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Abstract. Actomyosin contractility is essential for biological force generation,
and is well understood in highly organized structures such as striated muscle.
Additionally, actomyosin bundles devoid of this organization are known to
contract both in vivo and in vitro, which cannot be described by standard muscle
models. To narrow down the search for possible contraction mechanisms in these
systems, we investigate their microscopic symmetries. We show that contractile
behavior requires non-identical motors that generate large-enough forces to
probe the nonlinear elastic behavior of F-actin. This suggests a role for filament
buckling in the contraction of these bundles, consistent with recent experimental
results on reconstituted actomyosin bundles.
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1. Introduction

The large-scale motion of living organisms often depends on their ability to harness the power
of nanometer-sized molecular motors to generate macroscopic displacements. For instance,
our striated muscles rely on clusters—or ‘thick filaments’—of the molecular motor myosin
to generate forces. Myosin thick filaments are able to slide directionally toward the barbed end
of polar actin filaments (F-actin), and the characteristic organization of striated muscles into
periodic sarcomeres arranged in series allows the transfer of this microscopic motion to larger
scales (figure 1(a)) [1].

Despite its familiarity, sarcomere-like organization is far from a universal feature
of contractile actomyosin assemblies. In some instances, partially periodic arrangements
reminiscent of sarcomeres are observed, as in subcellular contractile bundles known as stress
fibers [2]. In many other cases, however, no such organization is known to exist. Examples
include smooth muscle fibers [3], transverse arcs [4], graded polarity bundles [5], the cell
cortex [6] and lamellar networks [7]. Sarcomere-like contraction is unlikely to apply to these
systems, and there is no consensus regarding their actual deformation mechanism.

In vitro experiments using purified proteins are useful in understanding contraction in these
systems and have been used to identify the minimum requirements for actomyosin contractility
since the 1940s [8]. Modern attempts using dilute actomyosin gels were not able to induce
contractility in the presence of actin and myosin alone, although adding the actin cross-linker
a-actinin did produce observable contraction [9—-12]. However, a more recent study using denser
actomyosin bundles shows that F-actin and myosin can induce contractility on their own [13].
Unlike in sarcomeres, in these bundles F-actin lacks polarity ordering, and myosins are not
aligned in register. We therefore refer to them as ‘disordered’.

Previous theoretical work on disordered actomyosin systems include continuum models
focused on length scales much larger than an individual actin filament [ 14—17]. In these elegant
descriptions, contractility is introduced phenomenologically, which circumvents the question
of its emergence from microscopic interactions. Several other studies do, however, investigate
this connection. In simulations without sarcomeric organization or cross-linkers, thick filaments
simply sort F-actin by polarity without inducing any overall contraction [18]. To restore
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Figure 1. Contraction and extension in actomyosin systems. (a) Contraction in
sarcomeres occurs as motors localized in the vicinity of the F-actin pointed ends
slide toward F-actin barbed ends. (b) A motor located near the F-actin pointed
ends induces local contraction as in sarcomeres (left), whereas localization near
the barbed ends yields extension (right). The two effects balance each other in a
large class of bundles, which we characterize in this paper.

contractility, several models assume that thick filaments tend to dwell at the barbed end of
F-actin after sliding over its whole length [19-22] or more generally that their velocity depends
on their position relative to the filament [23]. In these models, F-actin tend to have immobilized
motors that transiently act as passive cross-linkers at their barbed ends. This essentially
introduces a small amount of sarcomere-like organization and results in contractility [18].
However, no direct experimental evidence for thick filaments dwelling at the barbed end of
F-actin is available.

Here we investigate the possibility for bundle contraction in the absence of any sarcomeric
organization, including motors dwelling at the filament barbed ends. After introducing a general
bundle model in section 2, we show in section 3 that underlying symmetries between contraction
and extension (figure 1(b)) imply that disordered bundle contraction requires non-identical
motors and nonlinear elastic behavior of the filaments. Intuitively, non-identical motors induce
mechanical frustration in a disordered actomyosin bundle, thus generating both contractile
and extensile stresses. The filament nonlinear behavior then allows the former to deform the
bundle while resisting the latter, yielding overall contraction. Finally, in section 4 we discuss the
limitations of our model and propose a minimal model for the contraction of a non-sarcomeric
bundle.

2. Bundle model

In order to make general statements about a disordered bundle of potentially complex internal
geometry, we develop a detailed description of its mechanics without resorting to the simplifying
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Figure 2. Schematic representation of a model bundle comprising three F-actin,
one myosin thick filament bound in three different sites (linker 1) and one
bound only once (linker 2). Colors indicate the division into linker units (red),
junction units (blue) and filament units (green). Our model does not impose any
restrictions on the number of junctions associated with a linker, whether they
involve one or more F-actin, or the polarity of the F-actin.

mean-field approximations widely used in previous studies [19-23]. The main assumptions of
our model are as follows. Firstly, we assume that the velocity of a motor only depends on
the force applied to it by the F-actin to which it is bound. Secondly, the average deformation
of a thermally fluctuating section of filament in the bundle only depends on the force
applied longitudinally at its ends. Thirdly, we consider a stabilized bundle where F-actin
polymerization and depolymerization do not occur. Finally, our model does not include the
attachment—detachment dynamics of motors and cross-linkers to F-actin. The relevance of these
choices is discussed in section 4.

We describe a bundle of arbitrary geometry by subdividing it into interacting ‘units’ of
three types characterized by their lengths, velocities and tensions (section 2.1). Introducing
general notations to describe the physical connections between different units, we express the
relationships between their forces and velocities as a function of their spatial arrangement
(section 2.2). The central physics of bundle mechanics are then described by introducing the
filament force—extension relationships and the motor force—velocity relationships (section 2.3).
Conservation equations are then used to derive a compact description of the bundle amenable to
further discussion (section 2.4).

2.1. Linkers, filaments and junctions

Here we consider a single bundle constituted by F-actin, thick filaments of myosin molecular
motors and optionally passive actin cross-linkers. F-actin are assumed to be aligned in the z-
direction, and for simplicity we refer to the direction of positive (negative) z as the ‘right’
(‘left’) in the following. To describe the bundle, we decompose it so as to distinguish three
types of ‘units’ (figure 2):

¢ Linker units, representing a whole myosin thick filament or a passive actin cross-linker
(passive cross-linkers are equivalent to immobile motors). The total number of linker units
in the system is denoted by n”.

e Junction units, representing the point of contact between a myosin thick filament or
passive actin cross-linker, on the one hand, and an F-actin, on the other. The total number
of junction units in the system is denoted by n'.
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Figure 3. Summary of the notation. A filament unit (a), junction unit (b)
and linker unit (c) are represented, along with the velocities and lengths
characterizing their state, as well as the forces they are subjected to.

¢ Filament units, representing a portion of an F-actin comprised between two junction units
or between one junction unit and an F-actin-free end. We do not consider freely floating
F-actin (filament units with two free ends). The total number of filament units in the system
is denoted by n.

We label the filament units as i =1, ..., n, and denote by f; the tension of filament unit
i (f; > 0 for a filament unit under extension). We allow filament units to bend away from the
z-axis while maintaining their overall z-orientation, and thus introduce filament unit i’s contour
length and end-to-end length as two independent variables L; and ¢;, respectively. Finally, we
introduce the velocity v} of the rightmost monomer of filament unit i, and the velocity v} of
its leftmost monomer. These two velocities are Eulerian velocities; in that respect, one might
think of junction 1 of figure 2 as a bridge and the actin as the water that flows under it. Then
the velocities v} and v} associated with filament units 1 and 2 are the velocities of the water just
upstream and downstream of the bridge, as opposed to being the velocities of a specific fluid
element. The notation is summarized in figure 3(a).

We label junction units as i’ =1, ..., n’, and linker units as i” =1, ..., n”. We introduce
the velocity v, of linker unit i”, i.e. the velocity of the bridge itself in our previous analogy. We
choose to work in the reference frame where the center of mass of all linker units is motionless,
which reads

Zv;f, =0. (D

i"=1

Note that the velocities v} and v, are absolute velocities defined in this reference frame, as
opposed to being velocities relative to the neighboring linker. We delay labeling the other forces
and velocities involved in junction and linker units until the introduction of convenient notations
in the next section.
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2.2. Bundle geometry and topology

To describe the physical connections between junction and filament units, we define the n’ x n
matrices p and A by

1 if i is the right-hand neighbor of i’,
piri = : (2a)
0 otherwise,
1 if i is the left-hand neighbor of i/,
A = . (2b)
0 otherwise.
For instance, the bundle represented in figure 2 is described by
1 000O0O0O 01 000O0O
00100O0O0 0001O0O0O0
000O0OT1TO0OO 000O0O0OT1TPO
000O0O0OT1O 000O0O0O01
The usefulness of these matrices is illustrated by introducing the notation f = (f1, ..., f,) for

the vector of all filament tensions, as well as similar notations L, €, v", v', v”. The matrix product
of is a vector of length n” whose i’th component (pf); is the tension of the filament unit that is
the right-hand neighbor of junction unit i’. This neighbor thus exerts a force (pf);; on junction
unit i’, while its left-hand neighbor exerts —(A f);;. The sum of these two forces is equal and
opposite to the force applied to junction unit i" by its linker unit. This last force thus reads
[(A = p) fi (figure 3(b)).

Further use of p and A indicates that the velocities of the rightmost and leftmost actin
monomers involved in junction unit i’ are (pv'); and (Av");, respectively (figure 3(b)). As
junction units are point-like objects, the net actin flow in and out of them vanishes and

A= povl. 4

The reasoning used here can be generalized in the following way: if x; is a quantity
associated with filament i, then (px); is associated with the right-hand neighbor of junction
unit i’. For instance, in the two previous paragraphs we considered x; = f; and x; = v! or
v;, respectively. Just as this statement relates junction units to quantities associated with the
neighboring filament units, we can conversely relate filament units to quantities associated with
their junction unit neighbors as follows. If x/, is associated with junction unit i’, then (p"x’); is
associated with the junction unit that is the left neighbor of filament unit 7 if it has one, or is
equal to zero if it does not (the superscript T denotes the matrix transpose). A similar statement
holds for AT. Combining this with the fact that each junction unit has exactly one right-hand and
one left-hand neighbor, we find that (pp"x’);; = x/, always. More generally,

opl =T =1, )

where 1 denotes the identity matrix. We further note that filament units may have one or two
neighbors, which implies that

x; if i has a left-hand neighbor,

T _
(p"px)i = {0 if it does not. (6)

This means that the matrix pTp is a projector onto the subspace of filament units that have a
left-hand neighbor. A similar statement holds for ATA. This discussion implies that n’ < n.

New Journal of Physics 14 (2012) 033037 (http://www.njp.org/)
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To describe the polarity of the filament units, we introduce the diagonal n x n matrix IT,

where I1;; = 1 if the pointed end of filament unit i points to the right, and IT;; = —1 if it points
to the left. As an example, figure 2 has
[T =diag(1,1,—-1,—1,1, 1, 1). (7)

A similar diagonal polarity matrix IT’ is associated with junction units, and since neighboring
filaments and junction units have the same polarity we have

' = pllp" = AT (8)
Turning to the linker units, we define the n” x n’ matrix y by

1 if i’ is connected to i”,

Vi = { )

0 otherwise.

For instance, figure 2 has

1110 "
V_Q)oo J' (10)

Therefore, the velocity of the linker unit connected to junction unit i’ is (yTv”); (figure 3(b)).
Each junction unit is connected to a linker unit, but one linker unit can be connected to several
junction units, which implies that n” < n'.

To obtain the forces associated with the linker units, we reason that if i" experiences a force
[(A — p) f]i from its linker unit, then i" exerts an equal and opposite force [(p — A) f];» on the
linker unit (figure 3(c)). Force balance imposes that the sum of the forces applied on any linker
unit vanishes, and thus

> e—Mf1lr =0, (11)

i’ connected to i”

or, in vector notation,

y(o =2 f=0. (12)

Although this condition comprises n” scalar equations, those equations are not all independent.
This can be seen by considering the mechanical subsystem formed by all junction and filament
units (but not including the linker units). As inertia and friction against the background fluid are
negligible, the sum of all forces applied to this system by junction units must vanish:

n

I =p)fli==> ly(p—2)flir=0, (13)

i'=1 i"=1
where the first equality follows from the fact that y has exactly one element equal to 1 per

column and zeros everywhere else. As equation (13) is always trivially true, equation (12)
expresses only n” — 1 linearly independent scalar conditions.

2.3. Filament elasticity and motor operation

Having defined notations for all lengths, forces and velocities in our system (figure 3) and having
enforced the velocity continuity and force balance conditions, we turn to characterizing the more
substantial physics of the junction and filament units.

New Journal of Physics 14 (2012) 033037 (http://www.njp.org/)


http://www.njp.org/

8 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Filament units are sections of semiflexible polymers shorter than or with a length
comparable to their persistence length. We thus assume that the force required to hold a
filament unit of a given contour length L; in mechanical equilibrium is uniquely determined
by specifying its end-to-end length ¢;, which defines the force—extension relationship F:

fi=F, L. (14)

In the case of a thermally fluctuating polymer, ¢; denotes the end-to-end length averaged over
thermal fluctuations. Thermal bending of the filament unit, moreover, implies that ¢; is smaller
than L; even when f; = 0. Since filament units are shorter than the filament persistence length,
we expect deformations of this kind ranging from zero to ~20%. In vector notation, we write

f=F@,L). (15)

Motor operation at junction i’ is described by a functional relationship between the local
velocity of the linker relative to the F-actin and the force applied to i’

(pv' —y"") = Vi AlO.— p) f 1 (16)

where the function V;, a priori depends on the polarity IT, of the junction unit. This
dependence can be explicitly determined by noting that the force—velocity relationship must not
depend on our arbitrary choice of the direction of positive z. Reversing this choice is equivalent
to reversing the sign of all velocities, forces and polarities. The only way for equation (16) to be
invariant under this transformation is to write

(pv' =y ™"y = T, Vi AT (= p) £}, (17)

where function V is the force—velocity relationship of motor i’, an a priori nonlinear function
independent of IT". In vector notation,

pv' =y =TIV (A - p) f1. (18)

2.4. Dynamical equations for bundle deformation

To provide a kinematic description of bundle contraction and extension, we write the
conservation of F-actin contour length. The rate of change in the contour length of a filament
unit is directly related to the velocity at which the neighboring junction units slide relative to
F-actin. If i has a neighboring junction unit on its right-hand side, the velocity of the linker unit
there is (ATyTv");, and its sliding velocity relative to the actin is (ATyTv” — v");. We rewrite
this sliding velocity as (ATyTv” — ATAv");, which is equal to the previous expression if i has a
right-hand neighbor and to zero if it does not. Using a similar reasoning for the left-hand side,
we obtain

dL

dr
The first (second) term on the right-hand side of this equation accounts for actin-linker sliding
on the right-hand (left-hand) side of the filament units, and vanishes for the filament units that
do not have a right-hand (left-hand) neighbor junction unit.

We describe the evolution of the end-to-end length of a filament unit in different ways,

depending on whether it has two junction unit neighbors or a free end. In the former case,

de¢;

E — ()\T,}/Tv//)i _ (pTyTv//)i’ (20)

()\.TJ/TUU )\’T)\vl‘) (pT T " —p pv) (19)
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where the two terms in the right-hand side are the absolute velocities of the right and left
neighbors of i, respectively. To describe a filament unit with one free end, we first note that it
has vanishing tension. If the contour length of the filament unit is known, its end-to-end length
is given by its force—extension relation equation (14) with f; = 0. Differentiating with respect
to time, we obtain

oFde; oFdL;

——+— = (21)

9¢ dr 9L dr

Defining the diagonal matrices

oF afi oF
s = _f = lj (El’ L; ) (2261)
oL/, 9L, oL
oF afi oF
IFN O 5 0 1, (22b)
o0 ), o¢; ol

where §;; is the Kronecker delta, we rewrite equation (21) as

de; aF\ ' 9F dL
—=—(=) 7+ (23)
dt Y dL dr |

for a filament unit with a free end>. Making use of equation (6) and its analogue for AT\, we write
an equation that describes filament units whether they have one or two neighboring junction
units:
de

oF\ ' 9F dL
(24)
dt

04 9L dt

We finally use equations (4), (15) and (18) to eliminate f, pv' and Av" in equations (19)
and (24). This yields
dL

=(p AT = ATy — (L —p kak)(

pre (p" = AHI'V'[IT'(A — p)F (¢, L)], (25a)
e dF\ ' OF . e
o - \3¢ —(,0 p =AW (" +AHITV'[IT (L — p)F (¢, L)]
1 Y,
+(p pAT = ATaph)y ol (L, L), (25b)

where the nonlinear vector function v} (€, L) is the solution to the linear (in v”) system of
equations formed by equation (1) and the following vector equation, obtained by combining
equations (12) and (15), then differentiating with respect to time and inserting equations (25)
into the result

y(p— /\) (p ToxT=2Taphy v =y (p— ?») (p ToAT=ATapHITV'[IT' (L — p)F (¢, L)].
(26)

Equation (26), just like equation (12), has only n” —1 independent scalar equations, and
supplementing it with equation (1) thus results in a complete set of equations for v;. Finally,
supplementing equations (1), (25) and (26) with an initial condition [£(t =0), L(t =0)]
completely specifies the dynamics of a bundle of arbitrary geometry.

> Mechanical stability imposes that 3 F /3£ is always strictly negative, making the matrix d F /94 invertible.
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3. Situations without telescopic deformation

We now ask under what conditions contraction occurs. We are interested in bundles much
longer than the size of any single one of their constituents (F-actin or motor). Significant
contraction of such a bundle requires that it contracts throughout its length, as opposed to,
e.g., contracting at its extremities while the bulk of the bundle retains a constant length. We
thus focus on ‘telescopic deformation’, whereby the end-to-end velocity of a bundle contracting
under vanishing external load is proportional to its length. This constitutes the standard behavior
of contractile actomyosin structures in vivo [1, 24-26] and in vitro [13]. Telescopic deformation
is characteristic of systems formed by a serial arrangement of many independently deforming
elements, often referred to as ‘contractile units’ [13, 25, 26].

Here we demonstrate two requirements for telescopic deformation. In section 3.1, we show
that it cannot arise if the motors all have identical force—velocity relationships. Section 3.2 then
tackles situations where motors with different force—velocity relationships are present. In that
case, we prove that bundles lacking polarity organization comprised of linearly elastic (i.e. rigid)
filaments do not undergo telescopic deformation. Such rigid filament units represent situations
where the filament persistence length is very large (e.g. bundles of microtubules and kinesin
oligomers) or when the filament units themselves are very short (e.g. strongly cross-linked
bundles, where the spacing between two junctions is small).

To completely determine the bundle dynamics, we need to specify an initial condition
[£(t =0), L(t = 0)]. We thus choose an arbitrary vector L, of length n and impose L(t =0) =
L. To avoid confusion between the effects of motor-generated stresses, which are relevant for
contractility, and those of bundle prestress, which are not, we consider bundles that are initially
stress-free:

ft=0=F[Lt=0),Lt=0)]=0. 27)

This imposes £(t = 0) = £,, where £, is the solution of the equation F (£, Ly) =0 and thus
completely specifies the bundle initial condition.

3.1. Motors with identical force—velocity relationships

In a bundle where the motors have identical force—velocity relationships, the junction units have
identical spontaneous sliding velocities v* in the absence of applied force. Defining v* as the
length n” vector with all its components equal to v*, we can thus write

V(f =0 =v" (28)

We now demonstrate that under this assumption, all linker units are immobile throughout the
dynamics and all right-pointing filaments undergo a uniform translation with constant velocity
v*, while left-pointing filaments translate with —v*.

We define the set of functions [£*(¢), L*(¢)] by

L*(t) = Lo+ (pT — A DHIT'v*t (29)

and by defining £*(z) as the solution of F[€*(z), L*(t)] =0. This set manifestly satisfies
the initial condition [£y, Ly] chosen above. Inserting [£*(¢), L*(¢)] into equations (25), we
further verify that these functions satisfy the equations of motion, implying that they
describe the dynamics of the bundle. Using equations (18) and (26), we find that v = 0 and
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pv' = Av" = IT'v* for all times, thus confirming that linker units are immobile and that the
velocities associated with right- and left-pointing actin are v* and —v*, respectively.

In this regime, the maximum relative speed between any two actin filament units is 2|v
irrespective of bundle geometry. Defining the contraction velocity of the bundle as the difference
between the velocities of its leftmost and rightmost filaments, this implies that the contraction
velocity cannot exceed the constant 2|v*|. It is thus impossible for the contraction velocity to
scale linearly with bundle length, and telescopic contractility does not occur. Instead, filaments
are segregated according to polarity, as observed experimentally in [27]. Note that this result
does not require the bundle to be disordered.

|

3.2. Disordered bundles with linearly elastic filaments

In a bundle with arbitrary force—velocity relationships, the reasoning of the previous section
does not apply, and some amount of contraction or extension is generally present. We thus
ask whether bundles contract on average, and find that they do only if filament polarities are
organized across the bundles or if the filaments display nonlinear elastic behavior.

To prove this statement, we first give a mathematical description of bundles devoid of
both polarity organization and filament nonlinear elastic behavior (section 3.2.1) and then use
equations (25) and (26) to show that such bundles do not contract (section 3.2.2).

3.2.1. Mathematical formulation. Consider an arbitrary bundle, which we denote by B.
Bundle B is fully characterized by specifying matrices A, p, I1, y, the force—velocity functions
V' and the initial condition L. Therefore, a population of bundles is fully characterized
by specifying the distribution P(B) =P(A, p, I, y, V', Ly) of the frequencies at which
any possible bundle B arises in the population. For a population without any polarization
organization, P(B) must be independent of [T, implying in particular that it is invariant under
polarity reversal:

P, p, I, y, V', L)) =P, p, =11, y, V', Ly). (30)
This relationship clearly does not apply to a population of sarcomeres. Indeed, in a sarcomere,
static cross-linkers are restricted to the barbed ends of F-actin, while active, mobile motors are
found at the pointed ends. Thus the polarity-reversed image of a sarcomere is not a sarcomere;
actually, inverting the polarities of filaments in figure 1(a) results in an extensile, not contractile,
structure. Assumption of equation (30) excludes sarcomeric contractility from our discussion
below.

We further assume that filament units exhibit linear elastic behavior, which reads
oF oF

F(E,L)za—£(€—€0)+ﬁ(L—L0), (3la)
where d F/0¢ and 0 F/0L are constants, i.e.

d (oF d (OF

—(=)==(Z=)=o0. (31b)

dr \ 94 dr \oL

This assumption is a good description of very stiff filaments, where ¢; = L; for any filament
unit i. Indeed, such filaments can be described by choosing the force—extension relationship

F;, L))=K({ — L)), (32)
and enforcing the limit K — +o0o. Here K is a constant and therefore equation (32) satisfies
equations (31).
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Figure 4. Example of a path (red dotted line), as discussed in section 3.2.2. The
leftmost and rightmost points of the bundle are labelled by gray circles. In this
example, € = €f = ef, = €2 = —? =1 and all other €”s are equal to zero. As
a consequence, equation (33) reads dL% /dr = d (€ + €8 — 5 + 05, +£5) /dr.

3.2.2. Proof of the property. To determine whether a bundle B ={A, p,I1,y, V', Ly} is
contractile or extensile, we imagine labeling its leftmost and rightmost points, and ask whether
the distance L£? between these two labels tends to increase or decrease with time. To calculate
L8, we choose a path along the bundle’s linker and filament units going from the left label to
the right label as pictured in figure 4. We define €” as equal to 1 if the path considered crosses
filament unit i from left to right, to —1 if it crosses it from right to left and to O otherwise (see
the caption of figure 4). The contraction velocity of the bundle can then be defined as

dc® . des

AT o
We use the following notation to refer to the solution of the equations of motion for bundle B:

L%(t)=Lo+AL"(1), (34a)

(1) =4+ AL (1). (34b)

We now introduce bundle B as the polarity-reversed image of B, i.e. B=
{A, p, —1I1, v, V/LLO}. Substituting equations (31) into equations (25) and (26), we find that
the dynamics of B satisfies

ALty = —AL3 @), (35a)
ALB (1) = —ALB(1). (35b)

Combining this with equations (33) and (34) while using the path ef = €8 to assess the

12
contraction of B, we find that

dc®  dct

= = 36
dr dr (56)
We finally calculate the average contraction velocity over a population of bundles as
dc dcs
—)=)> P(B)—, 37
< T > ; (B)~— (37)
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where the sum runs over all possible bundles. Reorganizing this sum, we find that
dl 1 dch . dcB 1 dcB  dch

<dt>_ 2 XB: [P(B) i TTE } = 2zB:P(B) ( a ) =0 (38)
where equations (30) and (36) are used to derive the second and third equalities, respectively.
Equation (38) demonstrates that bundles without polarity organization or nonlinear elastic
behavior do not contract or extend on average. This result does not depend on bundle structure
or the form of the motor force—velocity relationships, and can easily be generalized to bundles
pinned to a rigid substrate, or to include friction of the linker or filament units with the
solvent. Mean-field modeling of dilute actomyosin gels with rigid filaments suggests that
this symmetry-based reasoning could have a three-dimensional counterpart [23]. However,
geometrical nonlinearities in two or more dimensions can take on the role played by elastic

nonlinearities in one-dimensional bundles, thus enabling contraction in disordered networks of
rigid filaments [28].

4. Discussion

In this paper, we consider bundles of sliding motors and filaments with arbitrary geometries and
motor force—velocity relationships and show that their contractility requires

1. non-identical motors and
2. either

(a) polarity organization or
(b) nonlinear elastic response of the filaments.

While our model is framed in terms of F-actin and myosin for clarity, our results are much
more general and could equally apply to bundles comprised of other types of motors and
filaments (e.g. kinesins and microtubules). Our description includes as a special case the well-
understood contractility of striated muscle sarcomeres (figure 1(a)). Their architecture includes
both identical myosin thick filaments and passive cross-linkers (which are mathematically
equivalent to motors with velocity zero), thus satisfying condition (1). They, moreover, have
a distinctive polarity organization and thereby fulfill condition (2a). Similarly, bundles with
motors whose velocities depend on their position relative to the filaments [19-23] generically
break polarity-reversal symmetry, which results in polarity organization.

Besides establishing the requirements for contractility, the formalism presented here can
describe the dynamics of a wide range of contractile bundles. For instance, straightforward
numerical simulations of equations (25) and (26) could be used to describe bundle deformation
as a function of the initial arrangement of the filament and motors. Comparing these predictions
to experimental observations while varying these initial parameters could yield insight into the
architecture of the bundles, which is currently lacking. Although such a study is beyond the
scope of this work, a simplified version of our formalism still successfully predicts the onset of
their contraction [29].

Whereas the model used here is designed to describe a large class of contractile
bundles, some of our assumptions are particularly appropriate for describing the reconstituted
bundles of [13]. F-actin is phalloidin-stabilized in this system, implying that no actin
polymerization—depolymerization takes place; myosin thick filaments are much shorter
(~300nm) and thicker (=~50nm) than F-actin (=5 um and =5 nm, respectively), justifying
New Journal of Physics 14 (2012) 033037 (http://www.njp.org/)
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Figure 5. The Fenn effect impedes bundle contractility. (a) Simple contractile
bundle comprised of fast (light) and slow (dark) motors. Double-headed arrows
indicate local contraction or expansion due to the movement of the motors
relative to the filaments (figure 1(b)). (b) As tension builds following contraction,
the motors detach and reorganize and contractility diminishes.

our assumption that they behave as rigid objects; and myosin thick filaments do not detach
from the bundle on the time scales relevant for contraction, suggesting that the filament—motor
attachment—detachment dynamics are inessential for contractility. Indeed, we show elsewhere
that attachment—detachment can limit contractility under low myosin conditions [29].

Going beyond the specifics of the system studied in [13], it is interesting to discuss bundles
where this attachment—detachment dynamics is not negligible. In the simplest such situation,
motors undergo attachment and detachment at a constant rate, which tends to randomize their
distribution in a filament polarity-independent manner. This fails to break the polarity-reversal
symmetry discussed in this paper, and the resulting requirements for contractility are unchanged.

A more interesting question is to ask whether contractility could arise from the load-
dependent detachment of myosin motors. Specifically, the detachment rate of myosin motors
decreases under increasing load, a tendency known as the ‘Fenn effect’ [30]. To assess its
influence on contractility, we consider the simple bundle of rigid filaments illustrated in
figure 5(a). This bundle comprises a contracting and an expanding region similar to those of
figure 1(b). When faster motors happen to be concentrated in the contracting region, this bundle
is contractile. Assuming that its ends are fixed, the bundle comes under tensile force during
contraction. As a consequence, its expanding region comes under negative load and the motors
there tend to detach. Conversely, the motors in the contracting region experience a positive load
and tend to hold on to the filaments. On average, detached motors thus tend to diffuse from
the expanding to the contracting region (figure 5(b)). The reduced number of motors in the
expanding region implies that its resistance to the applied tension decreases, thus increasing its
expansion rate. As the contracting region tends to recruit the slower motors from the expanding
region, its contraction rate decreases. Overall, the Fenn effect thus tends to suppress contractile
configurations rather than amplify them. This suggests that the Fenn effect cannot generate
contractility in the absence of polarity organization or filament nonlinear elastic response.

The requirements derived in this paper offer insight into the contractility of actomyosin
bundles without sarcomere-like organization, for which no established contraction mechanism
exists. As they do not satisfy condition (2a), we propose that they contract by fulfilling
conditions (1) and (2b) [29]. Consider two antiparallel filaments interacting through several
different motors with distinct speeds (figure 6(a)). As motors start to move relative to the
filaments, stresses build up in sections of the filament flanked by motors with different speeds.
When the flanking motor proximal to the barbed end is faster than that proximal to the pointed
end, compression arises. When it is slower, tension arises. F-actin responds nonlinearly to
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» contraction =

Figure 6. Filament buckling as a mechanism of bundle contractility. (a) The
presence of fast (white) and slow (gray) motors generically induces compressive
(red) and extensile (blue) stresses in filaments. (b) Buckling of the compressed
filaments leads to an overall shortening of the bundle. Buckling of filament
units of length L; = 500 nm occurs for compressive forces of order kg T ¢,/ L? ~
0.16 pN, where £, ~ 10 um is the F-actin persistence length. Myosin thick
filaments typically exert forces of several piconewtons [33], which is sufficient
for inducing buckling, but remains smaller than the tension required to break
F-actin (=100 pN [34]).

these stresses by buckling under compression while resisting extension, which has previously
been proposed to play a role in actomyosin contraction [31]. Following the buckling of the
compressed filament sections, fast motors are free to move quickly while the others move
slowly. This results in the growth of compressed sections and the shrinkage of extended ones,
and thus in overall bundle contraction (figure 6(b)). Experimental observations suggest that this
mechanism could be at the origin of contraction in reconstituted actomyosin bundles [29] and
that F-actin buckling can occur in cells [32]. These results offer a new, interesting perspective
on the mechanisms underlying actomyosin bundle contraction in vivo.
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