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ABSTRACT Stereocilia are actin-based cellular protrusions essential for hearing. We propose that they are shaped by the
detachment dynamics of actin cross-linkers, in particular espin. We account for experimentally observed stereocilium shapes,
treadmilling velocity to length relationship, espin 1 localization profile, and microvillus length to espin level relationship. If the
cross-linkers are allowed to reattach, our model yields a dynamical phase transition toward unbounded growth. Considering
the simplified case of a noninteracting, one-filament system, we calculate the length probability distribution in the growing phase
and its stationary form in a continuum approximation of the finite-length phase. Numerical simulations of interacting filaments
suggest an anomalous power-law divergence of the protrusion length at the growth transition, which could be a universal feature
of cross-linked depolymerizing systems.

INTRODUCTION

The exquisite frequency selectivity of our hearing can be
tracked back to the intricate and remarkably well-regulated
internal structure of the ear. At the heart of this mechano-
transduction machinery are stereocilia, which are present
in reptiles, birds, and mammals. They are 1–120 mm-long
rodlike protrusions of so-called hair cells that pivot around
their ankle upon mechanical stimulation (1). This motion
causes the opening of ion channels, which induces a depolar-
ization of the membrane that results in the propagation of
a nervous signal. Stereocilia are primarily made of a para-
crystal of up to 200 densely packed (2), parallel actin fila-
ments enclosed by the cell membrane (3). They are
roughly cylindrical over most of their length, but taper at
their base. This indicates that some filaments do not extend
all the way to the cell body, although some others do pene-
trate far into the underlying cuticular plate (see Fig. 1 b).
Within the stereocilium the filaments are in register,
meaning that their helical periods are perfectly aligned in
the vertical direction. Their barbed (polymerizing) ends
point toward the stereocilium tip while their depolymerizing
ends point toward the cell body. Although stereocilia are
maintained throughout the life span of an individual, they
are dynamic structures that are constantly renewed by actin
treadmilling. During this process, actin is continuously
incorporated at the tip of the stereocilium and depolymer-
ized at its base (4). Interestingly, the actin treadmilling
velocity is proportional to the stereocilium height, so that
the time necessary to fully renew any auditory stereocilium
is independent of the stereocilium height (it has been shown
to be x48 h in rats (5)).

Stereocilia have recently been the focus of theoretical
attention (6,7), and two of us have suggested that this

renewal time is essentially an intrinsic timescale associated
with the actin bundle’s depolymerization dynamics (8).
However, the origin of the timescale proposed in this
previous work yields a strong sensitivity of the stereocilium
shape on the model’s parameters. In addition, this model
does not account well for the long quasicylindrical section
observed in healthy stereocilia. Here we improve the notion
of an intrinsic timescale put forward in Prost et al. (8) by
suggesting that it originates in the binding-unbinding
dynamics of actin cross-linkers, which were mentioned
but not treated explicitly in this work. Our description of
this experimentally well-characterized mechanism allows
us to reproduce stereocilium shapes faithfully with few
adjustable parameters and to quantitatively account for
experimental results previously only considered from
a qualitative point of view. Finally, it yields robust
structures, which is very significant because the frequency
sensitivity of the ear requires a delicate regulation of the
stereocilia’s mechanical properties, which are in turn
determined by their shape.

Actin cross-linking was described early in the study of
stereocilia (9) and could be responsible for the filaments
being in register (10). Although cross-linkers of two types,
espin and fimbrin, have been identified in stereocilia
(11,12), we hereafter focus on espin, which is thought to
provide sturdier cross-linking than fimbrin (13,14). Note,
however, that our study is general enough to apply to any
cross-linker, and could be extended to account for the simul-
taneous presence of several cross-linker species. Espin
slows actin depolymerization down in vitro (15), and could
thus play an important role in stereocilia, as the actin depo-
lymerization rate there (x0.002–0.04 s!1 over the whole
stereocilium, meaning z10!4 s!1 for each filament (5)) is
much smaller than that of F-actin in vitro (x1 s!1 (16)).
Several in vivo experiments indeed support the notion that
cross-linking plays a major role in the length regulation of
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stereocilia and related cellular protrusions. When trans-
fected with espin, LLC-PK1-CL4 epithelial cells (referred
to as CL4 cells in the following) undergo a dramatic length-
ening of one such type of protrusions, microvilli, which
could be due to espin preventing their disassembly (17).
Other actin cross-linkers are also known to inhibit the disas-
sembly of actin bundles in Drosophila bristle (18). Espin is
incorporated at the stereocilium tip and treadmills down
simultaneously with actin (5). Its overexpression (but not
that of actin) induces the lengthening of stereocilia and
a mutation resulting in espin underexpression causes their
shortening (19). Under normal in vivo conditions, the
variability in stereociliar length is correlated with the espin
expression level (15,20) and isoform expression pattern
(21). Finally, two recessive and four dominant mutations
of espin are responsible for deafness in humans (13). Out
of the four dominant ones, three induce less microvillus
lengthening than wild-type espin when transfected into
CL4 cells (17).

This article is organized as follows. In Model for the
Actin and Cross-Linker Dynamics, we present a model for
the coupled dynamics of espin cross-linking and actin
depolymerization. Solving the simple case where espin is
incorporated into the actin bundle only at the tip of stereo-
cilia, we show in Stereocilium Shape without Espin Reat-
tachment that our formalism yields robust stereocilia
shapes with only one adjustable parameter and accounts
for experimental results not previously discussed in the
theoretical literature. In Single Filament with Reattachment,
we show the modifications induced by espin reattachment
during the course of treadmilling by discussing a simplified
situation involving only one filament. Coupling Between

Filaments then focuses on the lateral correlations that espin
reattachment induces in a multifilament bundle, and we
discuss our results in the last section, Discussion and
Conclusions.

MODEL FOR THE ACTIN AND CROSS-LINKER
DYNAMICS

Our model is presented in Fig. 1 a. Completely cross-linked
actin is continuously produced at a location ‘ ¼ 0 with an
externally imposed treadmilling velocity v, the regulation
of which is discussed in Prost et al. (8). The polymerization
dynamics of the actin bundle is thus assumed to be deter-
ministic. In practice, this polymerization is highly regulated
by several proteins comprised in the electron-dense tip
complex located at the stereocilium tip (19,22–24). Because
the filaments across the bundle are cross-linked, they move
together at a velocity equal to the average polymerization
rate of the filaments. As there are many filaments in the
bundle, the fluctuations of this average should be small.

As actin moves down, espin is exchanged with the
surrounding medium. Considering that the typical time for
the depolymerization dynamics in stereocilia is x1000 s
(the time required to depolymerize one helical period of
the actin filament according to (25)) and assuming a diffu-
sion constant of 60 mm2.s!1 (estimated from the Stokes
radius of espin (26)), we estimate that the unbound espin
concentration is homogeneous over length scales of order
at least 250 mm, i.e., larger than the size of the stereocilium.
We thus consider that the espin attachment and detachment
rates kon and koff are constant throughout the stereocilium
(koff also accounts for espin degradation). Note that this

FIGURE 1 Model stereocilium and comparison
with experimental shapes. (a) Cross-linked actin
is produced in ‘ ¼ 0 and treadmills down with
a velocity v. Meanwhile, espins are exchanged
with the surrounding solution with rates kon and
koff. An actin filament not held by a cross-linker
at its pointed end immediately depolymerizes to
the next espin. (b) Comparison between our predic-
tions (Eq. 4, plotted as thick black lines, the top
ends of which indicate ‘ ¼ 0, the polymerization
front), and three guinea pig stereocilia from the
same hair cell (micrographs taken from Fig. 3 a
of (25)). Note the stereocilia’s long cylindrical
top section, tapered base, and the fact that they
insert into the cuticular plate (the top part of cell
body). The diameter of the tallest stereocilium
is ~250 nm.
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reasoning would not hold if espin were actively localized in
some regions of the stereocilia, or if the diffusion of espin
were slowed down considerably, for instance by crowding
effects. It is, however, not known how much the actin bundle
slows the diffusion of espin down, and we assume
throughout this article that this effect is not sufficient to
induce significant espin density gradients. The opposite
hypothesis is considered in Naoz et al. (7), which we further
discuss in the last section. A similar argument applies to the
supply of actin to the stereocilium tip, which we consider to
always be sufficient to maintain the treadmilling velocity v.
Finally, espin attachment at the altitude ‘ is only possible
between two neighboring filaments of length equal to or
larger than ‘, as espin cannot reattach if there are no actin
filaments.

We formulate the simplifying hypothesis that actin fila-
ments can only depolymerize from their pointed ends.
In agreement with the experimental results presented in
the previous section, we assume that espin prevents the
depolymerization of the actin filaments that it cross-links.
Furthermore, we assume that the depolymerization of actin
alone happens on much shorter timescales (x1 s) than the
espin detachment dynamics (x1000 s). Hence, on the time-
scales relevant for the morphogenesis of stereocilia, actin
filaments depolymerize instantaneously up to the next point
where they are cross-linked, and are then stalled until the
detachment of the cross-linker, which occurs at a rate koff.
We denote by a the vertical spacing between two actin
cross-linkers (see Fig. 1 a). A filament cannot depolymerize
beyond ‘ ¼ 0 (this description is justified if, for instance,
a filament of vanishing length is immediately renucleated
by the tip complex so that the total number of filaments is
conserved).

From the model described here, we expect the lower end
of the actin bundle to have a very irregular shape due to the
stochastic character of the espin detachment and subsequent
actin depolymerization (as in Fig. 1 a, for example).
However, we show in the Supporting Material that
membrane tension pushes the filaments together, so that
they are always in close contact (see Fig. S1 in the Support-
ing Material).

Unless otherwise specified, in the following we express
lengths in units of the distance a between espin sites and
times in units of the average cross-linker lifetime koff

!1.
We denote the dimensionless polymerization velocity
v/(akoff) by v, and define k ¼ kon/koff.

STEREOCILIUM SHAPE WITHOUT ESPIN
REATTACHMENT

In this section we solve our model in the case where espin is
incorporated in the actin bundle only at the stereocilium
tip (k¼ 0). In this situation, an espin attachment site located
at a distance ‘ from the polymerization front is occupied
if and only if an espin has been incorporated when this

site was located at the polymerization front and has then
survived detachment for a time ‘/v. Because the detachment
process is analogous to a radioactive decay-like stochastic
process with rate 1, the site in question is occupied with
probability

Ponð‘Þ ¼ P0e
!‘=n; (1)

where Pon(0) ¼ P0 is the probability with which an espin
cross-linker is incorporated at ‘ ¼ 0. For a maximally
cross-linked bundle, P0 ¼ 1. Now considering not one espin
site, but a full espin column (defined in Fig. 1 a), we ask for
the probability that the lowermost espin of the column is
located at a distance ‘ or smaller from the polymerization
front. This probability is given by the infinite product

P%
c ð‘Þ ¼ ½1 ! Ponð‘ þ 1Þ' ( ½1 ! Ponð‘ þ 2Þ'

( ½1 ! Ponð‘ þ 3Þ' ( .;
(2)

where ‘R 0. Now turning to the actin filaments, we see that
an actin filament has a length smaller or equal to ‘ if and
only if all neighboring espin columns have their lowermost
espin at a location ‘0 % ‘. Denoting by n the number of
neighbors of an actin filament (filaments are hexagonally
packed in mammalian and bird stereocilia so that n ¼ 6
(10); n ¼ 2 in Fig. 1 a), the probability for a filament to
have a length smaller than or equal to ‘ in the absence of es-
pin reattachment reads

P%
f ð‘Þ ¼ P%

c ð‘Þ
n ¼

YþN

i¼ 1

!
1! P0e

!ð‘þ iÞ=v"n: (3)

We now discuss this result and compare it to experimental
data. For the sake of clarity, in the remainder of this section
we go back to nonscaled units. Qualitatively, P%

f (‘) is equal
to 0 for small ‘-values, and to 1 for large ‘-values. If a large
number of filaments are present, the number of filaments of
length larger than ‘ is proportional to

P>
f ð‘Þ ¼ 1! P%

f ð‘Þ:

Because the filaments are closely packed as discussed in
Model for the Actin and Cross-Linker Dynamics and in
Section S1 in the Supporting Material, the section p[r(‘)]2

of the stereocilium at position ‘ is proportional to the
number of filaments longer than ‘, so that

rð‘Þ ¼ rð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! P%

f ð‘Þ
q

: (4)

Here we do not specify the physical processes imposing
r(0), the radius at the polymerizing end of the actin bundle.
For relatively short-lived actin-based protrusion, r(0) could
be fixed by dynamical processes operating during the initial
actin bundling phase (27). In stereocilia, mechanical effects
within the tip complex might lead to its continuous regula-
tion (8). Because the length of the stereocilia (x5 mm) is
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much larger than that the distance between two cross-link-
ing sites (x10 nm), we can use the continuum limit of
Eq. 3,

P%
f ð‘Þ )

y=ðakoffÞ[1

exp
!
! e!ð‘!‘sÞkoff=v

"
; (5)

where

‘s ¼ v

koff
ln

$
nvP0

akoff

%
(6)

(see Sec. S3.3 in the Supporting Material for a rigorous
discussion of this limit). For small values of ‘, this equation
yields a cylindrical profile with a characteristic length ‘s
given by Eq. 6. The cylinder then tapers over a length
v/koff. These predictions are plotted and compared to actual
stereocilia shapes in Fig. 1 b. Several parameters involved in
our theoretical shapes are well-known experimentally. Up to
six espins can bind to each helical period of the actin fila-
ment, which yields a/n ¼ (37/6) mm (10). The actin of the
part of the stereocilium that sticks out of the cell is
completely renewed by treadmilling in 48 h ¼ ‘s/v (5),
which imposes a different value of v depending on the
length of the stereocilium. In agreement with electron
microscopy studies, we assume that the actin bundle is
heavily cross-linked by espin, so that P0 ¼ 1. This leaves
only one free parameter koff. Because the three stereocilia
of Fig. 1 b belong to the same cell, we furthermore impose
that they are all described by the same value of koff. Taking
koff ¼ 0.14 h!1 yields a good fit for all three stereocilia.

More quantitative experimental results are also accounted
for by ourmodel. First, the relationship Eq. 6 between ‘s and v
is almost linear, and we show in Fig. 2 a that it is compatible
with the observation that the stereocilium’s treadmilling
velocity is roughly proportional to its length (5). Here the
value of koff is the same as the one determined in Fig. 1 b,
meaning that no adjustable parameter is used in Fig. 2 a. In
Fig. 2 b, we compare the experimentally measured (24)
density profile of one specific type of espin, espin 1, along
three stereocilia belonging to the same vestibular hair cell
to an exponential, because the espin density is expected to
be proportional to the probability Pon defined in Eq. 1 (note
that the actin bundle renewal time in vestibular hair cells is
72 h (5)). The decay length of the experimental curves
increases with stereocilium length (and therefore treadmil-
ling velocity) as predicted by this equation. Consequently,
three different stereocilia of the same cell are again well
described by using one commonvalue of koff. Note, however,
that although espin 1 does bind actin, its main role could
be the regulation of actin polymerization, while other
espins might be responsible for most of the cross-linking
(B. Kachar, National Institute of Health, private communica-
tion, 2009). Another interesting result is presented in Loomis
et al. (15). In this study, CL4 cells are transfected with espin,
which causes the elongation of the cells’ microvilli. The

average elongation is measured and correlated to the espin
expression level. Assuming that espin is incorporated at the
tip of the protrusion at a rate proportional to its expression
level ce, we can consider that P0 is proportional to ce.
Following this, Eq. 6 yields a prediction for the dependence
of ‘s on ce, which we show in Fig. 2 c. We use two new
adjustable parameters there, as these experiments deal with
a different cell type and with other protrusions than stereoci-
lia (in particular, the renewal time of microvilli is much
shorter than that of stereocilia). The best fit is found for
v/koff ¼ 1.5 mm. The value of the other parameter,

d

$
nvP0

akoff

%&
dce;

does not contain any exploitable information because only
relative values of ce are known experimentally.

Overall, we find that the simple case where espin does not
reattach to actin yields good agreement with experimental
data, while relying on only one adjustable parameter. Note
also that the stereocilium length given by Eq. 6 has a smooth
dependence on both v=koff and nvP0=akoff , as illustrated by

FIGURE 2 Dependence of the protrusion length on various parameters
predicted by Eq. 6 and determined from experiments. (a) Measured tread-
milling velocity versus length in the stereocilia of the rat cochlea. In
mammals, cochlear stereocilia are arranged into three rows of graded height
(black circles, experimental data for the tallest row; gray circles, middle
row; and open circles, shortest row). (Line) Plot of Eq. 6, using the same
value koff ¼ 0.14 h!1 as in Fig. 1 b. Experimental data taken from Rzadzin-
ska et al. (5). (b) Espin 1 density as a function of ‘ in the vestibular stereo-
cilia of guinea pigs. The three curves correspond to three stereocilia of the
same hair cell with different lengths (Tx 35 mm,Mx 20 mm, and Sx 10
mm). Agreement with Eq. 1 is found for koff ¼ 0.35 h!1, which is of the
same order of magnitude as the value deduced from the fit of Fig. 1 b.
Experimental data taken from Salles et al. (24). (c) Dependence of micro-
villi length in CL4 cells on the espin overexpression level. Experimental
data taken from Loomis et al. (15).
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Fig. 2, a and c. This makes the stereocilium robust with
respect to perturbations of the cellular conditions, which is
expected for such a well-regulated structure.

SINGLE FILAMENT WITH REATTACHMENT

Although the results presented above give a good descrip-
tion of the shape of experimentally observed stereocilia, it
is interesting to study the effects of espin reattachment in
our model. We might indeed have to take this effect into
account in more detailed studies of stereocilia or when
interested in other types of cellular protrusions. In such
protrusions, cross-linkers detaching from the actin fila-
ments might diffuse for a while, and then reattach else-
where in the actin bundle. If diffusion is considered fast
in the sense of Model for the Actin and Cross-Linker
Dynamics, this is equivalent to putting the filament in
contact with a reservoir of cross-linkers, represented by
the attachment rate k. In this configuration, the espin
dynamics influences actin depolymerization in the same
way as above, but unlike in Stereocilium Shape without
Espin Reattachment, actin depolymerization now also influ-
ences the espin dynamics. Indeed, espin can reattach at
a given site only if this site is surrounded by two actin fila-
ments. Therefore, in contrast to the previous section, actin
is no longer slaved to espin.

In this section, we consider only the simplified case of
a single filament cross-linked to a wall, as shown in
Fig. 3 a. We furthermore assume that P0 ¼ 1, i.e., that the
actin bundle is completely cross-linked at the polymeriza-
tion front. In Discrete Master Equation and Solution Far
from the Polymerization Front, we write a master equation
for the dynamics of the filament’s depolymerizing end and
solve it far from the polymerization front. We then consider
the case where the depolymerizing end comes close to the
polymerization front and discuss the resulting treadmilling
steady state in Growth Transition and Stationary State.

Discrete master equation and solution
far from the polymerization front

Unlike in the previous section, in the following we consider
the altitude in the reference frame of the filament, not of the
polymerization front. We assume that the polymerization
front is at altitude zero at time t ¼ 0. Because it moves with
a velocity v in the reference frame of the filament, it is at alti-
tude vt at time t. Thus the altitude z¼ vt – ‘ of the pointed end
of the filament is an integer smaller than or equal to the alti-
tude vt of the polymerization front (Fig. 3 a).

Let us define the quantity

dði; tÞ ¼ exp

'
! ð1 þ kÞ

$
t ! i

v

%(
: (7)

In Sec. S2.1 in the Supporting Material, we write a master
equation for the model described in Model for the Actin

and Cross-Linker Dynamics and show that the probability
P(Z, t) for the filament’s depolymerizing end to be at altitude
Z such that 0 % Z < vt at time t obeys the simplified master
equation

vtPðZ; tÞ ¼ ! PðZ; tÞ þ k þ dðZ; tÞ
1 þ k

(
XZ!1

Z0 ¼!N

' YZ!1

i¼ Z0 þ 1

1! dði; tÞ
1 þ k

(
PðZ0; tÞ;

(8)

with the boundary condition at the polymerization front

vtPðPvtR; tÞ ¼
XPvtR!1

Z0 ¼!N

' YPvtR!1

i¼ Z0 þ 1

1! dði; tÞ
1 þ k

(
PðZ0; tÞ; (9)

and where we assume that the filament has a vanishing
length at t ¼ 0:

PðZ; t ¼ 0Þ ¼ dZ;0: (10)

Here PxR denotes the integral part (or floor) of real number x,
and di,j is the Krönecker delta. Note that the probability
distribution from Eq. 3 is a solution of this problem in the
special case n ¼ 1, k ¼ 0, P0 ¼ 1 (see Sec. S2.2 in the Sup-
porting Material).

We now consider the altitude i located strictly above the
depolymerizing end of the filament and strictly below the
polymerization front (i.e., Z < i < vt). We show in Sec.
S2.1.3 in the Supporting Material that the probability for
the espin site located at altitude i to be occupied is

FIGURE 3 Schematics of the single-filament problem. (a) Single
filament bound to a single wall and the coordinate system used in Single
Filament with Reattachment. (b) Single filament bound to n ¼ 3 walls.
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k þ dði; tÞ
1 þ k

:

The function d(i, t) can thus be interpreted as the devia-
tion of the espin density at site i from the steady-state
density k=ð1þ kÞ corresponding to a situation where site i
is in equilibrium with the espin reservoir. This imbalance
originates in the fact that espin sites are always occupied
at the polymerization front (they are incorporated into the
actin bundle with a probability of 1). With time, however,
espin sites lose the memory of their initial conditions, and
relax back to an equilibrium with the espin reservoir. This
is reflected by the fact that d(i, t) vanishes far away from
the polymerization front, i.e., in the region where
vt ! i[v=ð1þ kÞ. Let us assume that the filament’s
depolymerizing end is at the altitude

Z [
v

1 þ k

at time t. We solve this problem exactly in Sec. S2.3 in the
Supporting Material. We then show that on long timescales
the dynamics of the depolymerizing end is well approxi-
mated by the Gaussian distribution

PðZ; tÞ f
t/þN

exp

(

! k2

2ð1 þ kÞð2 þ kÞðt ! tÞ

(
'
Z ! Z ! ð1 þ kÞðt ! tÞ

k

(2)

:

(11)

This is characteristic of a biased diffusion with diffusion
coefficient

Dd ¼ ð1 þ kÞð2 þ kÞ
2k2

and average depolymerization velocity

vd ¼ 1 þ k

k
:

The depolymerization velocity can be recovered from the
following very simple argument: consider a filament cross-
linked to the wall at its pointed end. Because the cross-link
detaches with a rate 1, the average waiting time for the fila-
ment to unpin is t ¼ 1. Once the filament is released, it
quickly depolymerizes to the next cross-linker, and then
becomes pinned again. Because the espins are at equilibrium
with the reservoir, the average cross-linker density is

r ¼ k

1 þ k
;

meaning that the filament depolymerizes over an average
distance d ¼ 1/r before becoming pinned again. Therefore,
the average depolymerization velocity of the filament is

vd ¼ d=t ¼ 1 þ k

k
:

Growth transition and stationary state

If the depolymerization velocity vd is smaller than the poly-
merization velocity (vd < v), then the pointed end never
catches up on the polymerization front, and Eq. 11 is
a good approximation of its dynamics. In this case, the fila-
ment length—which is equal to the distance between
polymerization front and pointed end—grows indefinitely
at velocity v – vd and the filament has no stationary state.
Heavy cross-linking of the actin favors this regime, because
it has the effect of slowing depolymerization down.However,
vd cannot be smaller than 1, which corresponds to a maxi-
mally cross-linked situation (i.e., to jumps of size 1 at
a rate 1). Therefore, if v < 1, the growth regime described
here does not exist. Conversely, if the depolymerization
velocity is larger than the polymerization velocity (vd > v),
the pointed end moves closer and closer to the polymeriza-
tion front. Thus, the length of the filament is bounded in
this regime. This is the situation considered in this section.

We hereafter call the threshold v ¼ vd the growth transi-
tion. As it comes closer to the polymerization front, the
pointed end penetrates into regions where the cross-links
have not yet lost the memory of their incorporation into
the bundle, and are therefore denser than at equilibrium.
More specifically, their average density is given by

rð‘Þ ¼
k þ e!

1þ k
v ‘

1 þ k
; (12)

where ‘¼ vt – z is the length of the filament. Using the same
argument as in the previous section, the depolymerization
velocity of a filament of length ‘ is equal to 1/r(‘).
A stationary filament length is obtained when this velocity
matches the polymerization velocity. This reasoning yields
an estimate for the stationary length ‘s,

v ¼ 1

rð‘sÞ
5 ‘s ¼ v

1 þ k
ln

"
1

ð1 þ kÞ
)
1
v !

1
vd

*
#

;

(13)

where

vd ¼ 1 þ k

k
:

Equation 13 matches Eq. 6 for k ¼ 0, P0 ¼ 1, and n ¼ 1.
In vivo, stereocilia are much longer than the spacing
between two cross-linkers, meaning that we are interested
in the regime ‘s[1. There are two ways to enter this
regime. One is for the logarithm in Eq. 13 to be very large,
which can only be achieved if

1

v
! 1

vd
* 1:

This happens when the polymerization and equilibrium
depolymerization velocities are very well matched. Because
we expect the stereocilium shape to be robust under
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perturbations of the model parameters, this is not reason-
able from a biological point of view. Therefore, we discard
this first way of obtaining ‘s[1 and turn to the second
one, which is

v

1 þ k
[1:

In this case, because v < vd,

1 * v

1 þ k
<

vd
1 þ k

¼ 1

k
: (14)

This implies k* 1, meaning that we do not need to consider
the depolymerization problem in all its generality, but only
its small-k, large-v limit. Let a ¼ kv. Multiplying Eq. 14 by
k, we note that below the growth transition, 0 % a < 1.
Therefore, in the limit of large v, the growth transition
occurs for a¼ 1 (or equivalently v ¼ vd ¼ ð1þ kÞ=k, which
is its definition). The interesting regimes to consider are
therefore those where a is of order 1, and in the following
we take the v / þN limit at fixed, finite a.
In Sec. S3.2 in the Supporting Material, we generalize our

approach to a filament bound to a number n of walls, as
exampled in Fig. 3 b. Defining the coordinate x by

‘ ¼ vt ! Z ¼ v ln v þ vx; (15)

we expect from Eq. 13 that the interesting part of the
dynamics takes place in the scaling region x z 1. Indeed,
we show in Sec. S3.3 in the Supporting Material that the
master equation has the following continuum limit:

dP

dx
ðxÞ ¼ !PðxÞ þ n

+
a þ e!x

,
exp

+
nax! ne!x

,

(
Z þN

x

Pðx0Þ
expðnax0 ! ne!x0Þ

dx0: (16)

The stationary profile of the filament length probability
distribution is the only normalized stationary solution of
this equation. The corresponding cumulative distribution
reads (see Sec. S3.4 in the Supporting Material)

P%ðxÞ ¼ Gð1! na; ne!xÞ
Gð1! naÞ

: (17)

Here G(b) ¼ G(b, 0) is the usual g-function, where the
incomplete g-function is defined as

Gðb; xÞ ¼
Z þN

x

+
ub!1e!u

,
du: (18)

Plots of P% as a function of ‘ are presented in Fig. 5. Equa-
tion 17 implies that the average filament length diverges as

h‘i )
k/k!c

v

1! nkv
f

1

jk ! kcj
; (19)

when k approaches the critical value

kc ¼ 1

nv
: (20)

Therefore, for a large enough espin reattachment rate, a
stationary filament profile ceases to exist. This is the n-walls
generalization of the growth transition discussed at the
beginning of this section. Indeed, for k R kc, espin slows
the depolymerization down so much that the pointed end
can never catch up on the polymerization front.

COUPLING BETWEEN FILAMENTS

In this section we use Monte Carlo simulations of a square
(n ¼ 4) lattice of filaments (described in Sec. S4.1 in the
Supporting Material) to study the effect of espin reattach-
ment in the biologically relevant situation of a stereocilium
composed of several filaments. In the following, we focus on
long stereocilia, for which we expect the continuum
approach introduced in Growth Transition and Stationary
State to apply. This approach is valid for v [ 1. Because
simulating long bundles is time-consuming, we use
v ¼ 20 throughout, which represents a good compromise.
Unlike in the previous section, filaments are bound to
each other and not to walls. Their espin environment thus
depends on both their altitude and on the state of their neigh-
bors. In the next subsection, we study how this modifies the
growth transition. Then, in the following subsection, Multi-
filament Stereocilium Profiles, we compare the stereocilium
shapes obtained from numerical simulations to those
derived from a one-filament calculation.

Couplings modify the growth transition

To investigate whether multifilament bundles have a
growth transition, we simulate several 8 ( 8 periodic
filament bundles for various value of the espin reattachment
rate k.

We first focus on the values of k where stationary stereo-
cilium profiles exist and monitor the average filament
length, as shown in Fig. 4 a. At k ¼ kc ¼ 0.02, the average
filament length diverges, showing that coupled filaments do
undergo a growth transition. This value of kc matches the
threshold of Eq. 20 if n is set to neff ¼ 2.5. This effective
n can approximately be viewed as the average number of
neighbors available for each filament to cross-link at each
given instant, i.e., the number of neighbors as long as
or longer than the filament. We give an argument for its
numerical value in Sec. S4.2 in the Supporting Material.
In Fig. 4 a, we fit a power law to the divergence of the ster-
eocilium length and show that

h‘i f
k/k!c

1--k ! kcj0:33
; (21)

which is an anomalous divergence compared to the case
of Eq. 19. This is likely to be related to the build-up of
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long-ranged correlations across the actin bundle, as dis-
cussed in Sec. S4.3 in the Supporting Material.

For values of k above the growth transition, the stereoci-
lium grows indefinitely and at constant velocity. In Fig. 4 b,
we plot the stereocilium’s growth velocity as a function of k.
As k is reduced, the pointed ends depolymerize faster and
faster and catch up to the polymerization front for
kc ¼ 0.02, which is consistent with the threshold determined
in Fig. 4 a. At steady state, the stereocilium lengthening
velocity is the difference between its polymerization
velocity and its depolymerization velocity far from the poly-
merization front:

d‘

dt
¼ v! vd: (22)

This growth velocity vanishes at the growth transition.
While v is imposed in our simulations, vd depends on k
and n. We now discuss our theoretical predictions for this
dependence. Far away from the polymerization front, the
probability for an espin to be on is k=ð1þ kÞ. In the cases
considered here, k * 1, meaning that espins are scarce far
from the polymerization front: the probability for a given
pointed end to be bound to more than one cross-linker is

negligible. Thus, the interesting part of the filament is bound
to cross-linkers with an average density r, and is very
unlikely to be bound to more than one cross-linker at any
given altitude. The discussion at the end of Discrete Master
Equation and Solution Far From the Polymerization Front
thus applies, although the density of the cross-linkers in
the case considered here is n times larger, because there
are n walls instead of one. To lowest order in k, this yields

vd ¼ 1

nk
: (23)

This single-filament result is compared to the multifilament
simulations in Fig. 4 b using n ¼ neff, and the two are found
to be in very good agreement. Note that we expect the func-
tion vd(k) to diverge as k goes to 0, but to be a smooth
function of k for k > 0. In particular, vd(k) has no reason
to have a singularity in k ¼ kc: indeed, kc is defined by
vd(kc) ¼ v, and vd does not depend on v. Thus, k ¼ kc is
a generic point of the function vd(k). Therefore, at the tran-
sition, the following generic crossing scenario applies,
whether or not the filaments are coupled:

d‘

dt
ðkÞ f

k/kþc

ðk ! kcÞ: (24)

Multifilament stereocilium profiles

We now return to the question of the shape of stereocilia. In
Fig. 5, we compare the shapes obtained from the simulations
with theoretical expectations from the single-filament
theory. For each value of k, the theoretical curve Eq. 17 is
plotted using the effective number of neighbors neff ¼ 2.5
from the previous subsection. As k is increased, the descrip-
tion of the bundle by the single-filament theory becomes
worse and worse, as expected from Fig. 4 a.

Another theoretical result our simulations should be
compared with is Eq. 17 using the actual number of neigh-
bors n ¼ 4. Note, however, that this is only possible for k
smaller than 0.0125, which is the growth transition threshold
for n ¼ 4. Consistent with this, we plot the n ¼ 4 theoretical
curve only in Fig. 5 a, where k ¼ 0. Excellent agreement
with the numerical simulations is found. This is expected,
because when espins are not allowed to reattach, Eq. 17 is
identical to Eq. 5—which is the exact solution of the multi-
filament problem for k ¼ 0.

In Fig. 5 b, we illustrate the dependence of the bundle
shape on the number of filaments included in the simula-
tions. No change in the shape is observed when multiplying
the number of filaments by four, but the amplitude of the
fluctuations is reduced. This suggests that in this regime at
least, the average profile given by our 8 ( 8 simulations is
a good assessment of the infinite bundle limit.

In Fig. 5 c, we illustrate the dependence of the bundle
shape on the boundary conditions of the bundle. It is found
that a circular bundle (see illustration in Fig. S3 a in Sup-
porting Material) is markedly shorter than a bundle with

FIGURE 4 Growth transition for multifilament bundles with reattach-
ment. (a) Average length as a function of k below the transition and compar-
ison with the average length calculated from Eq. 17 for n ¼ 2.5 (line).
(Open circles) 8 ( 8 periodic arrays. (Crosses) 16 ( 16 periodic arrays,
showing that the lengths do not depend much on the simulation size. Error
bars represent the root-mean-square height fluctuations in the steady state.
(Inset) Log-log representation of the same h‘i data from 8 ( 8 arrays as
a function of the distance kc – k to the growth transition threshold. (Solid
line) Prediction from Eq. 17 as in the main figure. (Dotted line) Power
law fit as in Eq. 21. (b) Growth velocity of the bundle as a function of k
above the growth transition for 8 ( 8 periodic arrays (open circles) and
comparison to the generalization of the one-filament theory given in Eqs.
22 and 23 for n ¼ 2.5 (line).
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periodic boundary conditions. This is because the filaments
close to the rim of the circular bundle tend to depolymerize
faster, due to the fact that they have fewer neighbors. In the
parameter regime presented here, this is sufficient to reduce
the average length of the bundle significantly. This effect
becomes negligible for small k and for large bundle radii,
i.e., if the filaments are correlated over a length much
shorter than the radius of the bundle.

Finally, in Fig. 5 d we note that as the growth transition is
approached, the amplitude of the bundle’s fluctuations
increases dramatically. Indeed, as the depolymerization
velocity becomes very close to the polymerization velocity,
the filaments are more and more loosely confined to a finite
length. Similarly to what happens, e.g., for a Brownian
particle in a harmonic potential, a looser confinement leads
to fluctuations of a larger amplitude.

DISCUSSION

In this article we present a simple physical model for the
morphogenesis of stereocilia, whose very well-regulated

shapes are crucial for the frequency selectivity of hearing in
a wide range of animals. Our model is to be understood in
the framework of Prost et al. (8), where the shape of
stereocilia is attributed to an ‘‘internal clock’’ of the actin
bundle. Here we propose that the internal clock is provided
by the stochastic attachment-detachment dynamics of the
well-characterized protein espin, or some other actin cross-
linker.

Although the emphasis of this article is on stereocilia, the
simplicity of our model makes it general enough to describe
several other biological length-regulation processes (28).
Themost obvious of these are of course other cellular protru-
sions, such as filopodia, microvilli, and Drosophila bristles,
where actin filaments are also coupled by cross-linkers.
More specifically, in filopodia the ratio of the actin treadmil-
ling velocity (29) and detachment rate of the cross-linker fas-
cin (30) is z(1 mm/min)/(0.12 s!1) z 1 mm, which is
commensurate with the length of this type of protrusion.
This suggests that the mechanism described here could be
relevant in filopodia. In addition, the study presented in
Single Filament with Reattachment is relevant to single-fila-
ment problems where each monomer stochastically switches
between two states, such as the phosphorylation-dependent
depolymerization of a single actin filament (16) or microtu-
bule (31), or association with proteins making the filament
more susceptible to depolymerization (32).

Stereocilia models have been previously proposed in the
literature that yield good agreement with electron micro-
graphs of stereocilia. This article is based on Prost et al.
(8), which analyzes the forces at play in stereocilium tread-
milling and the interaction of the actin bundle with the
membrane and the cytoplasm. Here we improve on this
work by proposing a refined description of the dynamics
of the actin bundle itself based on the role of cross-linkers.
This leads to improvements in three directions, which
evidences the importance of espin in shaping stereocilia:

First, the model of Prost et al. (8) depends partly on
a hypothetical actin pointed end-capping protein, whereas
we only assume well-identified proteins. Note that Prost
et al. (8) suggests that espin could be described as such
a capping protein. We show here, however, that there are
important differences:

1. Our model cross-links interact with the actin all along the
filament, whereas capping proteins only bind to its end.

2. The probability for the pointed end to be cross-linked
depends on the filament length.

3. Capping proteins introduce no interfilament correlations.

Second, the stereocilia shapes calculated in Prost et al. (8)
resemble those of deaf Shaker 2J mutants, while we account
for those of healthy animals.

Third, the shapes of Prost et al. (8) are highly sensitive on
the fine tuning of actin’s polymerization and depolymeriza-
tion rates, which is not compatible with the biological
robustness of the well-controlled stereocilia shapes.

FIGURE 5 (Color online) Profiles of multifilament bundles for various
values of k. (Red lines; leftmost line in (a) and rightmost line in (b-d))
P> ¼ 1 – P%, with P% given by the single-filament theory equation
(Eq. 17) scaled to the number of filaments in the bundle with n¼ 2.5. (Black
lines) Average number of filaments longer than ‘ for numerical 8 ( 8
bundles. (Gray area) Standard deviation of the steady-state fluctuations
around this average. The cyan (gray) lines have different meanings depend-
ing on the figure considered. (a) n ¼ 4 single filament theory, equivalent to
the fit of Fig. 1 b; note that the representation used here does not reflect the
aspect ratio of the predicted stereocilia shapes. (b) Average number of fila-
ments longer than ‘ and fluctuations for a 16 ( 16 bundle (data normalized
to match the black line in ‘ ¼ 0). (c) Average number of filaments longer
than ‘ and fluctuations for a circular bundle of 32 filaments (data normal-
ized to match the black line in ‘ ¼ 0). Note the contracted ‘ scale in panel
d, as compared to panels a–c.
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Another quite differentmodel is proposed inNaoz et al. (7).
It is based on the fact that actin-associated proteins could be
actively localized at the stereocilium base, e.g., by molecular
motors. For instance, this work suggests that actin-severing
proteins localized at its base could drive the narrowing of the
actin bundle there. This model offers an interesting insight
into the possible roles of the experimentally observed active
transport within the stereocilium. It is, however, difficult to
assess its validity quantitatively, because it hypothesizes
several experimentally uncharacterized protein-protein inter-
actions, and has an accordingly large number of adjustable
parameters. Note also that this model does not address the
issue of the stereocilium height regulation.

The model presented in this article is in agreement with
several experiments showing the importance of espin in ster-
eocilium length regulation. We predict that the actin bundle
can only reach a stationary profile if the attachment rate of
espin to actin is much smaller then its detachment rate (kz
v!1 * 1). This is consistent with the observation made in
Rzadzinska et al. (5) that espin in the stereocilium seems
to treadmill along with actin—in other words, that espin is
essentially incorporated at the tip of the stereocilium and
not so much exchanged with the solution in the bulk of
the actin bundle. More quantitatively, we are able to repro-
duce the shape of several stereocilia within the same hair
bundle with only one adjustable parameter. We also account
for the apparent proportionality between stereocilium length
and turnover time, as well as for espin 1 localization at the
stereocilium tip. Finally, our approach faithfully captures
the quantitatively measured relationship between micro-
villus length and espin expression. A possible extension of
our model as applied to stereocilia would be to consider
that the espin detachment dynamics might be different in
the bulk of the actin bundle and at its lateral surface. For
instance, in the presence of preferential espin detachment
at the surface, actin filament termination would happen
more rarely in the bulk. This could account for the fact
that filament bending as pictured in Fig. S1 in the Support-
ing Material is not clearly observed in electron micrographs.

On a broader level, the dynamics of the cytoskeleton
involves many out-of-equilibrium surface growth processes.
In addition to actin bundle-based protrusions, one could
quote the dynamics of the cell cortex, which undergoes poly-
merization and depolymerization as well as transient cross-
linking, similarly to the system studied here. In addition, its
dynamics involves actin filament branching and barbed end
capping, as well as molecular motors binding which makes
it contractile. Another similarly complicated system is the
lamellipodium, a thin sheet of actin that some cell types
(e.g., keratocytes) extend in front of them while moving.

The precise interplay between all the sources of activity
in these processes is not well understood. The more formal
aspects of our study of the novel, nontrivial growth model
introduced here reveal interesting directions to pursue in
order to characterize those processes. Indeed, in the sections

Single Filament with Reattachment and Coupling between
Filaments, we discuss what we expect to be two very robust
features that might be universal across a large range of
cross-linking-limited disassembly models: the growth tran-
sition and an anomalous length divergence exponent in the
presence of local interactions between filaments. By identi-
fying those features and recognizing them in actual cellular
systems, one might be able to use them as signatures of the
underlying interface-shaping phenomena, and therefore
show which mechanism dominates which type of interface.

SUPPORTING MATERIAL

Four figures and 72 equations are available at http://www.biophysj.org/
biophysj/supplemental/S0006-3495(10)00974-4.

We thank Pascal Martin for stimulating discussions.
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Actin Cross-Linkers and the Shape of Stereocilia

Supporting Material

S1 Membrane tension pushes the filaments together

Here we present numerical estimates in support of the notion that the membrane tension pushes
the sparse actin filaments represented in Fig. 1(a) of the main text into a dense bundle, as pictured
in Fig. S1.

As a consequence of the model described in the section Model for the Actin and Cross-Linker
Dynamics of the main text, we expect the lower end of the actin bundle to have a very irregular
shape due to the stochastic character of the espin detachment and subsequent actin depolymer-
ization [Fig. 1(a)]. At first sight, this does not seem consistent with the smooth tapered ends
observed experimentally (1). The two behaviors are however compatible if one takes into account
the influence of the membrane. Indeed, as the radius of the stereocilium (' 200 nm) is larger than
the natural membrane tether radius

⇥
(/2�)1/2 ' a few tens of nm

⇤
(2), the dominant influence of

the membrane is that of its tension �, which tends to compress the tube and therefore push the ir-
regularly distributed filaments together, as illustrated in Fig. S1. In doing so, the membrane lowers
its surface tension energy by an amount ⇡ �`

t

�r

t

, and a number ⇡ 100 of actin filaments are bent
with a radius of curvature ⇡ `

2

t

/�r

t

over a length ⇡ `

t

, hence a cost ⇡ 100k
B

T `

p

⇥ `

t

⇥ (�r
t

/`

2

t

)2

in bending energy, where `

p

is the persistence length of actin and the other lengths are defined
in Fig. S1. Using � ' 10�5N.m�1, `

t

' 10µm, �r
t

' 100 nm and `

p

' 10µm, we find that the
tension energy gain ⇡ 10�17 J upon pushing the filaments into a tapered shape exceeds the fila-
ment bending energy cost ⇡ 4⇥10�23 J by far, thus validating our picture. Indeed, experimentally,
actin filaments are observed to be packed together throughout the stereocilium (3). Because of this
packing mechanism, actin filaments that are not neighbors in ` = 0 might come into contact. Here
we neglect the possibility that such accidental neighbors become cross-linked by espin. Therefore,
we take into account the spatial structure of the bundle in the horizontal direction only through
the notion of nearest neighbor in the initial (` = 0) paracrystal.

Since espin is in principle able to bind the membrane (4) and it has been shown experimentally
that cross-linkers-mediated contact with the membrane stabilizes actin bundles during Drosophila
bristle disassembly (5), the membrane surrounding the actin bundle might to some extent be able
to stabilize an actin filament through cross-linking in a similar way that a neighboring filament
does. The question of the influence of the lateral boundary conditions on the stereocilium shape is
further discussed in the section Multi-Filament Stereocilium Profiles.

S2 Single-filament dynamics with reattachment

Here we give the details of the calculations presented in the section Discrete Master Equation and
Solution Far from the Polymerization Front.

1
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Figure S1: Membrane tension tends to decrease the radius of the protrusion, and thus pushes the
filaments together into a tapered shape. We respectively denote by r

t

, r
t

� �r

t

and `

t

the largest
radius, smallest radius and length of the tapered end. The membrane is represented in blue.

S2.1 Simplified master equation

In this section we establish Eqs. (8), (9) and (10) of the main text by writing a master equation for
the case of a single filament bound to a wall in Sec. S2.1.1, and then showing in Sec. S2.1.2 that
the espin variable can be eliminated out of if, so that the evolution of filament length probability
distribution can be described by an independent set of equations.

S2.1.1 Full master equation

We denote by {e
i

= 0 or 1} the variables representing the state of the potential espin-binding sites,
with e

i

= 0 (e
i

= 1) denoting an empty (occupied) site at position i.
Let Z be an integer smaller than vt and {E

i

} a set of numbers equal to either 0 or 1. We recall
that z is defined as the position of the filament’s pointed end. The master equation describes the
evolution of

P
h
{e

i

= E

i

}
i2E(Z,t) , z = Z; t

i
, (S1)

i.e. of the probability that the filament altitude z is equal to the integer Z and the espin variables
e

i

are equal to the E
i

s at time t. Note that the probability of Eq. (S1) is a function of the E
i

s with
indices such that

i 2 E(Z, t), (S2)

where E(Z, t) is the set of active espin sites at time t for a filament with its pointed end in Z. The
condition Eq. (S2) means that i is an integer satisfying the two following conditions:

• i > Z+1. Indeed, all espins lower than the tip of the filament (i < Z) have to be o↵, as there
is no actin filament for them to attach to. On the other hand, the espin in i = Z must be on,
otherwise the filament end cannot be in z = Z (it would immediately depolymerize) and the
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probability of Eq. (S1) vanishes. As a consequence of this, we consider that the detachment
of the espin in z and the instantaneous depolymerization of the filament to the next occupied
espin site are one and the same event.

• i 6 vt, as we do not consider what happens above the polymerization front. In the following,
we consider a situation analogous to the case P

0

= 1 of the previous section, meaning that
any espin at altitude i = vt has a probability one of being on. Its subsequent evolution is
described by the master equation.

Following this, the master equation for the probability of Eq. (S1) is concerned only with espin
detachment/attachment events.

If Z 6 vt� 1, the master equation reads

@

t

P
h
{e

i

= E

i

}
i2E(Z,t) , z = Z; t

i
= �P

h
{e

i

= E

i

}
i2E(Z,t) , z = Z; t

i
+Kb +Ku +D. (S3)

The first term of the right-hand side of this equation is the probability current away from the
({E

i

}, Z) state due to the detachment of the espin holding the filament’s pointed end at the altitude
Z, which induces a depolymerization event. The term Kb is the probability current due to espin
binding events. It reads

Kb = k

X

j2E1({Ei},Z,t)

P
h
{. . . , e

j�1

= E

j�1

, e

j

= 0, e
j+1

= E

j+1

, . . .}
i2E(Z,t) , z = Z; t

i

�k

X

j2E0({Ei},Z,t)

P
h
{. . . , e

j�1

= E

j�1

, e

j

= 0, e
j+1

= E

j+1

, . . .}
i2E(Z,t) , z = Z; t

i
, (S4)

where E
0

⇥{E
i

}
i2E(Z,t), Z, t

⇤
and E

1

⇥{E
i

}
i2E(Z,t), Z, t

⇤
are the complementary subsets of E(Z, t) con-

taining all indices j such that E

j

= 0 and E

j

= 1, respectively. Both terms of Kb implicate the
probabilities of states with the espin site j unoccupied, meaning that an espin is susceptible of
binding in j. The first term represent binding events to sites such that E

j

= 1 and therefore rep-
resents a probability influx to the ({E

i

}, Z) state. The second term, on the other hand, represents
events where an espin binds to a site j such that E

j

= 0 and thus represents a probability flux away
from the ({E

i

}, Z) state. The term Ku is the probability current due to espin unbinding events
that do not induce any depolymerization (i.e. occurring at altitude Z + 1 or higher). It reads

Ku =
X

j2E0({Ei},Z,t)

P
h
{. . . , e

j�1

= E

j�1

, e

j

= 1, e
j+1

= E

j+1

, . . .}
i2E(Z,t) , z = Z; t

i

�
X

j2E1({Ei},Z,t)

P
h
{. . . , e

j�1

= E

j�1

, e

j

= 1, e
j+1

= E

j+1

, . . .}
i2E(Z,t) , z = Z; t

i
, (S5)

which has a similar interpretation to Kb. The term D stands for the probability current to the
({E

i

}, Z) state due to depolymerization events. It reads

D =
Z�1X

Z

0
=�1

P
h
{e

Z

0
+1

= 0, . . . , e
Z�1

= 0, e
Z

= 1, e
Z+1

= E

Z+1

, . . .}
i2E(Z0

,t)

, z = Z

0; t
i
, (S6)

meaning that the depolymerization of a filament with its pointed end located at the altitude Z

0

results in an increase of the probability of the ({E
i

}, Z) state if and only if all espins between Z

0

and Z are o↵ (i.e. the filament immediately depolymerizes to the position Z) and the espin is Z is
on (i.e. depolymerization stops in Z).
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We now turn to the boundary condition at the polymerization front, i.e. to the master equation
for vt�1 < Z 6 vt. At this location, none of the three first terms of the right-hand side of Eq. (S3)
exist. Indeed, the filament is not allowed to depolymerize further than the polymerization front
and there are no espin sites undergoing attachment/detachment events except for the one in Z.
Denoting by bxc the integral part (or floor) of any real number x, the master equation for the site
closest to the polymerization front reads

@

t

P
h
{e

i

= E

i

}
i2E(bvtc,t) , z = bvtc; t

i
= @

t

P [z = bvtc; t] = D0
. (S7)

In this equation, the first equality reflects the fact that there are no active espin sites above
z = bvtc—otherwise said E(bvtc, t) = ;. The term D0 is a modified depolymerization current taking
into account the fact that filaments cannot depolymerize beyond the polymerization front:

D0 =

bvtc�1X

Z

0
=�1

P
h�

e

Z

0
+1

= 0, . . . , ebvtc�1

= 0
 
i2E(Z0

,t)

, z = Z

0; t
i

=

bvtc�1X

Z

0
=�1

P
h�

e

Z

0
+1

= 0, . . . , ebvtc�1

= 0, ebvtc = 0
 
i2E(Z0

,t)

, z = Z

0; t
i

+P
h�

e

Z

0
+1

= 0, . . . , ebvtc�1

= 0, ebvtc = 1
 
i2E(Z0

,t)

, z = Z

0; t
i
. (S8)

This probability has exactly the same interpretation as D, except that depolymerization cannot
continue beyond Z = bvtc and stops there whatever the state of the espin site i.e. whatever the
value of ebvtc.

The master equation is now completely specified, but the initial state of the system is not. In
the following, we consider a slight generalization of the case discussed in Eqs. (8), (9) and (10).
We look at situations where the system is prepared at t = 0 in a superposition of states where the
position Z

0

6 0 of the filament tip is well-defined, and the probabilities for the espin sites between
Z

0

+ 1 and 0 to be occupied are arbitrary, although independent from one another [Eqs. (8), (9)
and (10) correspond to the special case Z

0

= 0]. Here we denote the initial probability for the espin

site in i to be on by k+�0(i)

1+k

, where the {�
0

(i)}
i2{Z0+1 ..�1} are arbitrary numbers to be specified

depending on the particular problem at hand and �

0

(0) = 1, meaning that the espin site located
at the polymerization front is occupied. Here the notation {i .. j} with (i, j) 2 N2 stands for the
integer interval comprising i, j and all integers in between. Leaving the filament dynamics aside,
it is fairly obvious that the probability for an espin site to be occupied when at equilibrium with
the espin reservoir is k

1+k

. Therefore �

0

(i) represents the deviation of the state of site i away from
equilibrium. Following this discussion, the initial state is given by

P
h
{e

i

= E

i

}
i2E(Z,t) , z = Z; t = 0

i
=

2

4
Y

j2E0({Ei},Z,0)

1� �

0

(j)

1 + k

3

5

2

4
Y

j2E1({Ei},Z,0)

k + �

0

(j)

1 + k

3

5
�

Z,Z0 ,

(S9)
where the symbol �

Z,Z0 denotes the Kronecker delta.

S2.1.2 Integrating espin out of the master equation

The problem specified in the previous section is at first sight a very complicated one, since it deals
with a system whose state is specified by a large number of variables: the filament end position
z, and bvt � zc additional espin variables. In this section, we show that if an initial condition of
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the form of Eq. (S9) is used, this dynamics simplifies considerably and it is possible to write an
e↵ective master equation in a closed form for the filament height probability

P (Z, t) =
X

{Ei=0,1}i2E(Z,t)

P
h
{e

j

= E

j

}
j2E(Z,t) , z = Z; t

i
, (S10)

where the sum is over all possible values of the espin variables.
In order to prove this, we introduce the quantity

Q
h
{E

i

}
i2E(Z,t) , Z; t

i
=

2

4
Y

j2E0({Ei},Z,t)

1� �(j, t)

1 + k

3

5

2

4
Y

j2E1({Ei},Z,t)

k + �(j, t)

1 + k

3

5
P (Z, t), (S11)

with �(i, t) = �

0

(i)e�(1+k)t. Here the {�
0

(i)}
i2{Z0+1 ..�1} are the same as the numbers defined in

Eq. (S9). The {�
0

(i)}
i2N, on the other hand, are new constants, the value of which we discuss in the

following. The factor e�(1+k)t by which the �

0

(i)s are multiplied reflect the exponential relaxation
of the espin sites towards a chemical equilibrium with the espin reservoir. Here we show that Q is
a solution of the master equation provided that the {�

0

(i)}
i2N are chosen properly and that P (Z, t)

obeys a system of equations to be specified.
There are two boundary conditions to be considered on top of Eq. (S3). The first one concerns

the espin variables and stipulates that if vt is an integer, the probability that the espin site located
at the altitude i = vt is equal to one (P

0

= 1). This condition reads

P(e
i

= 1; t = i/v) =
X

{Ej=0,1}j<i

iX

Z=�1
P
h
{e

l

= E

l

}
l2E(Z,t) , z = Z; t = i/v

i
= 1. (S12)

Using Eq. (S11) and the normalization condition

X

Z6vt

P (Z, t) = 1, (S13)

we find that Q satisfies Eq. (S12) if and only if

8i 2 N �(i, i/v) = 1 , 8i 2 N �

0

(i) = e

(1+k)i/v

. (S14)

In the following, we use this condition as the definition of the {�
0

(i)}
i2N. This implies

8i 2 N 8t 2 R+

�(i, t) = exp


�(1 + k)

✓
t� i

v

◆�
. (S15)

The second boundary condition is Eq. (S7), which Q satisfies if and only if

@

t

P (bvtc, t) =
bvtc�1X

Z

0
=�1

2

4
bvtc�1Y

i=Z

0
+1

1� �(i, t)

1 + k

3

5
P (Z 0

, t). (S16)

We now consider the initial condition. It is obvious that Q satisfies Eq. (S9) at t = 0 if and
only if

P (Z, t = 0) = �

Z,Z0 . (S17)
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Finally, we consider the master equation Eq. (S3) for a generic filament length Z 6 vt � 1.
Inserting Q into Eq. (S3), we find that the time derivatives of the two products in Q simplify with
Kb and Ku. We are thus left with the condition

8Z 2 {Z
0

.. bvt�1c} @

t

P (Z, t) = �P (Z, t)+
k + �(Z, t)

1 + k

Z�1X

Z

0
=�1

"
Z�1Y

i=Z

0
+1

1� �(i, t)

1 + k

#
P (Z 0

, t). (S18)

We discuss the interpretation of this equation in Sec. S2.1.4. Let us now prove more rigorously
that P (Z, t) is indeed the probability of finding the pointed end of the filament in Z at time t. The
problem defined in Sec. S2.1.1 has a unique solution. On the other hand, the function Q defined
in Eqs. (S11) and (S15) is a solution of this problem if and only if P (Z, t) satisfies the system
constituted of Eqs. (S16), (S17) and (S18). Therefore, Q is the unique solution of the problem
defined in Sec. S2.1.1 if and only if the system Eqs. (S16), (S17) and (S18) has a solution that
is normalized to one. This is true because of the following three reasons: this system is linear;
P (Z, t = 0) is normalized to one; and Eqs. (S16) and (S18) conserve probability. Thus we proved
that Q always exists, and is therefore the unique solution of the problem studied here.

In conclusion, solving the master equation of the one-filament problem is equivalent to solving
the system of equations Eqs. (S16), (S17) and (S18), which are identical to Eqs. (8), (9) and (10)
for Z

0

= 0.

S2.1.3 Qualitative meaning of the espin elimination

Here we reflect on the meaning of Eq. (S11). Using this equation, we find the conditional probability
for the ith espin to be on assuming the filament tip is in Z (i 2 {Z + 1 .. bvtc}):

P(e
i

= 1|z = Z; t) =
P(e

i

= 1, z = Z; t)

P (Z, t)
=

k + �(i, t)

1 + k

, (S19)

meaning that the state of the espin site in i is independent of the altitude z of the pointed end as
long as z < i. This is the key to the simple form of Q: in the process described here, all espins above
the altitude of the filament’s pointed end attach and detach independently from each other and from
the filament dynamics. On the other hand, if the filament end is assumed to be at altitude Z, then
the espin in Z is on with probability one, meaning that it is completely correlated with the filament,
although uncorrelated with the other espins. Although this fact might seem obvious at first sight,
one should note that this is only true in the special case considered here where the depolymerization
rate of the filament is infinite. In the generic situation where depolymerization happens on a time
scale comparable to that of the espin dynamics, the correlations between filaments and espin are not
confined to the very last espin site anymore, but penetrate into the following sites. This situation
is studied numerically in Ref. (6), and we propose that the case of large but finite depolymerization
rates could be tackled by a perturbation scheme around the analytical results presented here.

S2.1.4 Interpretation of the simplified master equation

We now use the results of Sec. S2.1.3 to give a simple interpretation of the simplified master equation
Eq. (S18). The first term of its right-hand side is the probability current away from the (Z) state
(i.e. the state where the pointed end of the filament is in Z). The rate of escaping this state is 1,
which is the detachment rate of the espin holding the filament in Z. The second term represents
the probability influx to the (Z) state. This influx is due to filaments depolymerizing from any
altitude Z

0
< Z to the altitude Z, which is reflected by the sum over Z 0. Just like a filament in Z,
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a filament in Z

0 has a rate 1 of depolymerizing, which is the o↵ rate of the espin located at altitude
Z

0. Whether it is going to depolymerize all the way to the altitude Z depends on the state of the
espins located between Z

0 and Z. Let us consider a filament with its pointed end in Z

0 that starts
depolymerizing. It contributes to @

t

P (Z, t) under two conditions. First, all espins between Z

0 and
Z have to be o↵, which happens with probability [see Eq. (S19)]

1� �(Z 0 + 1, t)

1 + k

⇥ 1� �(Z 0 + 2, t)

1 + k

⇥ . . .⇥ 1� �(Z � 1, t)

1 + k

. (S20)

Second, the espin in Z has to be on, which happens with probability k+�(Z,t)

1+k

. Since as shown in
Sec. S2.1.3 the espins above the pointed end of the filament behave independently from each other,
we just have to multiply these probabilities to account for the form of Eq. (S18).

S2.2 The no-reattachment probability distribution is a solution of the master

equation

Here we show that the probability distribution of Eq. (3) is a stationary solution of the problem
specified by Eqs. (S16) and (S18) [or equivalently Eqs. (8) and (9)] for n = 1 (single filament case),
k = 0 (no espin reattachment) and P

0

= 1 (all espin sites are occupied at the polymerization front).
Note that the initial condition Eq. (S17) [or equivalently Eq. (10)] need not be considered as it is
irrelevant in the stationary state. In the coordinate system defined in Fig. 3, Eq. (3) yields the
following probability for the altitude of the filament’s pointed end to be at altitude Z or larger

P

>
f

(Z, t) =
+1Y

i=1

h
1� e

�(t�Z
v +

i
v )
i
=

bvtcX

Z

0
=Z

P

f

(Z 0
, t), (S21)

where P

f

(Z) is the probability for the filament’s pointed end to be exactly in Z < bvtc. In
Sec. S2.2.1 we show that this probability distribution satisfies the bulk master equation Eq. (S18),
then in Sec. S2.2.2 we show that it satisfies the boundary condition Eq. (S16).

S2.2.1 Bulk equation: satisfying Eq. (S18)

According to Eq. (S21), P
f

(Z) can be expressed as

P

f

(Z, t) = P

>
f

(Z, t)� P

>
f

(Z + 1, t) = e

�(t�Z/v)

P

>
f

(Z, t). (S22)

We use Eqs. (S21) and (S22) to explicitly calculate the time derivative of P
f

(Z, t), which reads:

@

t

P

f

(Z, t) = P

f

(Z, t)

(
�1 +

+1X

i=1

exp
⇥� �

t� Z

v

+ i

v

�⇤

1� exp
⇥� �

t� Z

v

+ i

v

�⇤
)
. (S23)
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The right-hand side of Eq. (S18) can be expressed as

�P

f

(Z, t) + e

�(t�Z/v)

Z�1X

Z

0
=�1

(
Z�1Y

i=Z

0
+1

h
1� e

�(t�i/v)

i)
P

f

(Z 0
, t)

= �P

f

(Z, t) + e

�(t�Z/v)

Z�1X

Z

0
=�1

Q
Z�1

i=�1
⇥
1� e

�(t�i/v)

⇤
Q

Z

0

i=�1
⇥
1� e

�(t�i/v)

⇤P
f

(Z 0
, t)

= �P

f

(Z, t) + e

�(t�Z/v)

Z�1X

Z

0
=�1

P

>
f

(Z, t)

P

>
f

(Z 0 + 1, t)
P

f

(Z 0
, t)

= �P

f

(Z, t) + P

f

(Z, t)
Z�1X

Z

0
=�1

exp
h
�
⇣
t� Z

0

v

⌘i

1� exp
⇥� �

t� Z

0
v

�⇤
. (S24)

This is the same expression as in Eq. (S23) up to the change of dummy variable Z

0 = Z � i, thus
proving that the probability distribution of Eq. (3) is a stationary solution of Eq. (S18) in the
original reference frame.

S2.2.2 Boundary condition: satisfying Eq. (S16)

According to Eq. (S21), the probability for the filament’s pointed end to be exactly in z = bvtc is

P

f

(bvtc, t) = P

>
f

(bvtc, t) =
+1Y

i=1


1� e

�
⇣
t� bvtc

v +

i
v

⌘�
, (S25)

where the first equality is due to the fact that the filament’s pointed end cannot be any higher than
bvtc.

The left-hand side of Eq. (S16) reads:

@

t

P

f

(bvtc, t) = P

f

(bvtc, t)
+1X

i=1

exp
h
�
⇣
t� bvtc

v

+ i

v

⌘i

1� exp
h
�
⇣
t� bvtc

v

+ i

v

⌘i
. (S26)

Using Eqs. (S22) and (S25) we can express the right-hand side of Eq. (S16) in a similar way to
what was done in Eq. (S24):

bvtc�1X

Z

0
=�1

8
<

:

bvtc�1Y

i=Z

0
+1

h
1� e

�(t�i/v)

i
9
=

;P

f

(Z 0
, t)

=

bvtc�1X

Z

0
=�1

P

>
f

(bvtc, t)
P

>
f

(Z 0 + 1, t)
P

f

(Z 0
, t)

= P

f

(bvtc, t)
bvtc�1X

Z

0
=�1

exp
h
�
⇣
t� Z

0

v

⌘i

1� exp
⇥� �

t� Z

0
v

�⇤
. (S27)

This expression is equal to that of Eq. (S26), thus proving that for n = 1, k = 0 and P

0

= 1 the
probability distribution of Eq. (3) is a stationary solution of the system of equations Eqs. (S16)
and (S18), and therefore of the full problem formulated in the section Discrete Master Equation
and Solution Far from the Polymerization Front of the main text.
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S2.3 Exact solution at chemical equilibrium

According to Eq. (S19), the probability for the espin site located at altitude i > z to be occupied

is equal to k+�(i,t)

1+k

. This allows us to extend our interpretation of �
0

(i) to �(i, t), which we can

now interpret as the deviation of the espin density at site i from the steady-state density k

1+k

corresponding to a situation where site i is in equilibrium with the espin reservoir. Depending on
the value of i, this imbalance can have two distinct origins. For i 2 {Z

0

+ 1 .. � 1}, it originates
in the arbitrarily chosen initial state of the espin site, which is reflected by our choice of the
{�

0

(i)}
i2{Z0+1 ..�1}. For i > 0, it comes from the fact that espin sites are always occupied at the

polymerization front (they are incorporated into the actin bundle with probability one). With time,
however, espin sites lose the memory of their initial conditions, and relax back to an equilibrium
with the espin reservoir. This is reflected by the fact that for i < 0, �(i, t) = �

0

(i)e�(1+k)t relaxes
to zero at large times and that for i > 0, �(i, t) vanishes far away from the polymerization front
[i.e. for vt� i � v/(1 + k)—see Eq. (S15)].

In this section, we tackle the e↵ective dynamics of the pointed end in a situation where all
espins are in chemical equilibrium with the bulk, which is valid for long times and far away from
the polymerization front. Let us define Q by

P (Z, t) =
Q(Z, t)e�t

(1 + k)Z0�Z

. (S28)

Here the boundary condition Eq. (S16) need not be considered as the polymerization front is
assumed to be far away. Thus we only need to solve the system constituted by Eqs. (S17) and
(S18), which now read

Q

e

(Z, t = 0) = �

Z,Z0 (S29a)

@

t

Q

e

(Z, t) = k

Z�1X

Z

0
=�1

Q

e

(Z 0
, t), (S29b)

where the index e denotes the fact that the espins are at equilibrium with the reservoir.
In Sec. S2.3.1 we establish a preliminary result, and use it in Sec. S2.3.2 to solve this system

of equations. Finally, in Sec. S2.3.3 we write down the exact asymptotic (i.e. far away from the
polymerization front) solution of the problem presented in the section Discrete Master Equation
and Solution Far from the Polymerization Front of the main text, and derive its di↵usive limit as
presented in Eq. (11).

S2.3.1 Preliminary result

Let (A, i) 2 N⇤2 with i < A. Here we prove the relationship

A�iX

j=1

i(A� j � 1)!

(A� j � i)!
=

(A� 1)!

(A� i� 1)!
(S30)

by recursion over A.

1. Base case. Let A = i+ 1. In this case, Eq. (S30) reads

1X

j=1

i(i+ 1� j � 1)!

(i+ 1� j � i)!
=

(i+ 1� 1)!

(i+ 1� i� 1)!
, (S31)

which is true as both sides of the equation are equal to i!.
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2. Recursion. Assuming that the relationship Eq. (S30) is true for A, we establish it for A+1.
Incrementing A by one unit, the left-hand side of Eq. (S30) reads

A+1�iX

j=1

i(A� j)!

(A+ 1� j � i)!
=

A�iX

j

0
=0

i(A� j

0 � 1)!

(A� j

0 � i)!
=

i(A� 1)!

(A� i)!
+

A�iX

j

0
=1

i(A� j

0 � 1)!

(A� j

0 � i)!
, (S32)

where we made the change of dummy variable j

0 = j � 1. The right-hand side of Eq. (S30),
on the other hand, reads

A!

(A� i)!
= i

(A� 1)!

(A� i)!
+ (A� i)

(A� 1)!

(A� i)!
=

i(A� 1)!

(A� i)!
+

(A� 1)!

(A� i� 1)!
. (S33)

Using the recursion hypothesis shows that the last terms of Eqs. (S32) and (S33) are equal,
thus establishing Eq. (S30) for all As.

S2.3.2 Full solution

We now show that

Q

e

(Z
0

, t) = 1 (S34a)

Q

e

(Z, t) =
Z�Z0X

i=1

(Z � Z

0

� 1)!

(i� 1)!(Z � Z

0

� i)!

(kt)i

i!
, (S34b)

is a solution of Eqs. (S29). It obviously satisfies it in the special case Z = Z

0

, as well as for t = 0.
Injecting Eq. (S34b) in Eq. (S29b), redefining i ! i+ 1 in the left-hand side and permuting sums
in the right-hand side with i = Z � Z

0, we find that the probability distribution of Eqs. (S36) is a
solution of Eqs. (S29) if and only if

k + k

Z�Z0�1X

i=1

(kt)i

(i!)2
(Z � Z

0

� 1)!

(Z � Z

0

� i� 1)!
= k

Z�Z0�1X

i=1

(kt)i

(i!)2

Z�Z0�iX

j=1

i(Z � Z

0

� j � 1)!

(Z � Z

0

� j � i)!
+ k. (S35)

This equality is proved by using Eq. (S30) with A = Z � Z

0

.

S2.3.3 Chemical equilibrium probability distribution

Using Eq. (S28), Eq. (S34) yields

P

e

(Z
0

, t) = e

�t (S36a)

P

e

(Z, t) =
e

�t

(1 + k)Z0�Z

Z�Z0X

i=1

(Z � Z

0

� 1)!

(i� 1)!(Z � Z

0

� i)!

(kt)i

i!
, (S36b)

where it is understood in Eq. (S36b) that Z > Z

0

[note that P (Z, t) = 0 for Z < Z

0

].
Eq. (S36) describes the depolymerization dynamics of the filament. Since Eq. (S29b) is invariant

by both time and space translations, we expect that depolymerization takes place at a constant
average velocity. Also, since depolymerization is a stochastic process, the initially peaked altitude
distribution Eq. (S29a) broadens as time increases. These features are indeed observed of Fig. S2(a),
where we plot the probability distribution P

e

derived here. From an analytical point of view,
the dynamics of the pointed end is expected to be di↵usive on long length and time scales. We
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Figure S2: Probability distribution for the depolymerization of a filament cross-linked by espins at
equilibrium with a reservoir characterized by k = 0.2. Here we denote by P

d

e

the exact discrete
solution given in Eqs. (S36) and by P

c

e

the continuum approximation Eq. (S37). (a) Discrete
solution plotted as a function of time and space. (b) Relative error (P c

e

� P

d

e

)/P d

e

. Large values of
the relative error are observed in regions where the probability is very small (i.e. in unimportant
regions). (c) Absolute error P c

e

� P

d

e

, where these seemingly large errors do not appear.

show this by considering the t ! +1 limit, where Stirling’s approximation can be applied to
the factorials of Eq. (S36) and the discrete sum can be replaced by an integral. Expanding the
resulting expression to lowest order in 1/t in the scaling region defined by hZ � Z

0

i (t) = O(t) and⌦
[(Z � Z

0

)� hZ � Z

0

i]2↵ (t) = O(t) yields a gaussian integral, which we compute to find

P

e

(Z, t) /
t!+1

exp

(
� k

2

2(1 + k)(2 + k)t


Z � Z

0

� (1 + k)t

k

�
2

)
, (S37)

which is equivalent to Eq. (11). It is in good agreement with the full, discrete solution for long
times, as shown in Fig. S2(b-c).

S3 Long stationary filament with reattachment

Here we give the details of the calculations presented in the section Growth Transition and Sta-
tionary State of the main text.

In Sec. S3.1 we supplement the discussion of the section Growth Transition and Stationary
State of the main text with a few more technical considerations and show that the master equation
describing the single-filament depolymerization process cannot be mapped onto a Fokker-Planck
equation in the continuum limit. We then extend the master equation to cases where a single
filament is bound to several walls, in Sec. S3.2. In Sec. S3.3, we derive an appropriate continuum
limit for this generalized master equation. The stationary solution of this problem is given in
Sec. S3.4.

S3.1 Designing a continuum limit suitable for the study of the stationary state

Before taking on the derivation of a continuum limit for the master equation considered here, we
need to discuss one more consequence of Eq. (14).

The section Stereocilium Shape Without Espin Reattachment of the main text mentions that
the v ! +1 limit means that the stereocilium shape is smooth, and therefore that it can be



Actin Cross-Linkers and the Shape of Stereocilia: Supporting Material 12

treated in some continuum limit. Sec. S2.3 demonstrates that on large length scales, the behavior
of the pointed end can be assimilated to a particle di↵using in a locally homogeneous environment.
It is tempting to extrapolate this result to the regions where espins are not in equilibrium with
the reservoir. Doing so is actually a very common continuum approximation for one-dimensional
stochastic processes, and is equivalent to approximating the master equation of Sec. S2.1.1 by
a Fokker-Planck equation (i.e. a di↵usion equation with position-dependent drift and di↵usion
coe�cient) (7). From the considerations of the section Growth Transition and Stationary State,
we however see that such an approximation is not valid. In order to understand this, we remind
ourselves that there are two conditions of applicability of the Fokker-Planck approximation. The
first one is that the scale over which the environment is inhomogeneous (in this case, the decay
length v

1+k

of the espin density) must be much larger than the distance between two sites. This is
the case as v

1+k

� 1. But there is also a second one, which states that the size of the particle’s
jumps must be much smaller than the scale over which the environment is inhomogeneous. In
our case, the jump size is the typical length d over which the filament depolymerizes in a single
depolymerization event. According to the discussion of Growth Transition and Stationary State,
d = 1/⇢(`

s

), where ⇢(`) is given by Eq. (12). Comparing d to v

1+k

and using Eqs. (13) and (14), we
find

d(`
s

)

v/(1 + k)
=

1 + k

v⇢(`
s

)
= 1 + k ' 1. (S38)

Thus the jumps size is of the order of the length of the whole filament, and the Fokker-Planck
approximation does not apply.

S3.2 Master equation with several walls for large v

Here we extend Eq. (S18) to the case where the filament is bound not to one, but to n walls, a
situation pictured in Fig. 3(b). We do this in the limit v ! +1 with ↵ = kv fixed, as discussed in
the main text.

Building from our experience of stereocilia shapes acquired in the k = 0 case (section Stere-
ocilium Shape Without Espin Reattachment) and noting that we are studying the case P

0

= 1, we
are able to speculate that the upper section of the stereocilium is cylindrical over a length v ln v,
followed by a transition region (corresponding to the tapered region of the stereocilium) with a size
of order v, which is the non-trivial part. In this region, z ⇡ v ln v ) �(z, t) ⇡ e

�(v ln v)/v ⇡ v

�1.
This implies that the probability for an espin site located in the transition region to be occupied is
of order k+e

� ln v

1+k

= O(v�1). In other words, espins are scarce in the transition region.
Let us consider a filament with its pointed end at the altitude z belonging to the transition

region and in contact with several walls, as illustrated in Fig. 3(b). The probability for at least
one of the n espin sites located at altitude z to be occupied is equal to one, otherwise the filament
would not be there. Because espins are scarce in the transition region, the probability to have two
or more sites occupied in Z is smaller than that of having only one by a factor ⇡ v

�1. To lowest
order in v

�1, we can therefore consider that the pointed end of the filament is held at the altitude
z by exactly one espin.

Under this assumption, we can derive a master equation similar to Eq. (S18) using the same
arguments as in Sec. S2.1.4. Here we present a qualitative justification for its form. Let P (Z, t)
be the probability that the pointed end of the filament is held in Z by any one of the espin sites
located at this altitude. Like previously, the filament depolymerizes from this site with a rate 1.
This means that the first term of Eq. (S18) is unchanged. If a filament is initially located in Z

0
< Z,

it goes to Z upon detachment of the espin holding it in Z

0 on two conditions. First, all espin sites
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between Z

0 and Z need to be empty, which happens with probability


1� �(Z 0 + 1, t)

1 + k

�
n

⇥

1� �(Z 0 + 2, t)

1 + k

�
n

⇥ . . .⇥

1� �(Z � 1, t)

1 + k

�
n

. (S39)

Second, at least one out of n espin sites in Z has to be occupied. This happens with probability

1�

1� �(Z, t)

1 + k

�
n

. (S40)

Following these arguments, the master equation for a filament bound to n walls for v � 1 and
in the transition region reads:

@

t

P (Z, t) = �P (Z, t) +

⇢
1�


1� �(Z, t)

1 + k

�
n

�
Z�1X

Z

0
=�1

(
Z�1Y

i=Z

0
+1


1� �(i, t)

1 + k

�
n

)
P (Z 0

, t), (S41)

where Z

0

6 Z < vt. Note that the approach of this section is valid only in the transition region,
which is very far away (⇡ v ln v) from the polymerization front in the v ! +1 limit. Therefore the
boundary condition Eq. (S16) is irrelevant here. In the v ! +1 limit, �(Z, t) ⇡ �(i, t) ⇡ k ⇡ v

�1.
Using the same level of approximation that we used when reasoning on the scarcity of espins, we
expand the master equation to lowest order in v

�1:

@

t

P (Z, t) = �P (Z, t) + n [k + �(Z, t)]
Z�1X

Z

0
=�1

(
Z�1Y

i=Z

0
+1

[1� n�(i, t)� nk]

)
P (Z 0

, t). (S42)

S3.3 Continuum limit for the master equation

According to the arguments of Sec. S3.1, the limit v ! +1 with ↵ = kv fixed can also be
understood as a continuum limit for the master equation Eq. (S42). This means that we are
studying a situation where the typical decay length of the espin probability of presence is much
larger than the distance between two cross-linkers, i.e. v � 1. In the stationary regime, the
filament tip probability distribution depends only on the coordinate ` = vt � Z. We define the
coordinate ⇠ by

` = vt� Z = v ln v + v⇠. (S43)

Since we are considering the transition region of the filament, i.e. a region of size ⇡ v located at
` ⇡ v ln v, we consider only the region where ⇠ is of order 1. In the v ! +1 limit, we should
thus be able to derive a v-independent shape equation for the transition region as a function of
⇠. We therefore write the stationary filament length probability distribution as P (⇠) = P (Z, t).
According to Eq. (S43), @

t

P (Z, t) = dP (⇠)/d⇠, and the prefactor of the last term of Eq. (S42) has
the following asymptotic behavior

n [k + �(Z, t)] ⇠
v!+1

nv

⇣
↵+ e

�⇠

⌘
. (S44)

Meanwhile, the sum behaves as
Z�1X

Z

0
=�1

⇠
v!+1

Z
+1

⇠

d⇠0

v

. (S45)
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We also note that the product of Eq. (S42) has a finite limit:

Z�1Y

i=Z

0
+1

[1� n�(i, t)� nk] = exp

(
Z�1X

i=Z

0
+1

ln
h
1� ne

�(1+↵/v)(t�i/v) � n↵

v

i)

= exp

(Z
v⇠

0

v⇠

"
ln

 
1� ne

�y/v

v

� n↵

v

!
+O(v�2)

#
dy +O(v�1)

)

=
exp

�
n↵⇠ � ne

�⇠

�

exp (n↵⇠0 � ne

�⇠

0)

⇥
1 +O(v�1)

⇤
, (S46)

where vt � Z

0 = v ln v + v⇠

0. Finally, we are able to write the v ! +1 continuum limit of the
master equation Eq. (S42):

dP

d⇠
(⇠) = �P (⇠) + n

⇣
↵+ e

�⇠

⌘
exp

⇣
n↵⇠ � ne

�⇠

⌘Z
+1

⇠

P (⇠0)

exp (n↵⇠0 � ne

�⇠

0)
d⇠0. (S47)

S3.4 Continuum solution for the stationary state

In this section we fully solve Eq. (S47), and show that it has a unique normalized solution. We
define the function f(⇠) by

P (⇠) = f(⇠)⇥ exp
h
�(1� n↵)⇠ � ne

�⇠

i
. (S48)

We divide Eq. (S47) by n

�
↵+ e

�⇠

�
exp

�
n↵⇠ � ne

�⇠

�
, di↵erentiate with respect to ⇠ and make the

change of variable x = e

�⇠. This yields

x(x+ ↵)f 00(x)� ⇥x� 2(x+ ↵) + n(x+ ↵)2
⇤
f

0(x) = 0. (S49)

This second order linear di↵erential equation has two linearly independent solutions, one of which
is obviously a constant. Integration of the fraction f

00(x)/f 0(x) yields the second one. This finally
yields

P (x) = c

1

x

1�n↵

e

�nx + c

2


�↵+ x

1�n↵

e

�nx

Z
x �

u

n↵�1

e

nu

�
du

�
, (S50)

where c

1

and c

2

are arbitrary constants to be determined. Note that choosing the lower bound in
the integral is equivalent to modifying the value of c

1

.
Since ` > 0, the variable ⇠ is defined on the interval ⇠ 2 [� ln v,+1[. As ln v ! +1 in the

limit considered here, the normalization condition for the probability distribution reads:

Z
+1

�1
P (⇠) d⇠ = 1. (S51)

Meanwhile, Eq. (S50) implies
P (⇠) !

⇠!+1
� ↵c

2

, (S52)

meaning that the normalization condition Eq. (S51) can only be fulfilled if ↵ = 0 or c

2

= 0. If
↵ = 0 then

P (⇠) = exp
⇣
�⇠ � ne

�⇠

⌘"
c

1

+ c

2

Z
e

�⇠
e

�nu

u

du

#
. (S53)
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The asymptotic behavior of the integral in this expression is given by
Z

x

e

�nu

u

du ⇠
x!+1

e

�nx

nx

. (S54)

Therefore if ↵ = 0 the probability density function has the following finite limit

P (⇠) !
⇠!�1

c

2

n

, (S55)

which prevents normalization unless c
2

= 0. Therefore c

2

always vanishes whatever the value of ↵.
Determining c

1

from the normalization condition Eq. (S51), the filament length distribution
reads

P (⇠) =
n

1�n↵

�(1� n↵)
exp

h
�(1� n↵)⇠ � ne

�⇠

i
, (S56)

where

�(b) =

Z
+1

0

⇣
u

b�1

e

�u

⌘
du (S57)

is the usual Gamma function (8). Qualitatively, the filament profiles described by Eq. (S56) are
quite similar to those obtained in the absence of espin reattachment and described by Eq. (5).
Indeed, P (⇠) decays extremely quickly (faster than any exponential) for negative ⇠s, while it decays

as e�(1�n↵)⇠ for ⇠ ! +1. By comparison, the distribution P

f

= �dP

6
f

d`

[see Eq. (5)] decays as e�⇠.
Eq. (4) relates the radius of the stereocilium to the probability that the filament is shorter than

⇠. It is therefore interesting to write the cumulative probability distribution:

P

6(⇠) =
�
�
1� n↵, ne

�⇠

�

� (1� n↵)
, (S58)

where the incomplete Gamma function is defined as

�(b, x) =

Z
+1

x

⇣
u

b�1

e

�u

⌘
du. (S59)

The average filament length is given by

h⇠i = lnn�  (1� n↵) , h`i = v ln(nv)� v (1� nkv), (S60)

where the digamma function and its behavior in 0 and 1 are given by (8)

 (z) =
d [ln�(z)]

dz
(S61a)

=
z!0

+
�1

z

� � +O(z) (S61b)

!
z!1

��, (S61c)

where � ' 0.577216 is the Euler constant. Similarly to Eq. (6), the transition region is at a distance
v ln(nv) away from the polymerization front. Note that for k = 0 , ↵ = 0, Eq. (S58) goes to the
distribution given in Eq. (5).

Di↵erences with the k = 0 case (illustrated in Fig. 5) are observed when considering the width of
the transition region, which is equal to �v (1�nkv). According to Eq. (S61b) this width diverges
as

h`i ⇠
k!k

�
c

v

1� nkv

/ 1

|k � k

c

| (S62)
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when k approaches the critical value

k

c

=
1

nv

. (S63)

Therefore, for a large enough espin reattachment rate, a stationary filament profile ceases to exist.
This is the n-walls generalization of the growth transition discussed in the beginning of the section
Growth Transition and Stationary State. Indeed, for k > k

c

, espin slows the depolymerization
down so much that the pointed end can never catch up on the polymerization front.

S4 Coupling between filaments

S4.1 Numerical simulations

In order to implement the stereocilium dynamics as described in the section Model for the Actin
and Cross-Linker Dynamics of the main text, we design a Monte-Carlo simulation based on the
Gillespie algorithm (9). We simulate a square array of L⇥L filaments and denote the coordinates
of a filament in the horizontal plane by (X,Y ). Each filament (X,Y ) is connected to each of its
four neighbors (X ± 1, Y ), (X,Y ± 1) by an espin column [see Fig. 1(a)].

The altitude of the pointed end of filament (X,Y ) is initially Z

0

(X,Y ) = 0, and is subsequently
allowed to take any positive integer value smaller than vt, where t is the time elapsed since the
beginning of the simulation. For each couple of neighboring filaments {(X,Y ), (X +1, Y )} (or any
other possible combination) and for each integer altitude i such that

max[z(X,Y ), z(X + 1, Y )] 6 i 6 vt, (S64)

there is an espin site [(X,Y ), (X + 1, Y ), i], which can be either occupied or empty. Espins are
incorporated with probability P

0

= 1 in i = vt. A filament with its pointed end in z(X,Y ) cannot
depolymerize if there is an espin in at least one of the four following espin sites: [(X,Y ), (X ±
1, Y ), z(X,Y )], [(X,Y ), (X,Y ± 1), z(X,Y )]. Unlike in the model presented in the main text, if all
those four sites are empty, the filament does not depolymerize instantaneously but does so with
a finite rate k

d

. In practice we set k

d

to a very large value (105 ⇥ k

o↵

or larger), therefore the
simulation should yield the same results as the model presented in the section Model for the Actin
and Cross-Linker Dynamics.

Two types of boundary conditions are used in our simulations. The first one is a periodic array
of filaments, which is convenient when numerical simulations are used to investigate the L ! +1
limit. The second one is a circular array, where we impose that all filaments whose coordinates do
not satisfy (X�L/2)2+(Y �L/2)2 < (L/2)2 are maximally depolymerized, and therefore that their
pointed ends are always in z = vt. This allows us to simulate actual stereocilia more realistically.
Example profiles from the simulations are shown in Fig. S3.

S4.2 Argument for the numerical value ne↵ = 2.5

Here we give an argument for why the growth transition in a square (n = 4) array of filaments is well
described by an e↵ective number of neighboring walls ne↵ = 2.5, as shown in Fig. 4. Let us consider
a filament of length `. As mentioned in the section Couplings Modify the Growth Transition of
the main text, its pointed end’s local environment is similar to that presented in Fig. 3(b), where
neighboring filaments with a length larger or equal to ` play the role of walls. Denoting by n

<,
n

= and n

> the typical numbers of neighbors with lengths smaller, equal to or larger than `, this
statement can be expressed as

n

e↵ = n

= + n

>

. (S65)
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Figure S3: Profiles of two filament bundles obtained from the simulations described in the main
text. The vertical axis represents the length ` = vt� z of the filaments, and was shrunk for easier
visualization. In actual stereocilia, we expect the longest filaments to be brought together by the
membrane as illustrated in Fig. S1. In this case, the stereocilium radius should be calculated as
r(`) / p

N

>(`), where N

>(`) is the number of filaments longer than `—this is similar to Eq. (4).
(a) 32⇥ 32 bundle with a circular support and k = 0. (b) 16⇥ 16 bundle with periodic boundary
conditions and k = 0.015—which we shown below to be a substantial reattachment rate, although
below the growth transition. Both bundles are in their stationary state.

Let us now consider the appearance of the bundles pictured in Fig. S3. They have a markedly
spiky appearance, which is further discussed in the next section. This implies that many filaments
are sticking out of the bundle. Note however that a single filament cannot stick out on its own,
as having no neighbor to cross-link its pointed end to causes immediate depolymerization. Indeed,
the spikes observed in Fig. S3 are typically formed by two filaments of equal length cross-linked at
their pointed end. From this typical situation we estimate

n

= = 1. (S66)

Now considering a pair (a, b) of neighboring filaments, it is obvious that if a is strictly longer than
b, then b is strictly shorter than a. Summing over all pairs of neighboring filaments, this implies
that the total number of longer neighboring filaments in the system is equal to the total number
of shorter neighboring filaments, hence on average

n

< = n

>

. (S67)

Finally, the total number of neighbors for any filament is equal to n, hence

n

< + n

= + n

> = n = 4. (S68)

Combining Eqs. (S65) to (S68) yields ne↵ = 2.5, in agreement with the numerical results of Fig. 4.

S4.3 Correlations between filaments and interface width

The results of ‘Couplings modify the growth transition” show that the behavior of coupled filaments
below the growth transition is rather di↵erent from that of a single filament bound to several walls,
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even if the number of walls is chosen to represent an e↵ective number of longer neighbors. This
anomalous behavior arises for the following reasons: in the k = 0, multi-filament case, the stochastic
dynamics of each actin cross-linker is completely independent of the rest of the system. The actin
filaments are slaved to the espins, and their dynamics is very simple. Therefore, correlations between
the lengths of actin filaments are limited to nearest neighbors, since only filaments with a common
actin cross-linker are coupled. In the case of a single filament with espin reattachment, on the other
hand, the length of the filament influences the espin sites, as it determines whether a cross-linker
can reattach or not. In multi-filament systems considered here, we expect filaments to be correlated
over relatively long distances, as similar mutual correlations between filaments and espins mean
that the state of a filament can now influence the neighboring espin column, which influences the
next filament, and so on. In this section, we show that these correlations do indeed extend beyond
the nearest neighbors, but present an argument suggesting that they are not su�cient to yield a
self-a�ne interface.

Let us define the two-dimensional interface width function of the bundle as

w(X,Y ) =

rD
[`(X,Y )� `(0, 0)]2

E
. (S69)

This function reflects the amount of correlations between the heights of the filaments located in
(0, 0) and in (X,Y ). It is equal to 0 in the limit where the filaments are infinitely correlated, or
if X = Y = 0. If the interface as a whole has a finite width

ph`2i � h`i2, then w(X,Y )/
p
2 goes

to this value in the limit where the filaments are completely uncorrelated. Finally, w(X,Y ) >p
2
ph`2i � h`i2 represents a situation where the filaments are anticorrelated.
In Fig. S4(a), we present the normalized width function of a weakly cross-linked 32⇥32 filament

bundle, which we define as

W (X,Y ) =
1p
2

w(X,Y )ph`2i � h`i2 . (S70)

The closer to one W (X,Y ) is, the less correlated the filaments are. Here the averages are over all
filaments and over ' 100 time points of the bundle dynamics. The time between two time points
is chosen to be larger than the time over which the length of the filaments are correlated. In other
words, our time points can be considered as independent samples. We also make sure that all time
points are taken after the bundle reaches its stationary state.

In Fig. S4(b), we collapse the data of this plot into a function of R =
p
X

2 + Y

2 and compare it
with similar ones obtained for other values of k. We observe that the correlations between filaments
decay as R increases. The precise functional form of this decay (e.g. whether it is exponential for
large R) is di�cult to assess from the data presented here, although a more thorough study could
yield more information. Another related question is whether there is a well-defined correlation
length associated with this decay, and how it behaves at the growth transition. For instance, one
might venture that the correlation length could diverge as k ! k

�
c

, similarly to what happens in
second-order phase transitions. In the following we give a few scaling comments on the morphology
of the interface, which allows us to return to these questions at the end of the present section.

It is well known that out-of-equilibrium surface growth problems similar to the one studied
here can lead to rough interfaces. During the past two decades, extensive e↵orts have gone into
characterizing this roughness in terms of the self-a�ne geometry of the interface (10, 11). In terms
of the width function defined here, the self-a�nity property means that when R is large, w(R)
grows as a well-defined power law

w(R) /
R!+1

R

⇣

, (S71)
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Figure S4: Normalized width functions W (X,Y ) for periodic filament bundles, as defined in
Eq. (S70). (a) Two-dimensional normalized width function for a 8 ⇥ 8 periodic bundle with
k = 0.01875. (b) Normalized width function plotted as a function of the distance R for 8 ⇥ 8
periodic bundles and for various values of k. The width function vanishes for R = 0 (not shown) by
definition. For k = 0, the width is di↵erent from its asymptotic value only for R = 1, meaning that
only nearest neighbors are correlated. For k = 0.0196875, the width of the interface never reaches
1 because correlations extend over the whole bundle, thus calling for simulations with a larger L.

which defines the roughness exponent ⇣ > 0. Determining ⇣—among other exponents—allows to
define universality classes among out-of-equilibrium growth processes. Another type of behavior
that can be characterized using the function w(R) is the roughening transition of crystals (12).
The width of a “rough” crystal interface diverges logarithmically, which corresponds to a roughness
exponent ⇣ = 0.

Here we discuss whether laws of the type of Eq. (S71) could apply to our stereocilium model
for k < k

c

. At first sight, the interface defined by the lengths of the filaments as a function of
X and Y has similarities with both types of models, as it is both out-of-equilibrium and as its
altitude can take only discrete values determined by the periodic arrangement of the cross-linkers
in the vertical direction, which is similar to what happens in a crystal. We note however that two
phenomena limit the divergence of the interface width expressed in Eq. (S71). First, the finite size
of the bundle means that R cannot be larger than L. Second, even for L ! +1 the interfaces
presented here have a finite width of order

ph`2i � h`i2. Indeed, the polymerization front traps
them in the ` > 0 half-space, and long filaments always tend to depolymerize if k < k

c

, which keeps
their lengths finite, although they might fluctuate to large values. The only way for us to apply
the concepts presented in Eq. (S71) to stationary stereocilia is therefore to consider systems where
L and

ph`2i � h`i2 are large (i.e. large bundles with k close to k

c

) and study the shape of the
interface in the domain where 1 ⌧ R ⌧ L and 1 ⌧ w(R) ⌧ ph`2i � h`i2. In other words, we are
wondering whether we can make a statement about width functions of the type of those presented

in Fig. S4(b) in the intermediate region where
�h`2i � h`i2��1/2 ⌧ W (R) ⌧ 1. Here we prove by

contradiction that no such region exists. Assume that there is a typical R scale, which we denote
by R

0

, that has the properties

1 ⌧ R

0

⌧ L and 1 ⌧ w(R
0

) ⌧
p
h`2i � h`i2. (S72)
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Moreover, we expect w(R) to be an increasing function of R, as neighboring filaments should have
more strongly correlated lengths than filaments far apart. Let (X,Y ) and (X + 1, Y ) be two
neighboring filaments with initially very similar heights z(X,Y ) ' z(X +1, Y ). Now consider that
(X,Y ) undergoes a depolymerization event. We saw in Eq. (S38) that the typical depolymerization
length is h`i, meaning that after the depolymerization event z(X+1, Y )�z(X,Y ) ⇡ h`i. This kind
of event is very common in our system, which implies that since w(1) ⇡ z(X +1, Y )� z(X,Y ), we
typically have w(1) ⇡ h`i. As w(R) is an increasing function of R, we have w(R

0

) & h`i. From the
previous sections we expect that h`i should be of order v ln v and

ph`2i � h`i2 of order v. Thus in
the continuum limit v ! +1 considered here

ph`2i � h`i2 < h`i. Therefore, we finally find that
w(R

0

) >
ph`2i � h`i2, which is in contradiction with Eq. (S72).

In conclusion, in long stationary bundles of coupled filaments the interface reaches its maximum
width

ph`2i � h`i2 over distances of order a few filaments, which means that it is impossible to
define a mesoscopic scale where properties of the type described in Eq. (S71) could be observed.
This accounts for the very spiky appearance of the profiles presented in Fig. S3. This also means
that the width functions presented in Fig. S4(b) decay to a value very close to one on short length
scales [R = O(1)]. This argument seems to indicate that correlations between the filaments are
smeared out by the large depolymerization jump sizes on length scales much smaller than the size of
the system. It is therefore not obvious whether correlations could span the whole system, although
Fig. S4(b) does seem to indicate that the typical correlation range grows as the growth transition
is approached.
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