(b). First, a range of increasing Γ at ν ¼ 0.9 shows the
dominance of fibers at large Poisson ratios, and the overall
tendency of the fiber widths to increase with increasing line
tension. A second horizontal scan at ν ¼ 0.4 shows disklike
aggregates whose radii increase with increasing Γ. Finally,
a vertical scan at fixed Γ ¼ 0.5 shows a transition between
disks and elongated aggregates at the predicted value of ν.
The shapes of the aggregates resulting from the simulations
are somewhat variable, as can be assessed from the
Γ ¼ 0.5, ν ¼ 0.9 condition which belongs to two different
line scans and for which the outcomes of two independent
simulations are shown in Fig. 3(b). Our results show that
despite this limitation and the relatively small number of
particles in our system, our phase diagram accurately
predicts the overall outcome of an unconstrained assembly.

FIG. 5. Comparison of the energies of a collection of aggre-
gates with predetermined topologies. (a) List of the aggregate
topologies included in the trial: bulk with holes, three types of
fibers obtained by piling the particles in three different ways,
hexagonal aggregates (including single particles), and bulk. The
white lines and shading in the bulk show the three different types
of cuts used to produce the fibers shown on the left. In practice,
the isolated particles and uncurved fibers are never the most
stable structures. We compare a broad range of fiber widths and
hexagonal aggregates, despite representing only a few here.
(b) Left: when measured in units of number of particles, the
optimal fiber width W� (computed here for ν ¼ 0.95) and disk
radius R� (ν ¼ 0.2) strongly depend on the particles’ elastic
properties through l. Right: rescaling both lengths by l however
leads to an excellent collapse with the analytical prediction
(dashed red line), even for small l.
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IV. EXTENSION TO RANDOM PARTICLES

The discrete model of Fig. 2 has been specifically
designed with the continuum approximation in mind, mak-
ing it unclear whether our results apply to more generic
particle types. To test whether this is the case, we define a
much broader class of hexagonal particles with the same
shape at rest and the same binding rules but with a
considerably more generic deformation energy. We para-
metrize the shape of each particle by nine distances d1,
d2;…; d9 defined in Fig. 6(a). The vector d of these lengths
completely characterizes a particle’s shape, and we denote
its value at rest byd0. The deformation energy of one particle
is an arbitrary quadratic form of the deviation from that state:

ed ¼
1

2
ðd − d0ÞT ·M · ðd − d0Þ: ð14Þ

In the following, we draw the matrix M from a random
distribution that ensures that it is positive semidefinite and
threefold symmetric (see SupplementalMaterial [48]). Such
particles allow not only for differences in the elastic
constants of the colored springs of Fig. 2(a), but also for
new couplings between them. For instance, one of these new
couplings dictates that compressing a yellow spring makes
the red spring to its right shrink or extend. It also opens
regimes where the coupling springs are not much softer than
the others.
We first determine whether these more complex particles

give rise to the same type of boundary layers discussed
above, and if so, whether the associated length scale l is
still set by the competition between modes associated with
cumulative and noncumulative frustration, respectively, as
in Eq. (10). As before, these two modes are associated with
a packing-incompatible and a particle-flattening deforma-
tion, respectively. To access a wide range of l values, we
randomly draw a large number (3 × 107) of instances of
matrix M. We perform numerical simulations of the
mechanical equilibrium of a semi-infinite aggregate for
each of them. As shown in Fig. 6(b), we observe the same
type of elastic boundary layer as in our continuum model.
We operationally define l as the thickness of this boundary
layer. We then relate this measured value to the properties
of a single particle. We however note that the two moduli κc
and λþ 2μ discussed above are well defined only in the
special case of achiral, isotropic particles invariant under
simultaneous ϵ reversal and π=3 rotation. These conditions
are not generically met by our random particles, and we
thus instead replace them by directly estimating two
proxies associated with the deformations modes of the
cumulative and noncumulative types, respectively (see
Supplemental Material [48]). We then insert these moduli
into Eq. (10) to define a predicted boundary layer thickness
lpred. As shown in Fig. 6(c), we find a good correlation
between l and lpred for a randomly selected subsample of
105 matrices. This indicates that frustration at the edge of
an aggregate relaxes in similar ways in simple and random
particles, with the two subtriangles of the particles pro-
gressively shifting relative to each other. Similar to the one-
dimensional model of Fig. 1, this cumulative shift causes a
restoring force (denoted kcδi in the 1D model), which is
balanced by stiffness of the particles’ noncumulative
deformation modes (associated with the stiffness k in the
1D model). While our specific choice of a noncumulative
random particle modulus is as an upper bound for the cost
of deforming the particles, in practice, our random particles
may deform in more complex, less costly ways. Such
deformations would result in a lower effective stiffness and
could explain why lpred tends to overestimate the actual
value of l.
To determine whether the boundary layer thickness l

controls the aggregate size in the same way as in our simple
model, we study a randomly selected subsample of 103

FIG. 6. The aggregation behavior of particles with random
elasticity is accurately captured by our continuum theory. (a) The
shape of a particle is fully characterized by a tuple of nine
distances ðd1;…; d9Þ. (b) To numerically compute the boundary
layer thickness l, we simulate a half plane full of particles
(colored here by absolute deformation energy). We then perform
an exponential fit of the excess elastic energy relative to the bulk
as a function of the distance from the edge, shown here as a line
on a lin-log plot. Finally, we define l as the associated decay
length. (c) The random particle boundary layer thickness l
measured using this protocol is well predicted by the value
lpred inferred from an extrapolation of Eq. (10) (red line).
(d) Radius and width of the best disk and fibers obtained for
random particles. The continuum predictions are shown as red
lines (the position of the line does not depend on ν for fibers).
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matricesM from our total sample. We use the same discrete
aggregate procedures as in Fig. 5(b) to determine which
fiber or disk width is the most favorable for Γ ranging from
0 to Γmax, where we define Γmax as the critical line tension
where the bulk becomes the most favorable structure. Both
fibers and disks tend to become larger with increasing Γ
despite a large dispersion of the data similar to that
observed in Fig. 5(b) (see Supplemental Material [48]).
We however show in Fig. 6(d) that just as in the case of
simple particles, this dispersion is largely abolished by
rescaling the aggregate size by the boundary layer size l.
This demonstrates that the boundary layer still controls the
physics of the assembly in the random particle case.
Moreover, the resulting radii and width distribution are
clearly centered around the values of W� and R� predicted
by the continuum limit.
We finally assess the applicability of the phase diagrams

of Fig. 3 to random particles by correlating the most
favorable aggregate type with a suitable measure of the
“individual sheet Poisson ratio” of the analytical theory. We
define this measure by decoupling the “yellow” and “red”
subtriangles of our new particles from each other [i.e., by
setting Mij ¼ 0 for all ði; jÞ ∉ ½1; 3�2 ∪ ½4; 6�2], composing
a lattice out of each, and numerically computing their
separate Poisson ratios. We use the average of these two
values as our ν. We then segregate our 3 × 107 instances of
the matrix M into three groups with l < 1, 1 < l < 1.5,
and 1.5 < l. We randomly select a few thousand particles
within each group to obtain three near-uniform distribu-
tions of Poisson ratios. Figure 7 shows the type and width
of the aggregates obtained in each case. Fibers form at large
ν and Γ in all three groups, thus demonstrating the robust

influence of these parameters. Disks also form in the
expected parameter regimes, although they tend to be
replaced by bulks with holes for the smallest values of
l. Finally, fibers are even more predominant here than in
our initial model, illustrating the broad relevance of our
fiber-formation mechanism upon ill-fitting self-assembly.

V. DISCUSSION

Many geometrically frustrated assembly models focus
on the aggregation of ill-fitting, sticky particles with simple
geometry and elasticity. Here we go one step further by
investigating a simple particle geometry while allowing
for arbitrary elastic properties, a small step in the direction
of modeling protein complexity. Despite the added com-
plication, this extended particle family still displays intel-
ligible aggregation rules. Large, compact aggregates of
particles thus display a deformation gradient between a
relatively unconstrained edge and a strongly deformed,
frustrated core. This deformed core is energetically costly,
while the aggregate’s surface tension implies that its edge is
also costly. As a result, the cheapest part of the aggregate
lies in between the core and the edge, in the shallow bulk
region. The minimization of the aggregate’s energy thus
requires its structure to comprise as much of this shallow
bulk as possible while keeping both core and surface
small. In our model, this results in aggregate size limitation
and emergent anisotropy. This geometrically nontrivial
optimization is a priori strongly dependent on the elastic
properties of the particles. We nevertheless identify two
surprisingly simple particle-level predictors of its out-
come, namely, an elastic screening length l and particle
incompressibility.

FIG. 7. Random particle aggregation diagram showing good agreement with the analytical results of Fig. 3. Color coding is as in Fig. 3
(b). Each horizontal line in the diagrams corresponds to an instance of the elasticity matrix M. Although the boundaries between the
different regions of the diagram fluctuate due to the random origin of M, together they outline very consistent regions where bulk with
holes, disks, fibers, and bulks dominate. The diagrams with larger values of l cover a more restricted range of ν due to the relative
scarcity of particles with both large l and small ν in matrices M produced by our random generation procedure. See Supplemental
Material [48] for details.
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In our model, the shallow bulk manifests as an elastic
boundary layer with size of order l. This phenomenon is
reminiscent of the size limitation mechanisms at work in
structures self-assembled out of planar materials with an
intrinsic negative Gaussian curvature [50,51] or specially
designed warped jigsaw puzzle particles [25]. Particles with
a frustrated continuum spinlike degree of freedom and
coupled incommensurate lattices in the absence of phase
slips also give rise to a boundary layer [42,52,53]. In
contrast with these specific particle geometries however,
here this behavior emerges in a wide variety of particles
with randomly chosen elastic properties. This suggests that
the mechanism may also apply in packing of complex, ill-
fitting proteins. Both our simple models and this generic
random particle setup support the notion that the boundary
layer length l naturally emerges from a competition
between cumulative-frustration-inducing deformation
modes and modes associated with noncumulative frus-
tration. This competition proceeds according to a simple,
robust scenario: the cumulative modes are comparatively
more favorable for smaller aggregates but give rise to a
frustration energy per particle that increases with increasing
aggregate size. By contrast, flattening the particles through
noncumulative modes yields a constant cost per particle.
Both of these energetic costs are readily assessed in many
models. The length l is associated with the aggregate size
at which both costs are comparable. This basic competition
is found in a wide range of finite-size frustrated systems
[30,54–58]. Our observation of a connection between soft
deformation modes at the particle level, large values of l,
and consequently large self-limited aggregates thus sug-
gests an analogy with allosteric proteins, which mechan-
ically transmit a signal by undergoing a concerted
conformational change along a soft deformation mode that
can be associated with cumulative frustration [59–61].
While extended boundary layers appear to require some

particle deformation modes to be much softer than others
[Fig. 6(c)], not all particle-level soft modes result in one
(Supplemental Material Fig. S5 [48]). In other words, not
all possible soft modes can give rise to an extended
collective deformation that generates cumulative frustration
in the same way that our 1D shear and 2D triangle shifts do.
To understand this point, consider that once embedded in
an aggregate, an initially soft deformation mode may
couple to and be stiffened by the presence of neighboring
particles. While our six-vertex, two-dimensional particles
comprise only relatively simple soft modes that enable the
large-scale accumulation of collective deformations
[namely, the triangle shifts illustrated in Supplemental
Material Figs. S4(a) and S4(b) [48] ], more complex objects
are likely to allow many more. For instance, generalizations
of our model in three dimensions, where the qualitative
physics highlighted here still applies, could additionally
involve frustration and soft modes associated with chiral
particle twisting. Further investigations are, however,

required to identify the geometrical requirements for a soft
mode to enable collective deformations, which in turn
allows the buildup of a thick boundary layer. These
requirements will shed light on the specific elastic param-
eters that most influence the particles’ aggregation behav-
ior, which could include the formation of clusters, fibers, or
sheets in three dimensions. Similarly, complex particles
may display several competing shape-flattening modes.
Their relevance for self-assembly is likely determined by a
combination of the values of the associated moduli and
their geometrical compatibility with the dominant cumu-
lative modes. A better formal understanding of these
considerations would help connect our results with protein
aggregation. They would indeed allow us to assess, e.g.,
whether a given allosteric mode can dictate the size of a
frustrated protein aggregate. This framework could con-
stitute a generic tool to predict the structure of an aggregate
from the individual properties of its proteins. More
immediately and absent such a general framework, a few
predictors of protein aggregation could be measured using
either molecular dynamics simulations of proteins with a
known structure or micromanipulation experiments [62].
One may thus assess whether very compact globular
proteins are more incompressible than ones with a more
open structure, which should lead them to form fibers. We
also speculate that proteins with a soft deformation mode
are prone to self-limiting aggregation, and that mutations
that prevent these deformations could hinder such an
aggregation. Finally, we note that self-limitation can be
observed only if the protein binding energy is low enough
to prevent their shape flattening and aggregation into a
bulk. This energy may be regulated in vitro by adjusting the
salt or depletant concentration, or even by mutating some of
the proteins’ binding sites [63].
While our two-dimensional formalism is meant as a

simplified model of three-dimensional self-assembly, one
could also take it more literally and ask whether and how
our planar aggregates would buckle out of plane if
embedded in 3D. Indeed, within the core of our aggregates
the yellow elastic subnetwork displays substantial internal
compressive stresses which could be released by allowing
these springs to move orthogonally to the plane of the
aggregate. The situation is, however, complicated by the
existence of the red springs, which are subjected to exactly
opposite extensile stresses. As a result, moving both
networks out of plane to stretch our particles while
retaining their regular hexagonal shapes may not lead to
any gain in energy for deformations on scales much larger
than that of a particle. On smaller scales, we expect the
situation to strongly depend on the rules governing the
coupling of the yellow and red subnetworks in the third
dimension, e.g., whether it is possible to vertically shift one
with respect to the other. Such detailed considerations
would be best discussed in the event that they become
relevant for specific experimental systems.
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The threefold symmetry of our model particles implies
that their propensity to form fibers is an emergent property
as opposed to an intrinsic preference for uniaxial aggre-
gation. This breaking of symmetry is reminiscent of the
strain-induced, elongated structures formed during frus-
trated epitaxial growth [64–66]. Both our most simple
model and our generic, random-elasticity particles indicate
that fiber formation is most advantageous in incompressible
particles. This behavior is not specific to hexagonal
particles, and we show in Supplemental Material [48] that
an alternative model based on triangular objects displays an
essentially identical phase diagram. This model design is
not suitable to describe perhaps the most well-known class
of protein fibers, namely, those formed from amyloid
proteins. Such fibers are indeed essentially stacks of beta
sheets formed by unfolded sections of the protein. This
implies a strong preference for piling the particles on top of
one another, and thus excludes the symmetry-breaking
mechanism inherent to our model [67,68]. By contrast, our
results could be more relevant for the aggregation of dense
globular proteins, whose elasticity is often overlooked in
aggregation models [69] despite being well documented
[70]. Such proteins often present more than just two
potential binding sites [63]. Indeed, in some cases one
or the other of these competing binding sites is favored in
two closely related versions of the proteins found in
different species [71]. Such globular proteins tend to be
largely incompressible and many form fibers in disease.
Examples include sickle cell anemia and amyotrophic
lateral sclerosis [8,10,11]. The particle deformations in
these examples moreover remain modest, consistent with
the analytically tractable, small-frustration (ϵ ≪ 1) regime
studied here. This small-deformation regime inspires our
use of a linear elastic model to describe the internal
deformations of our particles. It is, however, worth noting
that the second part of our optimization, namely, the
minimization of the energy with respect to the aggregate
topology, is highly nonlinear. This stems from the funda-
mental nonlinearity of interparticle interactions in, e.g.,
protein or colloidal systems: Two particles stick to their
neighbors with a short-range interaction, but may dissociate
if pulled apart too hard. In the limit where the range of this
interaction is much smaller than the size of a particle, it
maps to our zero-range binding interaction between neigh-
boring particles, which we parametrize by the binding
energy per particle side g. The models of Refs. [23,25]
compare explicit numerical implementations of finite-range
interactions with a one-dimensional zero-range analytical
formalism similar to ours and find them to be in good
agreement.
In more asymmetric particles than those studied here, the

mechanism outlined in our work could be complemented
by fiber-formation mechanisms based, e.g., on the presence
of two specific binding sites on either side of the particle.
Kinetic effects such as diffusion-limited aggregation, which

hampers the formation of bulky aggregates, may also favor
fibers. Another possible dynamical effect is kinetic trap-
ping, whereby our aggregating particles may form meta-
stable structures different from our equilibrium predictions.
We however note that we do not observe any strong
signature of such a trapping in our simulation results.
These simulations, which follow an annealing protocol
similar to that used experimentally to assemble DNA
origami constructs, indeed yields structures in agreement
with our equilibrium predictions. Kinetics may, however,
play a larger role in, e.g., large, slow-to-equilibrate colloids.
The binding free energies involved in the protein aggre-
gation processes discussed here are typically at least 1 order
of magnitude larger than the thermal energy kBT. A recent
study of the effect of the temperature on self-limiting
aggregation indicates that zero-temperature phase diagrams
such as the one derived here are a good approximation of
the behavior of such systems [24]. We further support this
assessment by computing the finite-temperature distribu-
tion of disk sizes in Supplemental Material [48] and find
that it is not dramatically different from the zero-
temperature result even in cases where kBT is comparable
to the particle binding energy.
Beyond proteins, the principles outlined here could

be harnessed to control the assembly of artificial nano-
objects. In DNA origami, soft deformation modes can
be engineered to control aggregate size in a simple
one-dimensional chain [26]. Two- or three-dimensional
extensions of such designs should be prone to frustration-
induced fibrillation. Fibrous morphologies also emerge in
DNA origami systems into which this feature is not
intentionally designed [72]. In addition, this technology
allows the development of particles with controlled Poisson
ratios [73], which may enable more detailed tests of our
predictions. Protein engineering offers another platform to
design finite structures [74] or fibers [75]. It can also be
used to control the deformability of allosteric proteins [76].
The geometry of these deformation modes could thus, in
principle, be designed to have them play the role of the
cumulative and noncumulative modes discussed here.
While systems involving rigid nanoparticles are less
straightforwardly mapped onto an elastic continuum than
deformable DNA origami and proteins, fibrous morphol-
ogies have been observed in packings of tetrahedral
particles [47] and successfully rationalized with an elastic
model [45] based on an elastic frustration originating from
a metric incompatibility. By contrast with our work,
however, this model does not allow for shape flattening.
Our work demonstrates that this restriction is not required
for frustration-induced fiber formation. Rigid colloids with
short-range attractive and long-range repulsive interactions
also display frustration-induced fibrous structures [77].
In this case, the importance of the distance dependence
of the particle interaction profile falls outside the scope of
our small-frustration (ϵ ≪ 1) formalism. More generally,
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frustration buildup in the presence of nonlinear elasticity
and strain-induced particle unbinding can lead to the
emergence of new aggregate patterns that have only begun
to be explored [78] and could play a crucial role in the
physical implementation of the principles described here.
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S1. DEFORMATION PROFILE IN THE ONE-DIMENSIONAL TOY MODEL

Here we derive the deformation profile of Eqs. (2-3) of the main text from the energy function of Eq. (1). The total
energy of the one-dimensional illustrated in Fig. 1(b) of the main text reads

E =

n−1∑
i=−n

e
(i)
d , (S1)

where the labels i of the vertices of the aggregate run from −n to n. We look for the aggregate’s equilibrium

deformation profile by minimizing E with respect to the coordinates {x↑
i }i∈[−n,n] and {x↓

i }i∈[−n,n] of these vertices.
The minimization of E with respect to the coordinates of a vertex yields the force balance condition at this vertex.

For more legibility in the following we write these equations in terms of the tensions of the yellow, blue and red springs
which we respectively define as

T ↑
i = k

[
x↑
i − x↑

i−1 − (1 + ϵ)
]

(S2a)

T c
i = kc

(
x↑
i − x↓

i

)
(S2b)

T ↓
i = k

[
x↓
i − x↓

i−1 − (1− ϵ)
]

(S2c)

The force balance equations at a top row vertex and a bottom row vertex inside the bulk of the aggregate (i.e., for

−n+ 1 ⩽ i ⩽ n− 1) are respectively obtained by imposing ∂E/∂x↑
i = 0 and ∂E/∂x↓

i = 0 and read

T ↑
i+1 − T ↑

i = T c
i (S3a)

T ↓
i+1 − T ↓

i = −T c
i . (S3b)

Subtracting the second equation from the first and defining δi = x↑
i − x↓

i yields the first part of Eq. (2) of the main
text, namely

δi+1 − 2δi + δi−1 =
2kc
k

δi. (S4)

The general form of the solution of this two-step recursion is

δi = C+r
i
+ + C−r

i
−, where r± = 1 +

kc
k

±

√
2kc
k

+

(
kc
k

)2

(S5)

and where the constants C+ and C− are fixed by the force balance conditions at the four vertices that mark the
corners of the aggregates.

∗ h.leroy@epfl.ch
† martin.lenz@universite-paris-saclay.fr
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These four force balance conditions are respectively obtained by setting

∂E

∂x↑
−n

= −T ↑
−n+1 + T c

−n = 0 (S6a)

∂E

∂x↓
−n

= −T ↓
−n+1 − T c

−n = 0 (S6b)

∂E

∂x↑
n

= T ↑
n + T c

n = 0 (S6c)

∂E

∂x↓
n

= T ↓
n − T c

n = 0. (S6d)

Combining Eqs. (S6a-S6b) on the one hand and Eqs. (S6c-S6d) on the other yields the following two boundary
conditions

δ−n+1 =

(
1 +

kc
k

)
δ−n +

(
2 +

kc
k

)
ϵ (S7a)

δn−1 =

(
1 +

kc
k

)
δn −

(
2 +

kc
k

)
ϵ. (S7b)

We insert Eq. (S5) into Eqs. (S7) and solve the resulting system of equations for C+ and C−. Inserting the result
into the general solution of Eq. (S5) yields

δi = ϵ

√
1 +

2k

kc

sinh(i/ℓ)

cosh(2n/ℓ)
, with ℓ = 1/ ln

1 + kc
k

+

√
2kc
k

+

(
kc
k

)2
 , (S8)

from which the second part of Eq. (2) as well as Eq. (3) of the main text are derived.

S2. MAPPING BETWEEN DISCRETE AND CONTINUOUS PARAMETERS

In this section, we give the relationship between the parameters of our simple (non-random) discrete particle model
and the continuum model. The former has three parameters: two spring constants k and kc, and an area stiffness
karea. The continuum limit of this model comprises two coupled elastic sheets corresponding to the colors yellow and
red in Fig. 2 of the main text, which we respectively denote by the ↑ and ↓ symbols. We represent the elasticity of
each sheet by a shear modulus µ and a Poisson ratio ν. The elastic coupling between the sheets is parametrized by
the coupling constant κc. Here we determine µ, ν and κc in terms of k, kc and karea.

We first map the energy of a single triangular spring network in the discrete particle model onto the energy of a
single sheet in the continuum model. The corresponding continuum sheet energy density reads

fsheet(µ, ν, {uαβ}) = µ

(
ν

1− ν
u2
αα + uαβuαβ

)
, (S9)

where uαβ denotes the linearized strain tensor and summation over repeated indices is implied. This strain is expressed
with respect to the resting configuration of the sheet of interest, and not with respect to the bulk configuration as in
Eq. (4) of the main text. The connection between the two conventions is given by the substitutions

uαβ =
∂αu

↑
β + ∂βu

↑
α

2
− ϵδαβ for the yellow sheet (S10a)

uαβ =
∂αu

↓
β + ∂βu

↓
α

2
+ ϵδαβ for the red sheet. (S10b)

To lowest order in ϵ, the expression of the energy density of (S9) does not depend on whether it is defined as the
energy per unit surface of the sheet in its own resting state or in the bulk state defined in the main text.

The energy of the discrete triangular spring network is the sum of two parts: the springs and areal energies. The
springs part yields the following contribution to the sheet energy density [58].

fspring({uαβ}) = fsheet(µ0, ν0, {uαβ}) with µ0 =

√
3

4
k, ν0 =

1

3
. (S11)
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Now focusing on the areal stiffness part, we find that its contribution to the total sheet energy reads

Farea =
1

2
karea

∑
triangles

(A−A0)
2

A0
≈ kareaA0

2

∑
triangles

(uαα)
2, (S12)

where A0 is the area of a triangle and where we have used the small-deformation approximation of the relative area
change as the trace of strain tensor: (A − A0)/A0 ≈ uαα. The corresponding energy density in the continuum limit
then reads

farea =
karea
4

(uαα)
2, (S13)

where additional factor of 1/2 comes from the fact that only half of the triangles are endowed with an areal stiffness
in our model. Adding the two contributions of Eqs. (S11) and (S13), we find a total sheet energy density of the form
(S9) with

µ =

√
3

4
k, ν =

√
3k + 2karea

3
√
3k + 2karea

. (S14)

The second contribution to the total energy stems from the coupling springs. In the discrete particle model, the
total coupling energy reads

Fc =
kc
2

∑
coupling springs

(r − r0)
2, (S15)

where r and r0 are the deformed and rest length of the coupling springs, respectively. To lowest order in displacement,
the change of length of a spring whose direction is given by the unit vector ŝ reads

r − r0 ∼
(
u↑ − u↓) · ŝ = |u↑ − u↓| cos(θu − θs), (S16)

where θu and θs are the angles that the vectors u↑−u↓ and ŝ respectively make with the horizontal axis. As required
for the continuum limit approach, we assume that the displacement fields u↑, u↓ are homogeneous. This yields a total
energy per spring

Fc =
kc
2

∑
springs s

(
u↑ − u↓)2 cos(θu − θs) =

Nskc
2

(
u↑ − u↓)2 〈cos2(θu − θs)

〉
, (S17)

where Ns is the total number of springs in the system and where the average ⟨·⟩ is performed over all six possible
orientations of the coupling springs, namely θs = iπ/3 with i = 1..6. This averaging of the square cosine yields a
result that is independent of θu. Finally, dividing Fc by the total area of the system and noting that there are six
coupling springs per hexagon, we find a coupling energy per unit area

fc =
2
√
3kc
2

(
u↑ − u↓)2 . (S18)

Identifying this expression to the last term of Eq. (4) of the main text, we thus find a continuum coupling constant

κc = 2
√
3kc. (S19)

In the main text, we use Eqs. (S14) and (S19) to compute values of ν, Γ and ℓ associated with discrete particles
and compare the results of our numerical results to continuum predictions in Figs. 3 and 4.

S3. CONTINUUM LIMIT COMPUTATIONS

Here we derive the displacement fields of Eqs. (9) and (12) of the main text from the energy functional presented
in Eq. (4) of the main text. In Sec. S3A we derive the general form of the force balance equations associated with the
yellow and red sheets. In Sec. S3B, we solve the force balance equations in a fiber geometry. Then we solve them in
a disk geometry in Sec. S3C. The expressions of the aggregate energies are computed by inserting these results into
Eq. (4) of the main text and performing the integration. The bulk elastic energy is trivially derived from either one of
the resulting expressions by taking the infinite-size limit. Finally, in Sec. S3D we discuss the influence of curvature
on the elastic energy of the interface of an aggregate.
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A. Force balance equations

We differentiate the sheet energy density of (S9) with respect to the linearized strain tensor to obtain the constitutive
equations of the yellow and red sheets

σ↑
αβ = λ(∂γu

↑
γ − 2ϵ)δαβ + µ(∂αu

↑
β + ∂βu

↑
α − 2ϵδαβ) (S20a)

σ↓
αβ = λ(∂γu

↓
γ + 2ϵ)δαβ + µ(∂αu

↓
β + ∂βu

↓
α + 2ϵδαβ), (S20b)

where λ = 2µν/(1−ν) is the first Lamé coefficient and where we have used the strain notation of (S10). Differentiating
Eq. (4) of the main text with respect to the yellow and red sheet displacements u↑

α and u↓
α respectively yields the

force balance equations for the yellow and red sheets:

∂βσ
↑
αβ = −κc(u

↓
α − u↑

α) (S21a)

∂βσ
↓
αβ = −κc(u

↑
α − u↓

α), (S21b)

whose right-hand sides represent the areal densities of external forces exerted by one sheet onto the other through the
coupling springs.

We parametrize all displacements and stresses by the bulk position vector r. This vector is defined as the position
of a point in the bulk state, i.e., in the state characterized by u↑ = u↓ = 0. In other words, the actual position of
any point of the yellow sheet is given by r+ u↑(r), and that of a point of the red sheet is given by r+ u↓(r). In the
following, we endeavor to solve the system of equations Eqs. (S20-S21) for the displacement fields u↑(r), u↓(r) on a
two-dimensional domain Ω with the stress-free boundary condition

∀r ∈ ∂Ω nα(r)σ
↑
αβ(r) = nα(r)σ

↓
αβ(r) = 0, (S22)

where n(r) denotes the normal to the domain at a point r of the domain boundary ∂Ω. We use linear elasticity
throughout.

B. Fiber

To study the elastic energy of an infinitely long, straight fiber, we write the position vector r = (x, y) in cartesian
coordinates. We then solve the force balance equations over the domain (x, y) ∈ Ω = [−W/2,W/2] × R, where W
denotes the width of the fiber.

By translational symmetry, the displacement fields gradients ∂αu
↑/↓
β may only depend on the horizontal coordinate

x. this implies that the vertical displacements u↑
y and u↓

y are affine functions of the vertical coordinate y. To prevent a
divergence in the coupling spring energy, the slopes of these functions must moreover be identical, and we thus write

u↑
y = u↓

y = ϕy, (S23)

where ϕ is an undetermined constant that cannot depend on x lest diverging strains appear in regions of large y in
either or both sheets. The horizontal displacements u↑

x, u
↓
x must be independent of y for the same reason. Additive

constants on the right-hand-side of (S23) can be ignored without loss of generality through suitable choices of the
origins of y and u↑/↓. As a consequence of (S23), the vertical component of the force exerted by the coupling springs
vanishes everywhere.

Inserting these results into Eqs. (S20-S22) yields a system of coupled equations for two functions of one variables,
namely u↑

x(x) and u↓
x(x):

∂2
xu

↑
x =

κc

λ+ 2µ
(u↑

x − u↓
x) (S24a)

∂2
xu

↓
x =

κc

λ+ 2µ
(u↓

x − u↑
x), (S24b)

with boundary conditions

∂xu
↑
x(±W/2) =

(λ+ µ)2ϵ

λ+ 2µ
− λϕ

λ+ 2µ
(S25a)

∂xu
↓
x(±W/2) = − (λ+ µ)2ϵ

λ+ 2µ
− λϕ

λ+ 2µ
, (S25b)
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which is a continuum version of the one-dimensional toy model of the main text, except for the unknown constant ϕ.
To determine the value of ϕ, we note that the fiber as a whole is not subjected to any external force. This implies

that its total vertical tension must be constant. Due to the no-stress boundary condition at the y = ±∞ ends of the
fiber, this constant is moreover equal to zero:

0 =

∫ ∞

−∞

[
σ↑
yy(x) + σ↓

yy(x)
]
dx = 2(λ+ 2µ)Wϕ+ λU(W/2)− λU(−W/2), (S26)

where we have defined U(x) = u↑
x(x)+u↓

x(x) and where the last equality was obtained by using (S21) and performing
the integration. We finally combine Eqs. (S24-S25) to obtain a simple differential equation for U(x):

∂2
xU = 0 with ∂xU(±W/2) = − 2λϕ

λ+ 2µ
, (S27)

which implies U(x) = −2λϕx/(λ+ 2µ). Inserting this result into (S26) yields ϕ = 0.
Inserting the condition ϕ = 0 into the system Eqs. (S24-S25), we find a linear system of differential equations

without any unknown parameters. This system thus has a single solution, which can easily be verified to be Eq. (9)
of the main text.

C. Disk

To study the elastic energy of a disk, we write the position vector r = (r, θ) in polar coordinates. We then solve
the force balance equations over the domain (r, θ) ∈ Ω = [0, R]× [0, 2π), where R denotes the radius of the disk.

The rotational invariance of the problem imposes u↑
θ = −u↓

θ = 0, and implies that the radial displacement depends

only on the radial coordinate. We must thus solve for two scalar functions of one variable, namely u↑
r(r) and u↓

r(r).
Combining Eqs. (S20-S22), we obtain

∂2
ru

↑
r +

∂ru
↑
r

r
− u↑

r

r2
= − κc

λ+ 2µ
(u↓

r − u↑
r) (S28a)

∂2
ru

↓
r +

∂ru
↓
r

r
− u↓

r

r2
= − κc

λ+ 2µ
(u↑

r − u↓
r) (S28b)

with boundary conditions

∂ru
↑
r(0) = ∂ru

↓
r(0) = 0 (S29a)

σ↑
rr(R) = (λ+ 2µ)∂ru

↑
r(R) + λ

u↑
r(R)

R
− 2(λ+ µ)ϵ = 0 (S29b)

σ↓
rr(R) = (λ+ 2µ)∂ru

↓
r(R) + λ

u↓
r(R)

R
+ 2(λ+ µ)ϵ = 0 (S29c)

By summing these equations two by two, we find a system of equations for U(r) = u↑
r(r) + u↓

r(r), namely

∂2
rU +

U

r
− U

r2
= 0 with ∂rU(0) = 0 and (λ+ 2µ)∂rU(R) + λ

U(R)

R
= 0. (S30)

This implies U(r) = 0 and therefore u↑
r(r) = −u↓

r(r). Plugging this condition into (S28a) yields

∂2
ru

↑
r +

∂ru
↑
r

r
− u↑

r

r2
=

2κc

λ+ 2µ
u↑
r , (S31)

which alongside the boundary conditions on u↑
r comprised in (S29) form a fully specified second-order linear differential

equation, for which Eq. (12) of the main text is the unique solution.

D. Influence of curvature on the energy of the aggregate interface

Here we show that in our continuum model, very wide fibers are elastically more favorable than very large disks
for ν > 1/2. This rationalizes the transition between fibers and disks when following the vertical line Γ = 1 in the
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phase diagram of Fig. 3(a) of the main text. Indeed, we find that disks with large but finite radii are more favorable
than straight fibers for ν < 1/2. This enhanced stability of the finite disks accounts for the dominance of finite-size
disks along the Γ = 1 line for ν < 1/2, and for the delaying of the transition to a bulk aggregate to larger values of
the rescaled line tension Γ. While all following results can all be recovered by taking the ℓ/R → 0 asymptotics of the
expressions derived in Sec. S3C, this section aims to build a physical intuition of their origin.

We consider an aggregate whose edge has a very weak curvature R−1 ≪ ℓ−1. We denote the radial displacement
of the red sheet as ur. We recall from Secs. S3B and S3C that the yellow sheet has a radial displacement equal and
opposite to ur and an energy density equal to that of the red sheet. We thus limit our discussion to the red sheet.
The general form of its force balance equation reads

1

r
∂r(rσrr)−

σθθ

r
− λ+ 2µ

ℓ2
ur = 0, (S32)

where the first two terms stem from the internal stresses within the sheet and the third comes from the body force
exerted by the coupling springs. The general expression of the stresses are

σrr

λ+ 2µ
= (∂rur − ϵ) + ν

(ur

r
− ϵ
)

(S33a)

σθθ

λ+ 2µ
= ν (∂rur − ϵ) +

(ur

r
− ϵ
)
, (S33b)

where the first and second terms in the right-hand side are respectively associated with the radial and orthoradial
strain. To lighten the notation in the remainder of this section we express all displacements in units of ϵ and all
stresses in units of (λ+ 2µ)ϵ.
We define the dimensionless distance to the aggregate edge ξ = (r − R)/ℓ and expand the radial displacement of

the red sheet in powers of the curvature as

ur (ξ,R/ℓ) = u(0)(ξ) +
ℓ

R
u(1)(ξ) +O

(
ℓ

R

)2

. (S34)

We similarly expand the stresses as σij = σ
(0)
ij + (ℓ/R)σ

(1)
ij + ... To zeroth order in the curvature, the force balance

equation is the same as for a one-dimensional system, or equivalently for the transverse direction of a fiber. It thus
reads

∂rσ
(0)
rr − u(0)

ℓ2
= 0 ⇔ ∂2

ξu
(0) − u(0) = 0 ⇔ u(0) = ϵ(1 + ν)eξ, (S35)

where we impose the boundary condition that the radial stress vanishes at the aggregate edge. Using Eq. (S33), this

solution implies σ
(0)
rr = (1 + ν)(eξ − 1) and σ

(0)
θθ = (1 + ν)(νeξ − 1).

Now turning to the first order in ℓ/R, we can once again recast the force balance equation as a one-dimensional
force balance for the additional displacement u(1) induced by the interface curvature. However this equation involves
new terms compared to Eq. (S35), which we can express as a density of body force f stemming from the zeroth-order
solution:

∂2
ξu

(1) − u(1) = −f with fℓ = σ(0)
rr + ∂ξ

[
νu(0)

]
− σ

(0)
θθ . (S36)

All three terms that compose the body force f have a geometrical origin and only manifest when the interface acquires
a curvature. The origin of the first term can be understood by visualizing an area element of the disk that spans a
small angle interval dθ as well as the interval of radii [r, r + dr]. Because of its curvature, the length of its r + dr

interface is longer than the length of its r interface. Assuming a negative (compressive) uniform stress σ
(0)
rr , the

compressive force applied to the former interface is thus larger than that applied to the latter. This results in a total
force directed towards the inside of the circle. The second term comes from the ur/r term of Eq. (S33a): for a curved
interface, any displacement in the radial direction results in a change in the orthoradial strain. Increasing ur thus
stretches the material orthoradially, which for a positive Poisson ratio results in an increasingly tensile radial stress.
The gradient of this extra stress plays the same role as a force density. Since here u(0) increases with ξ, this force
is directed towards the outside of the disk. The third term is the one discussed in the main text. As the curvature
of the interface increases, the projection of the orthoradial hoop stresses along the radial direction increases. Since
these hoop stresses are compressive to begin with, the resulting force density pushes the material towards the outside
of the disk. Using the result of Eq. (S35), we find that the resultant of these three contributions reads f = (1 + ν)eξ.
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This force density is always directed towards the outside of the disk. As a result, the simplified main text discussion
where we only mention the last, outside-directed term is at least qualitatively correct.

The boundary condition on Eq. (S36) imposes that the order-one stress σ
(1)
rr = ∂ξu

(1) + νu(0) vanishes at the
aggregate boundary ξ = 0. From the point of view of the pseudo-one-dimensional system, this implies that the
curvature imposes a boundary stress −νu(0) on this system which has the same origin as the middle term of f in
Eq. (S36): the material is stretched orthoradially, inducing a tensile radial stress proportional to ν which must be
compensated by the one-dimensional stress ∂ξu

(1). The one-dimensional system is thus simultaneously subjected
to an outside-directed bulk force which does not crucially depend on the Poisson ratio of the material, and to an
inside-directed surface stress which strongly depends on ν and is strongest when the material is more incompressible.
Qualitatively, we thus expect that the additional displacement resulting from the curvature will tend to be towards
the outside of the disk for small ν, and towards the inside for larger ν. Indeed, the explicit solution to this problem
reads:

u(1)(ξ) = (1 + ν)

(
1

2
− ν − ξ

2

)
eξ. (S37)

Thus the first-order correction to the edge displacement ur(ξ = 0) has the same sign as 1/2− ν, and is thus negative
for large enough ν. Energetically, this means that the energetic gain resulting from the release of the orthoradial com-
pression discussed in the main text competes with the energetic cost associated with an enhanced radial compression
for large ν. Beyond the specific model studied here, we can indeed expect that curving an interface allows to release
stresses accumulated in the direction parallel to the interface; in more incompressible materials however, the strong
coupling between this direction and the direction perpendicular to the interface is likely to constrain this stress release
and thus make it less favorable. More explicitly, inserting Eq. (S37) into the energy functional Eq. (4) of the main
text yields an elastic contribution to the aggregate line tension equal to (1 + ν)/2× [1− (ν − 1/2)/R]ℓebulk. In other
words, introducing a small curvature in the interface is elastically favorable if and only if ν < 1/2, consistent with the
phase diagram of Fig. 3(a) of the main text.

S4. SMALLER ℓ PHASE DIAGRAM

Figure 3 of the main text presents the phase diagram of our non-random discrete particles for boundary layer
thicknesses ℓ = +∞ [Fig. 3(a), continuum theory] and ℓ = 5 [Fig. 3(b), numerical procedure described in the main
text]. To further illustrate the influence of the boundary layer thickness ℓ, in Fig. S1 we follow the same procedure
used to compute the diagram of Fig. 3(b) for a smaller value ℓ = 2.5. Consistent with the results obtained for random
particles in Fig. 6 of the main text, we observe that smaller values of ℓ induce a loss of disks to the benefit of bulks
with holes, but no dramatic changes in the fiber and bulk regions of the diagram.

S5. PROCEDURE TO DRAW RANDOM MATRIX

Here we describe the procedure we use to generate the random instances of the matrix M introduced in Eq. (14) of
the main text. The form of the energy chose in Eq. (14) is very generic, as it boils down to a small-displacement Taylor
expansion of any energy function of the 12 vertex coordinates under the constraints of translational and rotational
invariance. Here we discuss the way in which we enforce the additional symmetries of the matrix M.

As discussed at the end of the main text, we demand that the elasticity of our particles be three-fold symmetric,
i.e., invariant under the permutation:

d1 → d2

d2 → d3

d3 → d1

d4 → d5

d5 → d6

d6 → d4

d7 → d8

d8 → d9

d9 → d7,
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FIG. S1. Phase diagram based on the numerical comparison of the energies of the aggregates shown in Fig. 4(a) of the main
text for ℓ = 2.5. The color code is as in Fig. 3 of the main text; black: bulk with holes, red: disk, blue: fiber, purple: bulk.

where the distances di are defined in Fig. 5(a) of the main text and the permutation above applies simultaneously to
the vectors d and d0 of actual and resting positions. To enforce this condition, we first draw all entries of a 9 × 9
matrix M0 as independent identically distributed variables from the normal distribution N (0, 1). We then define the
9× 9 block matrix Ω that enforces the aforementioned permutation as:

Ω =

ω 0 0
0 ω 0
0 0 ω

 , where the block ω is given by ω =

0 0 1
1 0 0
0 1 0

 . (S38)

We then apply permutations to the symmetry-less matrix M0 to obtain

M1 =
1

3

(
M0 +ΩM0Ω

−1 +Ω2M0Ω
−2
)
, (S39)

which has the required three-fold symmetry property.
Our second and last requirement for our elasticity matrix is that it be semi-positive, which prevents the ground

state of our individual particles from being mechanically unstable. We enforce this condition by defining

M = M1M
T
1 , (S40)

where T denotes the usual matrix transposition. By combining Eqs. [S39] and [S40] and realizing that Ω3 = I it is easy
to show that the energy of Eq. (14) of the main text then satisfies the three-fold symmetry condition ed(Ωd) = ed(d).
All elasticity matrices used in Figs. 5 and 6 of the main text are obtained through the procedure described here.

S6. SELF-LIMITED AGGREGATE SIZES SCALE LIKE THE BOUNDARY LAYER THICKNESS ℓ IN
RANDOM PARTICLES

Randomly drawn matrices M display heterogeneous elastic properties, which result in a wide distribution of aggre-
gate sizes. In Fig. S2 we show that the value of the surface tension Γ/Γmax is not sufficient to accurately predict the
size of the aggregates resulting from a matrix M. By contrast, we show in Fig. 5(d) of the main text that rescaling
the aggregate sizes by the boundary layer thickness ℓ leads to a collapse of the aggregate sizes, consistent with our
continuum theory.
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FIG. S2. Equilibrium width W ∗ and radius R∗ of random particles aggregates in units of number of particles. The data shown
is identical to that of Fig. 5(d) of the main text, only without rescaling by the boundary layer thickness ℓ.

S7. SELECTION OF THE RANDOM PARTICLES USED IN THE PHASE DIAGRAMS

To generate the random particle aggregation diagrams of Fig. 6 of the main text, we first draw 3 × 107 random
matrices and compute the boundary layer length of the associated particles. This large sample size is required to
obtain a sufficient number of particles with relatively high values of ℓ, as is apparent from the fast decay of the
probability density of Fig. S3(a) as ℓ increases.
We next divide the range of accessible boundary layer lengths into three intervals: ℓ ∈ [0, 1), ℓ ∈ [1, 1.5) and

ℓ ∈ [1.5,∞). We randomly select batches of 106 particles from the first two intervals and use the whole third
batch, which contains only 1.25 × 105 particles. We then compute the Poisson ratio (see Sec. S8 for the procedure)
for all particles in the three batches and further select a few thousand particles from each to obtain quasi-uniform
distributions of Poisson ratios as represented in Fig. S3(b). Finally, for each particle, we construct an aggregation
diagram by numerically determining the best aggregate upon varying the surface tension. The outcome of this
procedure is Fig. 6 of the main text.

S8. PREDICTING THE BOUNDARY LAYER THICKNESS FROM THE ELASTIC PROPERTIES OF
RANDOM PARTICLES

In our continuum model, the thickness of the boundary layer that marks the transition between strongly constrained
bulk particles and relatively unconstrained aggregate-edge particles is directly tied to the ease with which the two
subtriangles that constitute the particles can be shifted relative to each other. Here we tentatively apply a similar
reasoning to random particles, and construct the ultimately successful estimate ℓpred of the boundary layer thickness
presented in Fig. 5(c) of the main text. In our continuum model the boundary layer thickness ℓ is constructed from

FIG. S3. Distribution of random particle properties resulting from the procedure of Sec. S5. (a) Distribution of boundary
layer lengths within the initial draw of 3× 107 elasticity matrices M. (b) Distribution of Poisson ratio within each of the three
batches of particles. We respectively pick 3400, 3500 and 2400 particles out of the three batches to obtain the quasi-uniform
distributions of Poisson ratios materialized by the black lines.
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FIG. S4. Deformation protocols used to estimate the boundary layer thickness and Poisson modulus of a collection of random
particles. These estimates are made to zeroth order in ϵ. We thus set ϵ to zero in this figure and throughout the procedure.
The black arrows denote externally imposed node displacements. (a) Displacement protocol used to generate the estimate κpred

c

of the coupling modulus in (S43). The definitions of the elements of the distance vector d are recalled here for convenience.
(b) Another displacement protocol equivalent to that of the previous panel. (c) Simultaneous isotropic bulk deformation of the
two triangles used to estimate the sheet bulk modulus Kpred. In the case of the simple particles of Fig. 2 of the main text,
this mixture of expansion and compression imposes bulk deformations on both sub-triangles while leaving the coupling springs
lengths unchanged to lowest order in deformation. We thus use it to extract the value of the bulk modulus independently from
the coupling modulus in (S44). (d) Bulk and shear deformation of the yellow triangle used to compute ν↑ through K↑ and µ↑ in
(S46). The grey nodes are assumed to be free to move in such a fashion that the length of the grey segments remains unchanged
during the deformation. This is equivalent to decoupling the black triangle from the rest of the particle, as mentioned in the
main text. (e) Bulk and shear deformation of the red triangle used to compute ν↓ through K↓ and µ↓ in (S46). The meaning
of the grey nodes is the same as in the previous panel.

a ratio of elastic moduli, namely

ℓ2 =
λ+ 2µ

2κc
=

K

(1 + ν)κc
. (S41)

where κc denotes the inter-sheet coupling constant, K = λ+ µ is the intra-sheet bulk modulus and ν = λ/(λ+2µ) is
the intra-sheet Poisson ratio. These parameters are not rigorously well-defined in a bulk aggregate of random particles
characterized by an elasticity matrix M [Eq. (14) of the main text], which does not in general exactly map onto the
continuum energy of Eq. (4) of the main text. To nonetheless derive our estimate ℓpred, here we set out to compute
proxies for each of these three parameters. We base our procedure on the computation of pseudo-moduli associated
with specific deformations illustrated in Fig. S4. We thus define the pseudo-modulus K associated with a deformation
vector δd = d− d0 as

K[δd] =
δdT ·M · δd

Ahex
0

, (S42)

where Ahex
0 =

√
3/2 is the resting area of a hexagonal particle to zeroth order in ϵ. In the following, we choose the

normalization of δd so that the definition of (S42) coincides with the moduli discussed in Eq. (4) of the main text
when applied to our simple particle model (Fig. 2 of the main text). In that specific case, the deformations δd used
below are eigenvectors of M.

We first estimate the sheet-coupling modulus κc as the pseudo-modulus associated with a relative displacement
between the two subtriangles of a particle. We picture two possible protocols for such a displacement in Fig. S4(a)
and (b), namely a horizontal or a vertical shift of the two triangles, although any intermediate direction is also allowed.
Due to the three-fold symmetry of the particle, all these shifting protocols are associated with the same modulus.
Using the deformation mode of Fig. S4(a), we write

κpred
c = K

[(
0, 0, 0, 0, 0, 0,−

√
3/2, 0,

√
3/2
)]

. (S43)
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We next estimate the intra-sheet bulk modulus K, which characterises the stiffness of each sheet with respect to an
isotropic expansion or compression, as the pseudo-modulus associated with the expansion-compression deformation
illustrated in Fig. S4(c), namely

Kpred = K
[(

−2−3/2,−2−3/2,−2−3/2, 2−3/2, 2−3/2, 2−3/2, 0, 0, 0
)]

. (S44)

Our third step is to estimate the Poisson ratio as the average

νpred =
ν↑ + ν↓

2
(S45)

of the individual pseudo-Poisson ratios ν↑ and ν↓ of the yellow and red sublattices (and thus of the yellow and red
sheets in the continuum limit). We estimate each of these sheet-specific Poisson ratios as

ν↑/↓ =
K↑/↓ − µ↑/↓

K↑/↓ + µ↑/↓ , (S46)

where we define the sheet-specific bulk and shear pseudo-moduli through the four deformations illustrated in Fig. S4(d-
e), namely

K↑ = K [(1/2, 1/2, 1/2, 0, 0, 0, 0, 0, 0)] (S47a)

µ↑ = K
[(

0,−
√
3/4,

√
3/4, 0, 0, 0, 0, 0, 0

)]
(S47b)

K↓ = K [(0, 0, 0, 1/2, 1/2, 1/2, 0, 0, 0)] (S47c)

µ↓ = K
[(

0, 0, 0,
√
3/4, 0,−

√
3/4, 0, 0, 0

)]
. (S47d)

We finally combine Eqs. (S43-S45) by inserting them into (S41), which yields the values of ℓpred displayed in
Fig. 4(c) of the main text. We also use the pseudo-Poisson ratio defined in (S45) as the vertical coordinate of the
phase diagrams of Fig. 6 of the main text.

S9. UNSUCCESSFUL ALTERNATIVE PREDICTOR OF THE BOUNDARY LAYER THICKNESS IN
RANDOM PARTICLES

The successful method described in Sec. S8 is only one of many possible extensions of our continuum theory to
random particles. Here we discuss a different, unsuccessful approach and draw conclusions from its failure.

The foundation of our continuum approach is the existence of an emergent length scale in our deterministic 2D
particle model that diverges in the limit where one elastic constant of the particles (kc) becomes much smaller than
another (k). Mechanistically, this large mismatch in elastic constants means that the restoring forces from the softer
deformation mode of the particle slowly accumulate from the edge of the aggregate to the bulk as discussed in the main
text for the one-dimensional model of Fig. 1. Mathematically, any deformation of the particle may be decomposed
into a linear combination of the eigenvectors of the matrix M defined in Eq. (14) of the main text. These deformation
eigenmodes do not couple to each other in an isolated particle, and each has its own stiffness associated with the
corresponding eigenvalue of M. In our deterministic 2D particles, the length ℓ is inversely proportional to the square
root of the smallest of these eigenvalues.

This leads us to hypothesize that any soft mode of deformation of the particle may be able to play the same role
that the shifting mode of Fig. S4(a-b) plays in our deterministic 2D model: to produce slowly accumulating stresses
that take the particle from a more relaxed edge configuration to the bulk configuration. If several soft modes exist
within the particle, the softer one should correspond to the thickest boundary layer and thus should dominate the
decay of the elastic deformation far enough from the aggregate edge. This reasoning thus suggests the following proxy
for the boundary layer thickness:

ℓeigen =
1√

min
i

λi

, (S48)

where the λi denote the eigenvalues of M. We test the accuracy of this predictor in Fig. S5 using the same plotting
convention as in Fig. 5(c) of the main text, and find that it does not significantly correlate with ℓ. As detailed in
the discussion section of the main text, we conclude that not all soft modes of our particles are compatible with the
mechanism of stress accumulation over large length scales described above.
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FIG. S5. The predictor ℓeigen of (S48) does not correlate with the measured boundary layer thickness ℓ. Each of the two side
panels is a close-up of a region of the central panel, as indicated by the black rectangles.

S10. TRIANGULAR PARTICLES

To demonstrate the robustness of the results of the main text to a change in particle design, here we introduce
a model of triangular deterministic particles. Similar to the main text, the model particles comprise two triangles
made of hard k springs and a set of softer (six in this case) kc coupling springs. The particle design is illustrated
in Fig. S6(a), and aggregates thereof are shown in Fig. S6(b) and (c). This design gives rise to the same continuum
theory as the model of the main text, and we conduct comparisons of pre-made discrete aggregate structures as well as
Monte-Carlo simulations using the same methodology as in the main text. These results are shown in Fig. S6(d). The
aggregate designs used for the former type of analysis are shown in Fig. S6(e). By contrast with the model described
in the main text, the bulk with hole is never advantageous because sticking two triangular particles together has a
non-zero elastic energy cost. As a result, a gas of isolated single particles is favored at very low tensions. In addition,
unlike in Fig. 3(b) of the main text, the frontier between fiber and bulk is perfectly vertical. This further confirms
that the extended region of stability of the fibers observed for the hexagonal model of the main text is due to the
curvature of the fibers. Apart from these nuances, the results obtained with this model are very similar to those of the
deterministic 2D hexagonal particle model detailed in the main text, thus confirming the robustness of our continuum
approach.

S11. FINITE TEMPERATURE DISTRIBUTION

To assess the effect of thermal agitation on the morphology of our aggregates, here we consider a collection of disk-
like clusters and discuss the effect of a finite temperature on their size distribution. While this simplified approach
does not exhaust the catalog of aggregate structures accessible to a finite-temperature system, it allows us to build
an intuition of the magnitude of the expected morphological fluctuations.

Our calculation is a straightforward application of the ideal gas of clusters theory described in, e.g., Ref. [? ]. We
write the free energy of a collection of aggregates as:

F

V/v0
=

∞∑
n=0

Φn

[
edisk(n) +

1

nβ

(
ln

Φn

n
− 1

)]
(S49)

where V/v0 is the volume of the system in units of the particle volume, Φn is the volume fraction of aggregates of size
n and β = 1/kBT is the inverse thermal energy. Finally, edisk(n) is the energy per particle in an aggregate of size n,
and its expression is given in Eq. (13) of the main text. We work under the constraint of fixed total concentration of
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FIG. S6. Alternative triangle-based model for frustrated self-assembly. (a) Particle design as in Fig. 2(a) of the main text.
(b) Example of mechanically equilibrated aggregates as in Fig. 2(b) of the main text. To improve visibility, coupling (blue)
springs are not represented. (c) In an infinite (bulk) aggregate, the length of the edge of the two triangles must match. (d) Phase
diagram and Monte-Carlo simulation results for ℓ = 2.5 as on the right-hand-side of Fig. 3 of the main text. The bottom line
of snapshots contain 300 particles in a box of 30 × 30 lattice sites. The other snapshots contain 200 particles in boxes of size
40× 40. (e) Examples of aggregate topologies whose energies we compare to compute the phase diagram.

particles

Φ =

∞∑
n=1

Φn = constant. (S50)

and minimize the free energy with respect to all aggregate volume fraction by imposing

∀n ∈ N∗ ∂

∂Φn

[
F + µ

(
Φ−

∞∑
n=1

Φn

)]
= 0. (S51)

where the chemical potential µ is defined as the Lagrange multiplier associated the constraint of Eq. (S50).
Inserting the expression of Eq. (S49) into Eq. (S51) and expressing µ as a function of Φ1, we obtain the law of mass

action

Φn = n
[
Φ1e

βedisk(n)
]n

. (S52)
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FIG. S7. Finite-temperature volume fraction distribution of finite-size disks containing n particles. Here Φ = 0.3 and ℓ = 5 as
in Fig. 3 from the main text. We also used ν = 0.4.

We next insert Eq. (S52) into Eq. (S50) and numerically solve it for the unknown variable Φ1. Reinjecting that solution
into Eq. (S52) gives us the aggregate size distribution, which we plot in Fig. S7 for different values of the reduced
line tension Γ and the product βebulk of the inverse temperature by the typical particle deformation energy. At low
temperature (βebulk large), these distributions are very peaked around the optimal disk size computed in the main
text. Moreover, we find that they retain a maximum around this value all the way to relatively high temperatures
(i.e., βebulk ⩾ 1). This suggests that the zero-temperature results derived in the main text give a good sense of the
aggregate morphologies even in situations where thermal fluctuations are fairly significant.
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