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Geometrical frustration yields fibre formation
in self-assembly
Martin Lenz1* and Thomas A.Witten2

Controlling the self-assembly of supramolecular structures is
vital for living cells, and a central challenge for engineering
at the nano- and microscales1,2. Nevertheless, even particles
without optimized shapes can robustly form well-defined
morphologies. This is the case in numerous medical conditions
where normally soluble proteins aggregate into fibres3,4.
Beyond the diversity of molecular mechanisms involved5,6, we
propose that fibres generically arise from the aggregation
of irregular particles with short-range interactions. Using a
minimal model of ill-fitting, sticky particles, we demonstrate
robust fibre formation for a variety of particle shapes and
aggregation conditions. Geometrical frustration plays a crucial
role in this process, and accounts for the range of parameters
in which fibres form as well as for their metastable character.

Identical cubes can pack into dense space-filling aggregates, but
most shapes do not. As a result, the aggregates formed by these
shapes tend to be frustrated, giving rise to arrested, glassy states7,8.
In protein aggregates, this frustration can arise from, for example,
deformed or partially denatured protein domains, the juxtaposition
of residues with unfavourable interactions, or sterically hindered
hydrogen bonding. The global morphology of compact packings
of these objects thus involves a competition between geometrical
constraints, which hinder the formation of compact aggregates, and
the particles’ overall attractive interactions.

To explore this competition in its simplest form, we consider
two-dimensional, deformable polygons driven to aggregate by zero-
range attractive interactions (Fig. 1a,b). We parametrize the mag-
nitude of this attraction by a surface tension whose value controls
the aggregate morphology (Fig. 1c). A low surface tension thus
favours thin tree-like aggregates composed of undeformed particles
with very little elastic frustration, reminiscent of so-called empty
liquids9. Conversely, a large surface tension leads to space-filling
aggregates in which all particles are substantially deformed. In
this paper, we demonstrate that fibres form at intermediate values
of the tension, where the characteristic energies associated with
particle attraction and deformation are comparable. We quanti-
tatively account for these values based on the role of frustration,
and show that fibres are very robust to changes in microscopic
parameters, aggregation protocol and seeding conditions. Finally,
we show that, despite this robustness, fibres do not constitute the
ground state of our aggregates. Instead, they are kinetically trapped
metastable states, consistent with their inherent frustration and
with the well-documented irreversible character of protein fibre
assembly in vivo.

We consider n-sided polygons, and use a deformation energy e(α)
for the αth polygon that is a function of its area A(α) and of the
lengths {`(α)i }i=1...n of its sides (Fig. 2a). In the following we use both

regular and irregular polygons (as in Fig. 1b), and characterize the
latter by an asymmetry parameter k≥1, where k→1 is the regular
polygon limit while k→+∞ yields short sides with vanishing rest
length (see Methods). Minimizing the energy e(α) with respect to
the positions of the polygon’s vertices yields a rigid elastic ground
state of energy eg (Fig. 2b). Aggregates are formed by connecting
multiple polygons through the joining of one or several of their
sides. Two joined sides are treated as a single object, implying
that they share the same two end-vertices (Fig. 2a). Side joining
is favoured by the adhesion energy between particles, modelled by
an energy penalty σ > 0 for each unjoined side regardless of its
actual length. Thus, σ parametrizes the surface tension introduced
in Fig. 1c. However, side joining also involves a distortion of the
mismatched polygons, and thus increases their deformation energy
above eg.

A tree such as the one of Fig. 1c is always in its elastic ground
state. Its average energy per particle is entirely due to surface tension,
and reads e∼ (n− 2)σ in the large-system limit (see Methods).
A large bulk, on the other hand, has a negligible surface energy
but a finite deformation energy e∼ eb− eg, where eb denotes the
minimal deformation energy for a polygon constrained by the bulk
topology (Fig. 2c). Rescaling the elastic energy and tension through
ẽ(α)=[e(α)−eg]/(eb−eg) and σ̃ =(n−2)σ/(eb−eg), we obtain ẽ= σ̃
for a tree and ẽ=1 for a bulk. These rescaled energies make it clear
that adhesion overcomes frustration, and trees become less stable
than bulks at high tensions, with a transition at σ̃ =1. As a result,
if fibres indeed form as a result of the competition between these
two effects, we expect them to appear for a dimensionless tension of
order one.

To test this hypothesis, we simulate irreversible aggregation
starting from a single polygon. Our algorithm mimics irreversible
protein aggregation, where a particle binding to an existing
aggregate does so in the most energetically favourable location
without substantial rearrangements of the pre-existing aggregate
topology. Throughout this process the aggregate energy is always
minimized with respect to all vertex positions, imposing force
balance before the aggregate energy is assessed (see Methods). We
first grow aggregates of 150 irregular hexagons. The unfrustrated
k= 1 case simply yields the bulk of Fig. 1a up to very large values
of σ . Next, considering substantially frustrated hexagons with k=2,
we observe bulks at high tensions (σ̃ > 2.4), while low tensions
(σ̃ 6 2.0) yield irregular tree-like aggregates (Fig. 3a). By contrast,
periodic fibres form at intermediate tensions, and maintain perfect
regularity to indefinitely large lengths (see SupplementaryMovie 1).
Although these fibres appear for σ̃ of order unity, they form closer to
σ̃ =2 than the expected σ̃ =1, suggesting that fibre formation is not
completely captured by the tentative equilibrium reasoning used to
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Figure 1 | Frustration and adhesion compete to determine the
morphology of aggregates of mismatched particles. a, Polygonal particles
with well-matched shapes (here regular hexagons) readily aggregate
into space-filling two-dimensional aggregates. b, Generic particles
(for example, irregular hexagons with long and short sides) must be
distorted to form a compact aggregate, resulting in geometrical frustration.
c, At low surface tensions, frustration precludes the formation of compact
polygon packings, yielding tree-like aggregates. Conversely, a large surface
tension results in a bulk. Fibres constitute a compromise between these
two extremes.

define σ̃ . To confirm this, we extrapolate the specific energy of our
periodic fibres to infinite lengths and compare them to that of the
hexagon bulk shown in Figs 1c and 4a. As shown in Fig. 4b, the fibre
energy exceeds that of the bulk, implying that fibres are indeed out
of equilibrium.

We rationalize fibre formation by contrasting the marginal cost
of adding a polygon to the side or to the tip of a pre-existing
anisotropic aggregate (Fig. 2d). Upon a side addition, the new
polygon is tucked into the existing structure, minimizing the surface
energy cost associated with the addition. A tip addition, on the
other hand, hardly deforms the existing aggregate and thus implies a
lower deformation cost. This difference in deformation cost is more
dramatic for thicker aggregates, where a side addition deforms a
larger number of particles. As a result, formoderate surface tensions,
side additions may be favourable for thinner aggregates but not
for thicker ones, leading to the formation of finite-width fibres. As
this argument specifically deals with marginal addition energies in
sequential growth, it does not imply that fibres are global energy
minima for the aggregate morphologies.

To confirm that our fibres are metastable aggregates, we next
establish that they are unaffected by small perturbations in the
growth pathway but change morphology if nucleated from a more
stable phase. To test the first point, we modify our algorithm to
successively add two polygons, then remove one. Similar to polygon
addition, our polygon removal procedure minimizes the aggregate
energy in a short-sighted fashion, allowing the relaxation of built-
up stresses and thus lowering the aggregate energy. The whole
procedure is then iterated until an aggregate of the desired size
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Figure 2 | Polygon model of aggregation. Here we present hexagons with
sides of alternating length characterized by an asymmetry parameter k> 1.
a, Two-hexagon aggregate with two joined sides and 10 unjoined sides
outlined in orange. b, Magnitude of the total energy e(α) of a k= 1 regular
hexagon of side `. We also plot separately each of its two terms as defined
in the Methods. The equilibrium side length `g and ground-state
deformation energy eg are shown. c, Hexagons with alternating sides
become increasingly frustrated as their asymmetry is increased (k 6= 1), as
evidenced by the increasing gap between the energies of the ground state
(eg) and the bulk (eb, corresponding to the bulk topology of Fig. 1c). This
frustration eventually decreases at high k as the hexagon bulk goes to a
triangular lattice (see Supplementary Information). d, Two contrasting
additions to an anisotropic aggregate: left, to a side flank that broadens the
fibre, right, to the end of the fibre to extend it. The di�erent energy costs are
noted below each case, and illustrated on the figure by the orange line and
the purple shading, respectively.

is obtained. As expected, fibres are essentially unaffected by this
local change in protocol (Fig. 3b). We next grow an aggregate
from a nucleus of the bulk, inducing significant morphological
changes, as predicted (Fig. 3c). However, the one-dimensional,
periodic growth is preserved, attesting to the robustness of the fibre-
forming mechanism. Furthermore, seeding aggregates with fibre
fragments results in morphologies identical to those of Fig. 3a (see
Supplementary Information).

Moving beyond the k= 2 hexagons considered above, Fig. 3d,e
demonstrates that our description is valid for a broad range of
k corresponding to variations of the frustration energy eb − eg
by several orders of magnitude, from '7 × 10−6 for k = 1.01
to '2×10−1 for k=4. Despite these very substantial differences,
the rescaled parameter σ̃ remains an excellent predictor of fibre
formation. Finally, we move away from hexagons altogether in
Fig. 3f,g and demonstrate fibre formation in regular pentagons and
octagons, two further shapes that do not tile the plane and thus
generate intrinsically frustrated aggregates. Despite very diverse
internal fibre structures, the onset of fibre formation is again very
well predicted by the criterion σ̃ '2.

Our results demonstrate that inherently frustrated aggregates of
mismatched particles assume a richer range of morphologies than
is found in well-matched objects. Moreover, they robustly form
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Figure 3 | Aggregates resulting from our growth algorithm. a–g, For all conditions probed (shown on figure), periodic fibres form at intermediate rescaled
surface tension σ̃ . Orange polygons represent the initial topology used to initiate the growth algorithm. Older polygons are coloured in dark blue, while
light blue denotes the most recent additions. The orange line outlines unjoined sides. Trees form at low tension, but superficially appear much more
compact than the illustration of Fig. 1c: this is because their many branches overlap each other, as can be seen from the convoluted, re-entrant orange
aggregate boundary. Such self-overlaps are not penalized in our algorithm. Bulks form at high tensions. High-resolution images and movies of the growth
process are shown in the Supplementary information.

fibres when particle adhesion is commensurate with frustration, in
strong contrast with the three-dimensional morphologies resulting
from, for example, the flocculation of simple spherical colloids. Our
analysis suggests that slender aggregates result from a compromise
between, on the one hand, the elastic incentive to place all parti-
cles in the vicinity of the boundary of the aggregate to relax their
frustrated shapes, and on the other hand, the tendency to form a
compact aggregate that maximizes adhesion. This simple principle
should also apply to three-dimensional objects, where the defor-
mation cost illustrated in Fig. 2d is augmented by chirality effects,
which favour one-dimensional twisted ribbons morphologies in

colloidal assemblies10. Moreover, chirality penalizes bulk aggregates
in three dimensions11,12, which can lead to the formation of either
fibres or sheets.

The currently dominant paradigm for frustration in soft mat-
ter equates shape incompatibility with a mismatch between an
intrinsically curved Riemannian metric favoured by the object and
the flat metric of the embedding space13–16. At equilibrium, this
mismatch is accommodated by introducing defects in the sys-
tem17 or by forming slender morphologies if defects are strongly
penalized12,18–21. Although slender morphologies and topological
defects both arise in our aggregates (see Fig. 4c), our fibres are
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Figure 4 | Fibre energy and structure. a, Hexagon, pentagon and octagon bulk structures used to compute the bulk energy eb—and thus the rescaled
tension σ̃—with unit cells outlined in orange (see Methods). Their structures are inspired by aggregates grown under high tensions. The two octagon bulks
have identical energies per particle; note that while their polygons superficially appear to have only six sides on the figure, they are actually octagons with
two pairs of perfectly aligned sides appearing as longer sides. b, The energy per particle of infinite fibres based on those shown in Fig. 3 is higher that of the
bulk, implying that they are nonequilibrium structures. c, Defects—that is, four-coordinated and two-coordinated vertices—are apparent upon closer
inspection of some fibres from Fig. 3 (arrows).

distinctively out-of-equilibrium structures. Moreover, they arise
irrespective ofwhether the intrinsicGaussian curvature of their con-
stitutive polygons is positive (for pentagons), negative (octagons),
or zero (irregular hexagons), in contrast to existing Riemannian
metric models.

Turning to pathological fibre formation, our results suggest that
the distinctive fibrous morphologies of protein aggregates need not
be due to a mere coincidental convergence of molecular mecha-
nisms, but could instead result from generic physical principles.
Indeed, while the formation of cross-β spines is often discussed as
the defining feature of one important class of such fibres, namely
amyloids4, deviations from this specificmolecular organization have
been observed22 and secondary interactions contribute significantly
to their mechanics23 and morphologies24. Although our simple
model does not incorporate important effects such as the stochas-
ticity due to thermal agitation or the entropic stabilization of fibres
through their vibrational modes, these basic features are still consis-
tent with the diverse morphologies we obtain upon small variations
of our parameters, and could apply to protein fibres with radically
different structures3. Beyond biological materials, fibre formation
upon aggregation could become a hallmark of self-assembled, frus-
trated matter, leading to new design principles taking advantage of
increasingly sophisticated artificial asymmetrical building blocks at
the nano- and microscale25,26.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Expression of the aggregate energy. The deformation energy for the αth polygon
is a function of its area A(α) and of the lengths {`(α)i }i=1...n of its sides through

e(α)=
1

A(α)
+

n∑
i=1

ki
2
[
`
(α)

i

]2 (1)

where n is the number of sides of the polygon. In this expression, the tendency to
extend the area of the polygon due to the first term is counteracted by the harmonic
restoring forces due to the second term (Fig. 2b). The elastic ground state of energy
eg discussed in the text is obtained by minimizing e(α) with respect to the positions
of the polygon’s vertices. Ground-state polygons are rigid, that is, devoid of internal
soft modes due to the prestress inherent to equation (1) (ref. 27). The irregularity of
this ground state can be continuously tuned through the choice of the spring
constants ki, and regular polygons are obtained when they are all identical. The
alternating-side polygons presented in Figs 1b and 2a and used throughout have
k1=k3=k5=1 (long sides, marked by pink tabs) and k2=k4=k6=k>1 (short
sides, unmarked), which defines the asymmetry parameter k. Throughout this
work we concentrate on the domain k≥1 without loss of generality. Indeed our
problem is invariant under the transformation k→1/k by way of a proper rescaling
of lengths and energies, and thus the aggregation process at any k∈(0,1) can be
inferred from the appropriate k∈(1,∞). Although the specific form of the energy
equation (1) is chosen for numerical convenience, its precise expression does not
strongly influence our results.

Multiple polygons can be connected through the joining of one or several of
their sides. Two joined sides are treated as a single object, implying that they share
the same two end-vertices (Fig. 2a). We refer to the specification of all such
junctions as the topology T of the aggregate. The specification of a T constrains
the aggregate shape, and thus tends to increase the deformation energy e(α) of each
polygon above eg. In this paper, we consider aggregates whose energies are minimal
with respect to the position of their vertices for a given T , and denote by e(α)T the
deformation energy of particle α in this state of mechanical force balance. We
denote by Nu(T ) the number of unjoined sides in topology T ; for instance Nu=10
in Fig. 2a, as indicated by the orange lines. Imposing the surface tension energy
penalty σ >0 to each unjoined side regardless of its actual length, the total energy
of an aggregate comprising N polygons thus reads

E({ki},σ ,T )=
N∑
α=1

[
e(α)T −eg

]
+Nu(T )σ (2)

The first term of the right-hand side of equation (2) describes the total deformation
energy in excess of the ground-state energy Neg, while the second term is the
surface energy. Overall, E depends on the structure of the aggregate only through
its topology T . The average energy per particle discussed in the text is defined
as e=E/N .

Surface energy for trees and bulks.We compute the surface energy of a tree
comprising N polygons by noting that it has Nu=2+N (n−2) unjoined sides.

We demonstrate this by recursion over N , noting that Nu=n for N =1. Each
additional polygon adds n sides to the existing aggregate, n−1 of which are
unjoined. The existing aggregate also loses one unjoined side to the connection
with the new polygon. Thus, Nu is incremented by n−2 each time a new polygon is
added to the tree, which proves our statement. The number of unjoined sides in a
tree is thus proportional to its total number of polygons. As the number of unjoined
sides in a two-dimensional bulk is proportional to

√
N , in the N→∞ limit its

surface energy is negligible compared to its nonzero elastic energy per particle.

Deformation energy for trees and bulks. The deformation energy of trees and
bulks are computed by minimizing the energy equation (1) respectively with free
boundary conditions or assuming the lattice structures illustrated in Fig. 4a for
regular pentagons:

eg=2
√
2
(
5−2
√
5
)1/4

, eb=
√
6 (3)

regular octagons:

eg=2
√

2(
√
2−1), eb=

23/2

51/4
(4)

and irregular hexagons:

eg=
2
√
2

3b+
√
3a

{√
3(k−2)a2+2

√
3(k+1)a−3b

[
2a+
√
3kb−2(k+1)

]}1/2
,

eb=
23/2k1/4

31/4
(5)

with a=(3−3k+
√
1+14k+k2)/(4+4k) and b=

√
1−a2.

Sequential aggregation algorithm.We use a deterministic algorithm that
considers all possible options for the addition of a polygon onto an existing
aggregate, some of which are illustrated in Supplementary Fig. 4. After minimizing
the total energy of the whole aggregate with respect to the coordinates of all its
vertices for each option (which induces the polygon distortions seen in the figure),
it selects the option associated with the lowest total energy E and uses the result as
the basis of the next polygon addition. Similar to kinetic, irreversible protein
aggregation in vivo, this procedure does not necessarily achieve the most
energetically favourable aggregate topology globally. Instead, our algorithm locally
guarantees the best energetic choice at each addition step, allowing the formation
of metastable aggregates characteristic of our frustrated interactions.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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