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a b s t r a c t

Membrane fission is the last step of membrane carrier formation. As fusion, it is a very common pro-
cess in eukaryotic cells, and participates in the integrity and specificity of organelles. Although many
proteins have been isolated to participate in the various membrane fission reactions, we are far
from understanding how membrane fission is mechanically triggered. Here we aim at reviewing
the well-described examples of dynamin and lipid phase separation, and try to extract the essential
requirements for fission. Then, we survey the recent knowledge obtained on other fission reactions,
analyzing the similarities and differences with previous examples.

� 2009 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

The early hypothesis of membrane traffic, as it was conceived
just after the discovery that proteins could be transported between
organelles [1], involved the formation of small vesicles that were
separated from the donor membrane by a process called membrane
fission. As a consequence, the compartimentalization of eukaryotic
cells ensuring the specialization and function of each organelle was
regarded as strictly dependent on this process: without membrane
fission, all the organelles would end up being connected, mixing
their contents and losing their function/specialization.

One of the first proteins found to be implicated in fission was
dynamin. It was genetically shown to be involved in the release of
synaptic vesicle from the plasma membrane [2], and the helical
polymer it forms in vitro [3] and in vivo at the neck of endocytic
buds [4] immediately suggested that it could trigger fission by con-
stricting the neck of buds. In this paper, we first review 15 years of
work on dynamin in order to understand how well this hypothesis
is verified. The fact that dynamin-like proteins only work in a subset
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of fission reactions then prompts us to ask what the common
features and/or functions of proteins/lipids involved in mem-
brane fission are, and which other proteins are involved in other
reactions.
2. Constriction versus shearing: what really triggers membrane
fission?

As often in cell biology, morphological analysis at the ultra-
structural level trigger hypothesis on molecular mechanisms. This
is best exemplified by seminal work on dynamin: dynamin could
constrict and fuse the two sides of the neck. In this picture, fission
would be similar to fusion, as it would involve the same metastable
intermediates [5]. This view was supported by studies showing
that dynamin has all the features to actually drive fission by con-
striction/fusion: GTP is needed for fission [4], and, as shown in a
milestone paper [6] by the Jenny Hinshaw group, dynamin alone
can deform membranes into tubules circled by the dynamin helix.
It was moreover shown in this work that upon GTP treatment such
tubules constrict and break into very small vesicles. Therefore, it
seemed at this point that a large-scale dynamin conformational
change could provide enough work to constrict the tubule and fuse
it locally, which would result in membrane breaking.
pean Biochemical Societies.
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Fig. 1. Membrane tube fission by dynamin. (A and B) Dynamin breaks tubules by
constriction. The conformational change (A) of the helix constricts the tubule until
it hemi-fission is reached (B), and full fission is obtained when dynamin depoly-
merizes. (C and D) Dynamin breaks tubules by shearing. The conformational change
(C) generates enough torsion to shear the membrane and either tear it (not shown)
or fuse it. (D) Fission leads to dynamin depolymerization by removal of the
membrane.
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2.1. Dynamin: the paradigm of constriction

Several questions were brought about by the work of Hinshaw
and co-workers: where does the constriction come from? Does the
conformational change of the helical polymer induce torsion, sim-
ilar to the wringing of linen fiber? Or does each individual mono-
mer constrict, causing the helix to shrink in size, without really
changing shape?

Early evidence of a linen-like conformational change came from
a careful study of the biochemical interactions between different
dynamin domains [7]. The strongest interactions were observed
between hetero-domains and proposed to be in the continuity of
the helical turn. They remained unchanged when the nucleotide
load was modified, whereas the interactions between homo-do-
mains were weaker in the presence of GTP and proposed to be be-
tween contiguous helical turns. This suggested that during the
hydrolytic cycle of GTP, dynamin oligomers could undergo a cycle
of binding/unbinding between adjacent helical rings. The authors
of this study thus favored a mechanism by which sliding of adja-
cent helical turns would cause constriction.

The 3D structures [8] obtained by cryo-EM before and after con-
striction yielded a more detailed picture of this complex situation:
as the dynamin polymer went from its non-constricted to its con-
stricted state upon incubation with GMP–PCP, the number of di-
mers per turn went from 14 to 13, while constriction and
bending of each dimer was also observed. This is a direct proof that
some of the constriction actually occurs by torsion. The huge in-
ward bending of each dimer however also has a dramatic influence
on the membrane, and constricts it even more.

At the structural level, it thus seems that dynamin constriction
comes from the combination of a global (torsion of the helical poly-
mer) and a local (compaction of the monomers) conformational
change. On the functional level, the structural studies of the Hin-
shaw group [8] have a remarkable feature: they show that long,
continuous constricted tubules can be isolated, which is not at all
expected in a situation where constriction alone induces tubule
breaking. Pointing this out, the Hinshaw group also showed a strik-
ing difference between dynamin-coated tubules treated by GTP
when observed by negative stain or by cryo-EM. When performing
negative stain [6], which involves attaching the tubules to a sub-
strate before GTP treatment, they observed a large amount of fis-
sion. On the other hand, when cryo-EM was used, which implies
treating dynamin-coated tubules with GTP in bulk, no obvious fis-
sion occurred [9]. As a matter of fact, in the 3D constricted struc-
ture of Ref. [8], whole membrane tubules (as opposed to hemi-
fission intermediates) are seen. It should however be noted that
the tubules in this last reference were not treated with GTP, but
with GMP–PCP, and that the comparison might therefore not stand
as fission is observed with GTP only.

In a nutshell, there is compelling data supporting the early
hypothesis that in addition to being required for fission, dynamin
constricts membrane tubules upon GTP hydrolysis. Still, the essen-
tial question of whether this constriction is sufficient to induce
membrane fission on its own was still open at this point.

2.2. What triggers membrane fission?

Recent studies have used live imaging and sensitive measure-
ments to directly visualize dynamin-mediated membrane fission,
and try to isolate the minimal requirements for dynamin-mediated
membrane fission [10–12]. As membrane fission is a very transient
event, the strength of these studies was the ability to follow a
membrane template in real time while it is being broken by dyn-
amin. Using dynamin-coated tubules grown from planar mem-
brane sheets, a first study showed that rapid twisting of the
dynamin helix occurred upon GTP treatment [10]. This twisting
activity was further evidenced by the formation of supercoils,
which also caused the long dynamin-coated tubules to retract. Sur-
prisingly, tubules anchored only at one end never broke, while tu-
bules anchored at both extremities ruptured after experiencing
longitudinal tension, probably generated by the torsional activity
of dynamin through the formation of supercoils. On top of confirm-
ing that part of the constriction comes from torsion, this study
stresses the role of mechanical forces in dynamin-mediated mem-
brane breaking. Such mechanical forces could be provided by the
actin cytoskeleton, which would account for its known involve-
ment in this process [13,14].

The fact that torsion occurs very rapidly led to the hypothesis
that dynamin could break membranes by shearing/tearing (Bruno
Antonny, private communication). Indeed, although a membrane
sheared on long time scales will tend to flow, applying a torque
very quickly to the membrane tubule could tear the membrane
(see Fig. 1). An interesting feature of this mechanism is that its effi-
ciency is crucially dependent on the velocity associated with tor-
sion. If torsion is slower than membrane’s viscoelastic time
(defined as its viscosity over its stretching modulus and thus of or-
der 10�8 s), dynamin will just crawl on the liquid membrane,
which will be drained out by the squeezing action of the helix. If
it is faster, shearing-induced breakage could occur. On those short
time scales, the tube is expected to behave like a piece of rubber,
and thus to collapse on itself under shear (see Fig. 1C). This collapse
should occur in the early stages of the shearing (i.e. prior to tear-
ing), meaning that membrane breakage will immediately be fol-
lowed be self-sealing of the two resulting pieces into two
separate tubules. Membrane breakage through shearing/tearing
should thus be a non-leaky process. A recent theoretical descrip-
tion of dynamin’s helical torsion/constriction [15] showed that
the propagation of the helix’ strain along the axis of very long heli-
cal polymers should follow a diffusive dynamics. It also predicts
that on experimentally observable time scales, the rate of this



Fig. 2. (A) A lipid domain (blue) is budding and fissioning from the donor
membrane (yellow) while line tension is increasing. (B) Combined effects of
longitudinal tension and membrane tension depending on the geometry of the
membrane (tubule vs. sphere).
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propagation and thus the torsion activity of dynamin are imposed
by a friction of the helix onto the membrane. Strikingly, the longer
the helix, the more difficult the membrane drainage and thus the
slower the shearing of the membrane. Therefore, this study pre-
dicts that if dynamin breaks membrane by shearing, long dynamin
helices break the membrane less efficiently than short ones.

This length-dependent efficiency of dynamin is indeed one of
the important conclusions of a recent study [12]. Using supported
bilayers on micron-size beads, Pucadyil and Schmid studied the fis-
sion efficiency when preformed dynamin-coated tubules were
treated with GTP, or when a dynamin/GTP mix was directly applied
to membranes. They showed that dynamin combined with GTP
could create small vesicles out of the supported membranes. Using
preformed dynamin-membrane tubes, they found that when dyn-
amin was allowed to polymerize for a longer time on its own, less
fission occured upon GTP addition. They concluded that fission was
more efficient when dynamin formed short helices, a situation
similar to the one encountered in vivo.

Another conclusion of this paper is that fission is concomitant
with the depolymerization of the dynamin coat. This is also the
main conclusion of a study by Bashkirov and coworkers [11]. By
using membrane tubules extracted with a patch-clamp micropi-
pette from a black lipid membrane, Bashkirov and coworkers mon-
itored the conductance through the tubule while dynamin
interacts with it, with or without GTP. When dynamin is added
to the tubule in the presence of GTP, the conductance abruptly fell
to zero after a random time lag, which is a signature of fission. Con-
versely, when dynamin was added onto the tubule in the absence
of GTP, a gradual decrease of the tubule’s conductance was seen,
stabilizing at very low values compatible with squeezing of the tu-
bule by dynamin polymerization. When GTP was added to these
tubules, a gradual increase of the conductance was first observed,
which showed a release of dynamin squeezing by depolymeriza-
tion. Then, after a time lag, a sudden decrease to zero was ob-
served, which indicated fission. Based on their quantitative
evaluation of the tubule radius when dynamin is polymerized,
the authors propose that polymerization itself would drive suffi-
cient constriction to bring the membrane into a metastable state.
Then, hemi-fission and fission would spontaneously occur when
dynamin comes off the membrane, as the dynamin coat maintains
the continuity of the membrane until it is released through GTP-
dependent depolymerization. It has been argued [16] that the ra-
dius measured (5–6 nm, including membrane) for dynamin-coated
tubules in the absence of GTP is surprising in view of other studies
[4,6,8,9], and might reflect a technical underestimation of the real
radius. A tubule of 5 nm radius is certainly in a highly constrained
state that makes it metastable, but 10 nm is compatible with
stability.

The merit of these two studies is to put the focus on what really
triggers membrane fission. Bashkirov et al. [11] clearly showed
that fission occurs by hemi-fission, since no leakage is observed.
These studies lead us to ask when sufficient constriction is reached
to drive hemi-fission, and what triggers full fission. Clearly, these
two papers agree on the fact that fission is triggered by dynamin
depolymerization. But when is hemi-fission generated?

Putting all this data together, a two-step model for dynamin-
mediated membrane fission can be proposed (see Fig. 1). After
polymerization of a dynamin helix, full constriction is obtained
by GTP-dependent constriction/twisting. This constriction could
lead to hemi-fission of the membrane, and fission would occur sub-
sequently to the depolymerization of the coat. This depolymeriza-
tion could be induced either by conformational stresses appearing
upon torsion, or directly from GTP hydrolysis that would weaken
the polymer bonds. Alternatively, constriction/twisting could shear
the membrane, leading to full membrane fission, promoting depo-
lymerization by removing the substrate for dynamin continuity.
3. Role of membrane properties

In this section, we temporarily turn away from the role of pro-
teins in membrane fission, and consider how the properties of the
membrane itself might assist, or even drive its own fission. Lipid
membranes are auto-sealable objects, a property that makes them
very difficult to break. However, this is mostly true for membranes
that are composed of one single lipid, as the non-miscibility of lip-
ids makes lipid bilayers more fragile, and here we first review
membrane fission driven by lipid separation. Consistent with our
observation that mechanics is relevant for the action of dynamin,
we then turn to two important mechanical properties of the mem-
brane, namely its the bending rigidity and tension, which could af-
fect the action of fission machineries, including dynamin.

3.1. Membrane fission by lipid phase separation

The first pieces of evidence for phase separation in lipid bilayers
date back to the 70s [17,18]. The formation of domains with a cer-
tain lipid composition, floating in an ocean of a different composi-
tion, led to the ‘‘raft” hypothesis in the late 80s, revealing how
membrane properties could affect membrane traffic.

Phase separation is usually associated with an energy cost pro-
portional to the size of the interface. In a three-dimensional sys-
tem, e.g. oil and water, interfaces are surfaces. The energy cost is
thus proportional to the surface area of the interface between the
two fluids, through a coefficient known as the interface’s ‘‘surface
tension”. For two-dimensional lipid domains, interfaces are lines,
and the energy cost is proportional to the length of the interface,
thus defining a ‘‘line tension”. Both surface and line tension mea-
sure how badly the different components want to separate. The
requirement that the interfacial energy be minimal implies that
fluid membrane domains have a circular shape, which minimized
the interfacial length at constant domain surface area. For high line
tensions, it was theoretically proposed [19] that another way of
reducing the length of the interface would be to bud the domain
out of the plane of the membrane, the connecting neck where
the interface sits being narrower than the domain (see Fig. 2A).
In this case, an extra energetic cost must however be paid to bend
the membrane into a curved vesicle. In extreme cases where the
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line tension is high enough to override this bending cost [20], it
was proposed that the constriction generated by phase separation
at the neck of these buds would be sufficient to break the mem-
brane. Deformation of membranes by lipid phase separation has
been studied experimentally quite recently [21], and led to the first
direct measurement of line tension between lipid domains, close to
1 piconewton (pN). In some case, the authors of this work observed
the complete disappearance of the neck, suggesting fission, which
was confirmed by other studies (see for example [22]). Similarly,
lipid phase separation induced along membrane tubules formed
by kinesins in vitro leads to fission [23] at the boundary between
domains.

3.2. Role of membrane tension

In the instances of phase separation-driven membrane breaking,
the membrane geometry and tension play an important role in
crossing the energy barrier for fission. For instance, highly tense
membrane tubules formed by kinesins (tension larger than
5 � 10�5 N/m) break less than 1s after induction of phase separa-
tion, whereas tubules formed at a low tension (smaller than
10�6 N/m) take up to 20 s to break ([24] and unpublished data).
The role of membrane tension in facilitating tubule fission is two-
fold: first, as the radius of the tubule is dependent on membrane
tension (radius ¼

ffiffiffiffij
2r

p
, where j is the membrane bending rigidity

and r is the membrane tension [25]), an increase in membrane ten-
sion drives the radius down, which takes the membrane closer to a
fissioned state; second, surface tension (expressed in N/m) is con-
comitant with the tubule’s longitudinal tension (in N), which is de-
fined as the externally applied force required to prevent the
tubule from retracting. This longitudinal tension could help fission
by maintaining the structure during the operation of the fission
machinery. As discussed previously, longitudinal tension facilitates
dynamin-mediated fission. This is analogous to the case of a rubber
band that needs to be slightly extended in order to be cut by scissors.

To further clarify the relationship between surface tension and
longitudinal tension, we note that they may either act in the same
direction or have antagonistic effects depending on geometry. As
mentioned above, tubules are an example of a synergetic effect be-
tween membrane tension and longitudinal tension, as both are co-
axial with the tubule (see Fig. 2B). In the case of a spherical bud, on
the other hand, longitudinal tension (pulling on the bud) favors fis-
sion by facilitating the detachment of the bud, whereas membrane
tension has an opposite effect (see Fig. 2B): it tends to flatten the
membrane, and therefore to the collapse the bud into a flat mem-
brane. By counteracting constriction, membrane tension could
therefore hinder fission. In vivo, it was actually shown that an in-
creased membrane tension can block endocytosis [26], whereas a
decreased membrane tension tends to increase the endocytosis
rate [27].

3.3. Conclusion

Dynamin and lipid phase separation are two examples of how
tubular membrane structures can be broken. Beyond the specifics
of these two examples, we are interested in extracting some basic
principles of how membrane fission is mediated, which could help
understand other fission machineries. In the case of lipid phase
separation, fission occurs by constriction, as the domains are fluid
and no torsion occurs [23,24]. Membrane parameters can crucially
up- or down-regulate the energy barrier to be crossed for fission to
occur. A theoretical model [28] shows how the combined actions of
actin pulling on an endocytic bud and constriction generated by li-
pid phase separation could promote fission in systems lacking the
active role of dynamin. The main lessons from studies on pure lipid
membranes are: (1) fission by a pure constriction mechanism can
occur; (2) membrane tension, depending on the geometry of the
membrane (a neck between two vesicles or a tubule) can either re-
duce or enhance the energy barrier to fission and (3) applying
external stresses on the constriction neck can help overcome the
energy barrier.

However, it is not clear yet how small the radius has to be made
in order to lead to fission. The structure of the dynamin helix pro-
vides some information about this threshold constriction radius.
Dynamin does drive constriction on two occasions: (1) when it
polymerizes, and (2) when it undergoes a conformational change
while hydrolyzing GTP. Most probably, polymerization does not
provide enough constriction to reach fission, as the internal radius
is larger than 10 nm after polymerization, a tubule size compatible
with membrane stability, as tubules of this size are experimentally
observed. After GTP hydrolysis, internal radius was measured to be
in the range of 4–5 nm by cryo-EM [9]. This is larger than the thick-
ness of a bilayer (3 nm). However, it is smaller than the thickness
of a bilayer plus the threshold radius (3 nm) that was proposed
to spontaneously lead to membrane hemi-fission intermediates
[29]. It is thus difficult to conclude on the state of the membrane
inside the coat after GTP treatment. These data however indicate
that the threshold radius for fission must be smaller than 5 nm.
4. Other examples in the light of these principles

As far as we know, most of the fission events happening within
a cell are dynamin-independent. Although the fission mechanisms
underlying most of these events are still largely unknown, the in-
sight gained from the examples of dynamin and lipid phase sepa-
ration may help understand the mechanisms at work in other
systems involving fission.

In this section, we consider other fission machineries in the
light of the systems described above. This discussion is not in-
tended as an exhaustive review, but rather as an attempt to extract
similarities and divergences between various biological solutions
to the membrane fission problem.

4.1. Other dynamin-like proteins

Many homologues of dynamin have been identified and most of
them are involved in membrane remodeling [30]. Several examples
come from the fission machinery of mitochondria and chloroplasts.
The protein Dnm1/Drp1 (yeast and mammalian, respectively) is
the most characterized member of the dynamin superfamily, other
than dynamin [31]. It is the main player of mitochondria division,
which is mediated by a single fission machinery to break the two
mitochondrial membranes in a single event. In chloroplast division,
ARC5, another dynamin-like protein, forms the ring necessary for
constriction. ARC5 is a cytosolic protein that binds to the outer
membrane of the plast, and ARC6 is involved in the alignment of
this ring with the matricial collar of FtsZ [32]. Chloroplasts have
kept the prokaryotic division machinery through evolution (the
FtsZ ring) and its positioning system (the Min proteins). ARC5
was shown to participate in a GTP-dependent constriction of puri-
fied chloroplast rings [33], and the amazing supercoiling of these
rings could be reminiscent of a twisting activity as described for
dynamin constriction [10].

Dnm1 forms helices much wider than those formed by dynamin
(55 nm compared to 25 nm, outer radii) that fit the thickness of a
double membrane [34]. By analogy, one could expect that ARC5
is structurally similar to Dnm1, and that Dnm1 is able to mediate
constriction in a similar GTP-dependent way than ARC5. They also
both bind to the outer membrane of the organelle through binding
to trans-membrane proteins (PDV1 for ARC5 and Fis1 for Dnm1
through a cytosolic linker called Mdv1, [31,35]).
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All these similarities suggest that the mitochondrial and plastid
fission machineries work in a very similar way to dynamin itself.
However, as we discussed above, if dynamin fission occurs by con-
striction only, it requires a very tight constriction (radius < 5 nm).
Although two membranes are present in mitochondria, Dnm1
has to reach the same final constriction to break the last mem-
brane. Thus, the larger size of these rings that fits the fission inter-
mediates observed in vivo is required for assembly on a larger
structure, but would need to constrict to the same radius to com-
plete fission. Increasing the starting size of the helix requires a big-
ger conformational change to complete fission: dynamin outer
radius goes from 25 nm to 20 nm during constriction, an already
considerable conformational change. For a similar constriction
mechanism to occur in the case of Dnm1/drp1, the radius of the tu-
bules it forms would need to go from 55 nm to 20 nm, and to break
two membranes: this would be a formidable constriction, and
would probably cause breaks in the polymer. Disruption of the
Dnm1 spiral was actually seen when treated with GTP [34]. If dyn-
amin-mediated fission is conducted through a shearing mecha-
nism, the break in the membrane does not depend on the final
radius of the tube, but rather on how fast the torsion is applied.
Thus, shearing can in principle break thick membrane necks, but
probably with leaks. The larger size of Dnm1/drp1 spirals may be
the indirect indication that membrane is broken by shearing. An-
other explanation could account for this larger size. Indeed, the
large radius of Dnm1/drp1 might just be required to accommodate
the cytosolic domain of the transmembrane receptor (Fis1 for
Dnm1) and the cytosolic linker (Mdv1). In this case, after assembly
of the three components, the space left in the helical coat for the
membrane must be much smaller than when Dnm1/drp1 is alone.
In other words, the thickness of the coat containing Dnm1/drp1,
the cytosolic linker and the transmembrane receptor would be
much bigger than for Dnm1/drp1 alone. Thus, the membrane
would already be more constricted by assembled coats and thus
a smaller conformational constriction would be required to com-
plete fission. Indeed, a recent study showed that Mdv1 enhances
the ability of Dnm1 to self-assemble on liposomes in the presence
of nucleotides [36]. The thickness of the coat is enhanced in the
presence of Mdv1, even though the size of the helix is unchanged.
However, the human equivalent of Dnm1, Dlp1, induces the forma-
tion of tubules both in vitro and in vivo [37], but their size is very
similar to that of classical dynamin-coated tubules.

Surprisingly, almost all other dynamin-like proteins have been
implicated in fusion instead of fission, and have either a trans-
membrane domain or a highly hydrophobic region that suggest a
deep insertion in the membrane: whether there is a connection be-
tween these properties, which diverge from the classical dynamins,
is still unknown.

A recent study of Atlastin, a GTPase located at the ER, shows
that it is critical for homotypic fusion of the ER, maintaining a
dense, highly connected network [38]. Atlastin, besides having se-
quence and structural homology with dynamin [30], was recently
shown to form tubules in vitro [39]. Also, the fusion of mitochon-
dria is a two-steps mechanism as it involves two membrane fu-
sions and therefore two fusion machineries, one for each
membrane. Both of these machineries have dynamin-like proteins,
the mitofusins 1 and 2 and Fzo1 for the outer membrane, and
Mgm1/OPA1 for the inner membrane.

The fact that dynamin-like proteins (DLPs) are involved in fu-
sion reactions supports the idea that fission is mediated through
a fusion-like mechanism. In this interpretation, fusion would be
mediated by the generation of high curvature, as in the case of syn-
aptotagmin [40]. The tip of DLP-coated tubules would be a highly
fusogenic point if sufficient curvature is reached. Even though
nothing is known about oligomers formed by these specific pro-
teins, one can expect that highly curved tubules and destabiliza-
tion of the bilayer due to the deep insertion of their hydrophobic
parts in the lipids would drive fusion. A consistent biochemical fact
with this fusion activity is that they share low GTP hydrolysis rates
compared to DLPs involved in fission [41]. It means that fusogenic
DLPs would live longer in a GTP bound state, more favorable for
polymerization and tubule formation. Long-life tubules would be
then more favorable for fusion, having time to connect and fuse
with the acceptor membrane.

Based on this assumption, one would predict that the recently
described Epsin-Homology Domain (EHD) family of proteins [42]
would belong to the fusogenic class of dynamin-like proteins. Pro-
teins of this family are able to polymerize and form tubules coated
by a helix. They hydrolyze ATP instead of GTP, but are otherwise
both structurally and functionally very similar to other dynamin-
like proteins. These proteins are implicated in membrane remodel-
ing, but have no clear fission activity, at least in in vitro assays used
for dynamin. They might thus just constitute another type of fuso-
genic dynamin-like protein.

4.2. Caveolae fission

Caveolae were shown to fission the plasma membrane by a dyn-
amin-mediated process [43]. However, the lipid composition en-
riched in sphingolipids and cholesterol of caveolae led to the
hypothesis that caveolin, the main component of caveolae, could
drive lipid phase separation by locally increasing the cholesterol
concentration in the membrane [44], as it binds cholesterol. This
lipid phase separation could help/drive both the budding and the
fission reaction of caveolae. A theoretical study [45] also proposed
that not only the lipid phase separation, but the specific ordering of
chiral and tilted lipids in the caveolin-coated phase could drive
budding, fission and the formation of the surprising proteic pat-
terns observed in vivo [46]. This lipid chirality-induced phenome-
non was first proposed to explain the formation of endocytic
tubular carriers driven by the binding of a toxin cargo to specific
lipids [47].

It thus seems that caveolae are an endocytic route where all the
known factors to drive fission are present, but nevertheless their
time lapse at the plasma membrane is very long, arguing for a
low fission rate. Experimental evidence suggests that caveolae
could be endocytic structures blocked at the fission step [48]. It
has been proposed that caveolin actually stabilizes raft endocyto-
sis, probably by blocking fission [49]. One can speculate that the
role of caveolin, if inhibiting fission, would be to reduce line ten-
sion at the boundary between caveolae and the plasma membrane,
thus preventing their fission. This function is analogous to that of
detergents, which can stabilize oil/water emulsions (i.e. very small
droplets of oil in water) by reducing the surface tension of the oil–
water interface. This would ensure good sorting of lipids and pro-
teins by lipid phase separation without promoting fission. Fission
would still be tightly regulated by the recruitment of dynamin,
or by direct removal of the caveolin coat, which would enhance
line tension and thus drive fission.

4.3. Golgi COPs

COPs I and II are coat proteins forming spherical carriers in-
volved in trafficking between the ER and the Golgi. It is one of
the most studied systems in membrane trafficking, and their sort-
ing, assembly process and regulation are very well characterized.
There is however only little knowledge about the fission reaction
in these trafficking pathways. It has been proposed that the poly-
merization of the coat could drive fission by closing on itself as a
sphere. This hypothesis is however in conflict with the fact that
non-fissioned buds can be isolated in semi-reconstituted systems
[50], and with the one that no obvious fission is seen in an assay



Fig. 3. (A) Budding and fission of membrane generated by the ESCRT-III complex. Polymerization of Snf7 into a spiral drive the deformation into a sphere, and then Vps24
stops the polymerization and finalizes the fission of the bud. Adapted from Ref. [59]. (B) Membrane buckling induced by Snf7 polymerization. As Snf7 polymerizes into rings
(a), the smaller (blue) and the larger (red) rings accumulate potential energy as they are not at their preferred radius (yellow). A relaxation can occur by buckling the
membrane (b), most of the rings being able to adjust to their preferred radius (c). Adapted from Ref. [58].
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reconstituting purified COP I coats on Giant Liposomes [51]. In the
COP I system, it was discovered early that Palmitoyl-CoA, a lipid
intermediate in acyl chains metabolism, is necessary for the fission
of buds [50]. Acyl-CoAs are strong detergents as they associate acyl
chains with a large hydrophilic group (the Coenzyme A) which is
required for their interactions with enzymes. This may drive fission
per se, by destabilizing membranes, and by stabilizing pores and
fusion intermediates. However, it is important to notice that
non-hydrolysable analogs of Palmitoyl-CoA can block the fission
reaction of these buds [50]. This strongly favors a role of Acyl-
CoA in the acylation of fission proteins rather than a direct role
in membrane fission.

Recent progress has been made on the fission reaction of COP II
buds: Sar1p, the small GTPase controlling the recruitment of the
coat to the membrane, was shown to participate both in the gener-
ation of curvature and in the fission reaction. It was shown that the
amphipathic helix used by Sar1p to bind to the membrane could
create curvature by insertion, thus tubulating membranes [52].
The same mechanism would help the squeezing of the necks of
COP II buds. This could allow for direct fission [52] or fission upon
release of Sar1p from the membrane (which itself occurs upon GTP
hydrolysis) and the subsequent membrane destabilization [53].
Unexpectedly, the COP coat itself came back in the play recently.
A mutation causing Cranio-lenticulo-sutural dysplasia was isolated
in SEC23A, a component of the first block of COP II (Sec23/24), re-
cruited to the membrane by Sar1p. Surprisingly, this mutation led
to a defect of COP II traffic, where buds and pearled tubules accu-
mulate in vivo [54]. Also, they showed evidences for a defect in
recruiting the second level of COP II (Sec13/31 complex), and a syn-
ergy with Sar1p, as the Sar1A isoform partially compensate the
SEC23A mutant phenotype, as the Sar1B does not. This is probably
due to the higher affinity of Sar1A for Sec23/24, recruiting more
Sec23/24 to the membrane. Taken together, these observations
show that a defect of polymerization is associated with a defect
of fission. All other steps of budding (membrane deformation, sort-
ing) seemed unaffected. Thus, it suggests that closing of the bud by
polymerization of the coat may cause fission. In other words, the
forces needed to break the membrane by constriction could be in
part provided by polymerization of the COP II coat. Nevertheless,
as expected from previous studies, the coat alone is not able to per-
form fission and is probably assisted by co-factors, Sar1p in the
case of COP II. The role of these co-factors is probably to reduce
the energy barrier for fission by facilitating membrane bending,
reducing the cost of constriction. However, it is still difficult to pic-
ture exactly how mechanically membrane fission occurs in the
COPs systems, and hopefully future work will reveal interesting
mechanical properties involved in this specific reaction.

4.4. ESCRT-III: deforming and severing the membrane from the inside

ESCRT complexes (Endosomal Sorting Complex Required for
Transport) were first identified for their role in endosomal traffic
[55]. Among the four known ESCRT complexes, ESCRT-III is the
only one involved in the generation of intralumenal vesicles during
the maturation of late endosomes to Multi-Vesicular Bodies
(MVBs). These membrane-remodeling properties have recently
been linked to two importants molecular features. First, one of
the proteins of the ESCRT-III complex called Snf7 (CHMP4A,B in
mammals) was shown to polymerize once nucleated by Vps20
(CHMP6), another protein of the complex. More precisely, when
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overexpressed in cells, Snf7/CHMP4 binds at the plasma mem-
brane, polymerizing into spirals that can form elongated tubules
pointing out of the cell [56]. Two different explanations have been
proposed for this membrane deforming activity: It was first pro-
posed that the oligomerization of Snf7/CHMP4 would form a las-
so-like structure, and that its depolymerization would cause the
loop of the lasso to shrink in size, forcing the membrane enclosed
by the polymer to curve in order to adjust the reducing size of the
loop [57]. Based on morphological images obtained in Snf7/CHMP4
overexpressing cells, a recent theoretical study [58] proposed an-
other, more intuitive explanation: it assumes that Snf7/CHMP4 fil-
aments have a preferred radius of curvature and bind to each other
as well as to the membrane, which accounts for the formation of
tubular structures. Also, Snf7/CHMP4 has a strong affinity for the
membrane. Therefore, in the presence of a membrane, the protein
forms planar spirals covering the membrane, as observed experi-
mentally [56]. In this configuration, the spiral rings smaller than
the preferred radius of polymerization (the radius of helical poly-
mers in the absence of membrane) are compressed, and spiral rings
larger than the preferred radius are extended (see Fig. 3). This frus-
tration of the polymer can be released by buckling the membrane
in the center of the spiral, forming a tubule that allows most of the
rings to adjust to their desired radius, as well as the binding of a
larger number of filaments (see Fig. 3). This buckling mechanism
resembles the spiral spring of a watch that pushes the frame out
when overloaded.

Further discussions are required to understand how fission is
mediated in this system. In order to tackle this question, we first
note that the vesicles in the MVBs are budding inside the endo-
some, and that proteins or lipids involved in fission are inside
the neck of the bud, which is the exact opposite of dynamin-med-
iated fission. This geometry seems incompatible with external
forces applied to the membrane to squeeze it as in the case of
dynamin. Thus, it was proposed that fission could be caused by
depolymerization of Snf7/CHMP4, as it required ATP and Vps4
for completion. In the ‘‘lasso” hypothesis, fission would be trig-
gered when the loop closes on itself. However, a recent study
[59] showed that fission occurs when polymerization is stopped
by Vps24. Vps4 and ATP, which are required for the disassembly
of the complex, are actually required to resolubilize the proteins
and to allow for several cycles of membrane deformation/fission,
but not for fission itself. The authors of this last reference propose
that the Snf7 spirals could curve the membrane in a similar way
than in the ‘‘lasso” hypothesis, but with the difference that the
reduction of the radius enclosed by the first ring of Snf7 is made
by polymerization inside the first ring, forming a spiral (see
Fig. 3). At the end, the spiral is closed by addition of Vps24, which
completes fission.

Surprisingly, in this case, fission occurs without the need of an
energy source. ATP and Vps4 are only required for depolymerizing
both Snf7/CHMP4 and Vps24, Vps2 (CHMP3 and CHMP3 resp.)
polymers. This means that the energy needed for fission comes
from another source. Clearly, ESCRT-III generates membrane defor-
mation and fission in a coupled manner. Vps24, which is the pro-
tein completing fission, when combined to its partner Vps2 is
able to deform membranes into tubules and make a special
dome-like structure that could participate in this fission event
[60]. It also participates in the recruitment of Vps4 and Vps2 to
the ESCRT-III complex and could be localized at the inner tip of
the spirals generated by Snf7/CHMP4. One can speculate that the
constriction needed for fission may arise from the tight association
of the membrane on this dome-like structure. Then, depolymeriza-
tion of ESCRT-III structures could occur at the tip/dome-like struc-
ture after fission has occurred. Because it challenges our views on
membrane fission, ESCRT-III is obviously a system of choice to
study membrane fission.
5. General conclusion

Membrane fission is an important topological change in the
organization of cellular membranes. Here we have briefly de-
scribed general principles of membrane fission mediated by lipid
phase separation and by dynamin. The common principle of these
two fission reactions seems to be a mechanism by which constric-
tion brings the two sides of the membrane into close contact until
they fuse, which is an energetically costly step. The differences in
the origin of this energy in the examples presented here illustrates
the diversity and richness of the field of membrane fission: at one
end of the spectrum, the energy required for lipid phase separation
originates in the physical interactions between different lipids,
which manifest themselves as a line tension; on the other, dynam-
in-mediated fission is protein-driven and draws its energy from an
active mechanism: nucleotide hydrolysis. Although the molecular
ingredients involved in membrane fission are very diverse, emerg-
ing quantitative approaches taking into account physical parame-
ters might provide a unified framework to study it. A first step in
that direction could be a more precise determination of the ener-
gies it requires.
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