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The study of dynamical tunneling in a periodically driven anharmonic potential probes the quantum-classical
transition via the experimental control of the effective Planck’s constant for the system. In this paper we consider
the prospects for observing dynamical tunneling with ultracold atoms in magnetic microtraps on atom chips. We
outline the driven anharmonic potentials that are possible using standard magnetic traps and find the Floquet
spectrum for one of these as a function of the potential strength, modulation, and effective Planck’s constant. We
develop an integrable approximation to the nonintegrable Hamiltonian and find that it can explain the behavior
of the tunneling rate as a function of the effective Planck’s constant in the regular region of parameter space. In
the chaotic region we compare our results with the predictions of models that describe chaos-assisted tunneling.
Finally, we examine the practicality of performing these experiments in the laboratory with Bose-Einstein
condensates.
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I. INTRODUCTION

Tunnelling is one of the ubiquitous features of wave me-
chanics. A familiar example of quantum tunneling of a single
particle occurs in a time-independent spatially symmetric
double-well potential. A quantum particle initially located
in one of the wells with an energy below the maximum of
the potential barrier between the wells will tunnel between
them, despite this being classically forbidden (see, for instance,
Ref. [1]). However, tunnelling is a more general phenomenon
that can be observed in situations involving other types of
symmetries and barriers.

In this paper we are interested in dynamical tunneling in
classically nonintegrable systems, i.e., Hamiltonian systems
with more degrees of freedom than constants of motion.
The classical dynamics of such systems is known to exhibit
chaotic features [2]. However, for a Hamiltonian of the form
H0 + εV , where H0 is integrable and εV is a sufficiently
small chaos-inducing perturbation (a quasi-integrable system),
some constants of motion are locally conserved, leading to the
formation of so-called Kolmogorov-Arnol’d-Moser (KAM)
tori [2]. Within these tori the dynamics of the system is still
regular. Poincaré surfaces of sections of such systems show
characteristic patterns of seas of chaos surrounding islands of
regular motion [see, for instance, Fig. 1(d)].

While particles cannot classically escape the regions bound
by the KAM tori, quantum mechanical particles are able to
tunnel through KAM barriers to symmetry-related islands [3].
Due to the similarities with spatial tunneling in double wells
and the dynamical origin of the barrier the quantum particle
crosses, this phenomenon was named dynamical tunnelling by
Davis and Heller [4].
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Laser-cooled atomic gases confined in magneto-optical
traps have proven to be useful systems for the demonstration of
single-particle matter wave phenomena. Impressive examples
include Kapitzsa-Dirac scattering [5], Bragg scattering [6],
two-slit interference [7], and Wannier-Stark ladders [8]. One of
the first experimental demonstrations of dynamical tunneling
by Steck et al. began with velocity-selected cold atoms from
a magneto-optical trap [9].

Further decreasing the temperature of cold-atom systems
via evaporative cooling can lead to the formation of a Bose-
Einstein condensate (BEC)—a “giant” matter wave. This can
lead to practical advantages in studying the physics of matter
waves, as the increase in phase-space density combined with
macroscopic coherence allows for the single shot visualization
of single-particle matter wave phenomena, such as interference
[10] and quantum tunneling [11]. However, the repulsive
interactions common in atomic BEC can cause additional
complications. A second experimental demonstration of dy-
namical tunneling by Hensinger et al. used a Bose-Einstein
condensate as their starting point [12]. The BEC was released
from its initial trap, and allowed to expand until the interaction
energy was negligible. Single-particle dynamical tunneling
was observed in the following dynamics [13]. Another recent
experiment on dynamical tunneling succeeded in extracting
the full phase-space representation of the quantum state of a
kicked top [14,15].

A common theoretical model for dynamical tunneling
is that of the nonlinear pendulum, with the dimensionless
Hamiltonian

H = p2

2
+ κ(1 + 2ε cos t) sin2

(
q

2

)
, (1)

where p, q, and t are the dimensionless momentum, position,
and time variables, respectively; κ is the potential strength;
and ε is the strength of the driving. This potential can be
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realized experimentally with cold atoms placed in an intensity
modulated optical standing wave, and this was the system
realized by Steck et al. [9] and Hensinger et al. [12].

One of the motivations for the theoretical study of dy-
namical tunneling has been to explore the boundary between
classical and quantum dynamics. The relevant parameter is
the effective Planck’s constant, defined by the commutator
[q̂,p̂] = ih̄eff of the dimensionless position q and momentum
p variables of the Hamiltonian, Eq. (1). By varying experimen-
tal parameters it is in principle feasible to carry out experiments
that are identical apart from differing values of h̄eff . This would,
for example, lead to a variation in the rate of tunnelling, and
this has been studied in a large number of theoretical papers
[16–26]. However, the experiments performed by Steck et al.
[9] and Hensinger et al. [12] considered single, large values of
h̄eff , and, while impressive, they did not probe the quantum-
classical transition that occurs as h̄eff → 0. Here we revisit
the problem of observing dynamical tunneling in a experiment
with ultracold atoms for a range of effective Planck’s constant
h̄eff to probe the quantum-classical transition.

As well as working at large h̄eff , the modulated standing-
wave potential for cold atoms used in Refs. [9,12] to study
dynamical tunneling does not directly correspond to the clas-
sical nonlinear pendulum. The phase space of the pendulum
has periodic boundary conditions for the position variable,
while atoms in an optical standing wave can move between
lattice sites. The value of h̄eff used by Hensinger et al. [12]
was sufficiently large that during the dynamics the atoms were
not confined to a single well of the standing wave [12,13,27].
Thus, the Husimi functions of the tunneling Floquet states were
not confined to a single lattice site, and long-range coherence
played an important role in the observed dynamics [12,13,27].
This complicates the picture that was presented in Ref. [12] of
a classical particle tunneling to an oscillatory mode with the
same amplitude but 180◦ out of phase. One way of avoiding
this would be to use a trapping potential with a single minimum
rather than multiple minima. Then, within the approximation
that all atoms share the same single-particle wave function, all
atoms will experience the same dynamics.

For a one-dimensional system, a sinusoidal modulation
of the trapping potential can lead to a mixed phase space
with symmetric islands of regular motion. If the potential
is anharmonic then dynamical tunneling may occur between
the period-one islands in the phase space. However, to a first
approximation almost all ultracold atom experiments occur in
harmonic trapping potentials. One possible realization of an
anharmonic potential for ultracold atoms is the radial trapping
potential formed by the magnetic field from current-carrying
microscopic wires combined with a homogeneous bias field on
an atom chip [28]. While such potentials are harmonic at the
center, beyond a certain length scale they become linear. Also,
these microtraps can be made very tight, potentially giving
access to a large range of h̄eff , a crucial prerequisite for studies
of the quantum-classical transition and so far not achieved in
cold atom experiments.

While quantum chaos and dynamical tunneling are purely
single-particle effects, the preparation of a BEC greatly
simplifies the efficient loading of small regions of phase space.
Therefore, in this paper we consider the possibilities for studies
of quantum chaos using BECs confined by magnetic potentials

on an atom chip. As long as the condensate is sufficiently
dilute, its dynamical tunneling is to a good approximation
dominated by single-particle physics, to which we devote a
large part of this article. We outline our model in Sec. II, before
describing our numerical results for dynamical tunneling
in a 1D atom-chip potential in Sec. III. We analyze these
results using different theoretical methods and, in particular,
derive an integrable approximation that explains some of the
observed features. In Sec. IV we consider the practicalities of
realizing these experiments, including the effect of mean-field
interactions in the BEC, before concluding in Sec. V. In
Appendix A we outline the derivation of the possible potentials
realizable with an atom chip, essentially consisting of an
infinite wire carrying a time-dependent current combined with
a time-dependent bias magnetic field. In Appendix B we derive
the reduced dimensional Gross-Pitaevskii equation that we use
for simulations in Sec. IV.

II. MODEL

A. Hamiltonian

We consider a time-dependent potential realized by a
current-carrying wire and a homogeneous bias magnetic
field. Reducing the problem to one dimension and making
use of dimensionless units (see Appendix A), the following
dimensionless Hamiltonian can be realized:

Hm = p2

2
+ κ(1 + ε cos t)(1 + q2)1/2. (2)

Here the dimensionless momentum p, position q, and time t

variables can be converted to SI units by multiplying by the
quantities

p̄ = B0m�

B ′ , q̄ = B0

B ′ , t̄ = 1

�
, (3)

respectively. Here B ′ is the magnetic field gradient at the trap
center, B0 is the magnetic field offset, � is the frequency of
modulation of the trapping potential, and m is the mass of the
atom. The amplitude of the driving potential is given by ε, and
the strength of the potential is

κ = gmF μBB ′2

mB0�2
≡ ω2

r

�2
, (4)

where g is the Landé g factor, mF identifies the magnetic
sublevel of the atom, μB is the Bohr magneton, and ωr is
the harmonic trapping frequency about the minimum of the
potential for small amplitude oscillations. A detailed derivation
of the Hamiltonian Eq. (2) can be found in Appendix A.

B. Classical dynamics

The parameters κ and ε are experimentally tunable, and
altering them allows the investigation of various dynamical
regimes. Example Poincaré sections for two values of κ and ε

are shown in Fig. 1.
In this article we consider the dynamics associated with

the fixed points resulting from the 1:1 resonance of the
unperturbed motion (described by H0 = p2/2 + κ

√
1 + q2)

with the period of the perturbation εV = εκ cos t
√

1 + q2. As
the quantity κ is increased from zero, two such fixed points
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FIG. 1. Poincaré sections for the classical dynamics of the atom-
chip Hamiltonian, Eq. (2) at t = 0, illustrating the influence of the
potential strength κ and modulation amplitude ε on the classical
dynamics. We show results for the parameters: (a) κ = 1.2, ε = 0.1;
(b) κ = 1.2, ε = 0.6; (c) κ = 1.8, ε = 0.1; (d) κ = 1.8, ε = 0.6.

appear at the origin of the phase space at κ = 1 [29] and then
move away from each other, as plotted in Fig. 2.

As ε is increased, the KAM tori constraining the motion
to regular behavior are progressively destroyed, and larger
regions of chaos appear about the islands centered on the
period-one resonances.
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FIG. 2. (Color online) Distance in phase-space between the
period-one resonances at t = 0 as a function of potential strength
κ for three values of modulation strength ε. The black curves are
determined from the Poincaré section for the full Hamiltonian Eq. (2).
The cyan (gray) curves are the corresponding result derived from
the integrable approximation to the full Hamiltonian, Eq. (9), as
introduced in Sec. III B. These give an indication of the validity
of the integrable approximation. Solid lines: ε = 0.1. Dashed lines:
ε = 0.4. Dash-dot lines: ε = 0.8.

C. Quantum dynamics

The effective Planck’s constant for this system is the
commutator of the dimensionless quantum position and
momentum operators,

h̄eff = i[p̂,q̂] = h̄B ′2

B2
0m�

. (5)

Larger values of h̄eff correspond to systems that are “more
quantum.” It is possible to experimentally tune this parameter
while retaining fixed values of κ and ε.

In a quantum system, dynamical tunneling will take place
between the period-one islands of regular motion I+ and I−
of the classical Hamiltonian because of their time-reversal
symmetry. This can be understood using Floquet theory, a
formalism used to describe systems with a periodic time
dependence [3,9,12,17–21,30–32]. The Floquet operator F̂

describes quantum evolution for one period of the potential
modulation, T0, and its eigenstates are invariant under a
T0 = 2πt̄ time translation. These are similar to the eigenstates
of a time-independent Hamiltonian, which are invariant under
any time translation. In our system, the tunneling states are
even and odd superpositions of states localized on the islands
I+ and I−. These are expected to be eigenstates of the system’s
Floquet operator Fm. As noted in the Introduction, |ψeven〉 and
|ψodd〉 are analogous to the ground state and first excited state
of a double-well system, respectively. Because the Floquet
operator is unitary, it has eigenvalues of the form

f = exp (−2πiE/h̄eff) , (6)

where E is the corresponding eigenstate’s quasienergy—the
generalization of the notion of energy to time-periodic systems.

D. Numerical solution of the Floquet spectrum

To study dynamical tunneling in this system, we must
numerically determine the Floquet spectrum and identify the
even and odd Floquet states that are localized on the period-one
fixed points of the Poincaré section. These will be dependent
on the potential strength κ , modulation amplitude ε, and
effective Planck’s constant h̄eff . As the trapping potential is
symmetric, the even and odd Floquet states are uncoupled.
Our numerical procedure is to choose a regular grid in
position space and then separately evolve a basis of even and
odd combinations of position eigenfunctions for one period
of the modulation. This determines the Floquet matrix Fm

for the Hamiltonian Hm, which we diagonalize to find the
Floquet states. The tunneling states are identified as being
the even (odd) Floquet states having the largest overlaps
with an even (odd) superposition of coherent states centered
on the period-one fixed points of the classical phase space.
We therefore can expect a localized state on one island to
be formed by |φ+〉 = (|ψeven〉 + |ψodd〉)/

√
2, and this will

tunnel to a state |φ−〉 = (|ψeven〉 − |ψodd〉)/
√

2 localized on
the opposite island. The corresponding tunneling period is
given by Ttunnel = 2πh̄eff/	E, where 	E is the quasienergy
splitting of the tunneling states: 	E = |Eeven − Eodd|.
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FIG. 3. Quasienergy splitting 	E of the tunneling Floquet states
as a function of the inverse effective Planck’s constant 1/h̄eff and the
modulation strength ε for the atom-chip Hamiltonian Eq. (2) for two
different potential strengths. (a) κ = 1.2; (b) κ = 2.0.

III. RESULTS

In this section we investigate the dependence of the
quasienergy splitting 	E on the tunable parameters for our
system κ , ε, and h̄eff . Typical results are shown in Fig. 3
for (a) κ = 1.2 and (b) κ = 2.0. These figures have several
noteworthy features, many of which have been observed
previously in other systems [17,18,22,31,32].

A. Overview

For our analysis, we divide the parameter space shown in
Fig. 3 into two regions according to the characteristic behavior
of the quasienergy splitting. First, we see in the bottom-left
corner of Figs. 3(a)–3(b) that for a large parameter range the
behavior of 	E is not completely unruly, but instead some
grooves and plateau structures are obvious. The dependence
of 	E on 1/h̄eff differs from the exponential behavior charac-
teristic of Hamiltonians of the form H = p2/2 + V (q), while
still being quite smooth. In this regime, which we call quantum
regular regime (QRR), the quasienergy splitting periodically
falls to zero. To the best of our knowledge, this has not been
commented on in detail in previous studies—we account for
the origin of these grooved structures in Sec. III B. This result
constitutes the most significant theoretical development of this
paper.

Second, in the top-right corners of Figs. 3(a)–3(b), classical
chaos has the strongest influence on the system. This regime
is characterized by the dramatic and apparently disorderly
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FIG. 4. Quasienergy splitting 	E of the tunneling Floquet states
as a function of the inverse effective Planck’s constant 1/h̄eff and the
modulation strength ε for the (a) quartic oscillator with Hamiltonian
given by Eq. (7) and κ = 2; (b) nonlinear pendulum with Hamiltonian
given by Eq. (8) and κ = 1.5.

fluctuations of 	E [17,18,23], and we refer to it as the classical
chaotic regime (CCR). In our discussion of the CRR, Sec. III C,
we apply existing theories by Podolskiy and Narimanov [24]
and Eltschka and Schlagheck [21] to our specific scenario.
Comparison of these theories with our numerical simulations
shows good agreement and completes our analysis of the
present atom-chip system in the single-particle regime.

We note that the division described above is not peculiar to
the atom-chip Hamiltonian but appears to be a general feature
of driven quasi-integrable systems. We have also diagonalized
the Floquet operator for other nonlinear potentials such as the
quartic oscillator,

H = p2

2
+ κ(1 + ε cos t)q4, (7)

as well as the nonlinear pendulum,

H = p2

2
− κ(1 + ε cos t) cos q, (8)

and found the same features. Sample results are shown in
Fig. 4. The latter Hamiltonian has been studied elsewhere both
theoretically [17,18,30,31] and experimentally [9,12].

B. Quantum regular regime

We define the quantum regular regime as the region in
parameter space where the quasienergy splitting 	E varies
smoothly, apart from the apparently periodic troughs where
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FIG. 5. (Color online) Comparison of the Floquet spectrum of the full Hamiltonian Hm, Eq. (2), and the energy spectrum of the integrable
approximation Hi , Eq. (9), for κ = 1.2 and ε = 0.1. (a) The quasienergy spectrum of the full Hamiltonian as a function of 1/h̄eff . The black
points are for the even Floquet states, and the cyan (gray) points are for the odd Floquet states. The points corresponding to the tunneling states
are joined with thick solid lines of the same color. (b) The energy spectrum of the integrable Hamiltonian as a function of 1/h̄eff , with the same
color scheme as for (a). The structures here are very similar to those in (a), indicating that the integrable approximation captures the important
features of the full Hamiltonian in this regime. (c) A plot of the quasienergy difference of the even and odd tunneling states as a function of
1/h̄eff . Black curve: full Hamiltonian. Cyan (gray) curve: integrable approximation.

the splitting goes to zero. In both Figs. 3(a) and 3(b) it is
the region for which ε � 0.3. The origin of this behavior can
be seen by plotting the quasienergy spectrum of the Floquet
operator Fm as in Figs. 5(a)–5(b). We find that at regularly
spaced values of 1/h̄eff , a Floquet state not involved in the
tunneling deflects the tunneling state of the same parity through
an avoided crossing scheme very similar to the result of a
typical first-order perturbation theory calculation.

This scenario has previously been invoked in the context
of tunneling or dynamical tunneling suppression [31,32],
often in order to describe the phenomena inducing the CCR
fluctuations [17,18,33]. More generally, it has been noted that
level repulsion occurs for dynamical tunneling in the presence
of a chaotic sea [21,23,24]. However, we demonstrate here
that this effect has no chaotic origin. This conclusion was also
reached in Ref. [33] by different means. Here we make use
of secular perturbation theory [2] and assume that κ − 1 is of
order ε and, therefore, within the islands of regular motion we
have both q = O(

√
ε) and p = O(

√
ε). This allows us to to

derive a second-order integrable approximation Hi to the full
atom-chip Hamiltonian Hm given by Eq. (2) as [2]

Hi = 3

1024

(
p2 + q2

)3 + 3(κ − 2)

64

(
p2 + q2

)2

+ 6(κ − 1) − 3(κ − 1)2 + ε2

24
p2

+ 6(κ − 1) − 3(κ − 1)2 − 5ε2

24
q2. (9)

We find that this integrable approximation represents the
classical dynamics of Hm reasonably well up to κ = 1.3
and ε = 0.6. This can be seen by comparing the Poincaré
sections for the full Hamiltonian Eq. (2) and the integrable
approximation Eq. (9) in Fig. 6. Also, the prediction of the
distance between the period-one fixed points of the integrable
approximation Eq. (9) and the full Hamiltonian Eq. (2) is
shown in Fig. 2 as a function of κ for three values of ε.

To proceed we quantize the integrable Hamiltonian Hi ,
Eq. (9). In principle, we could choose any operator ordering;
given the symmetry of Eq. (9) we choose symmetric ordering.

This is then easily diagonalized numerically, and the resulting
spectrum is plotted in Fig. 5(b). This should be compared to the
spectrum of the Floquet operator Fm for the full Hamiltonian
shown in Fig. 5(a). Qualitatively the spectra are similar and
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FIG. 6. Comparison of the Poincaré sections for the full Hamil-
tonian Hm, Eq. (2), and the integrable approximation Hi , Eq. (9)
at t = 0, for (a) κ = 1.3 and ε = 0.1, (b) κ = 1.1 and ε = 0.6, (c)
κ = 1.3 and ε = 0.6. Although the presence of chaos for Hm in
this latter regime makes the Poincaré sections of Hm and Hi look
rather different, we find good agreement for the regular regions. The
quantum behavior of the two systems agree for relatively large values
of h̄eff as shown in Sec. III B.
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FIG. 7. (Color online) (a) Energy versus inverse action for the
trajectories of the integrable approximation Hi that are not located on
the islands (solid black curve). The gap occurs due to the presence of
the islands. The inset shows selected trajectories of Hi . The energy
of the trajectories in cyan (gray) are denoted in the main figure by
cyan (gray) points as indicated by the arrows. (b) Energy of the
semiclassical and quantum states as a function of 1/h̄eff . The thin
curves are the EBK quantization of the trajectories of Hi , Eq. (9).
The thin solid black curves correspond to even parity states, and the
thin dashed cyan (gray) curves to odd parity states. The thick black
curve is the energy of the even tunneling state, and the thick cyan
(gray) curve is the energy of the odd tunneling state, both found via
the numerical diagonalization of Hi , Eq. (9). The avoided crossings
of the quantum tunneling states with other states of the same parity
are clearly visible.

quantitatively the prediction for the quasienergy splittings of
the tunneling states are in good agreement with that found from
the full Hamiltonian as shown in Fig. 5(c). We conclude that the
tunneling states of the integrable approximation contain the
essential features of the full system for κ � 1.3, ε � 0.6, and
1/h̄eff � 1. It was previously shown that the enhancement
of tunneling does not require chaos but can originate from
avoided crossings in the Floquet spectrum [33]. Here we have
demonstrated that even nonintegrability is not necessary.

To understand the quasiperiodic vanishing of the difference
in quasienergy of the tunneling Floquet states as a function
of h̄eff , we first plot in Fig. 7(a) the energy of the classical
trajectories of Hi not located on the islands for κ = 1.2 and
ε = 0.1 in Fig. 7(a) as a function of the inverse action J−1,
where [2]

J = 1

2π

∮
p dq. (10)

A gap exists in the curve for the range of the inverse action
2.5 � J−1 � 4.2 corresponding to energies E � 1.29 × 10−2

for which the classical trajectories are instead located on the
islands.

We can now apply the Einstein-Brillouin-Keller (EBK)
quantization method, which states that in order to correspond
to a quantum eigenstate, the trajectories must satisfy

J = h̄eff(n + 1/2) with n ∈ N. (11)

This will discretize the curve of energy versus inverse action
in Fig. 7(a) for any particular value of h̄eff . Now as 1/h̄eff

is increased, the spacing of the points along the x axis will
also be increased, and particular eigenstates will move from
the left-hand part of the curve (outside of the islands) to the
right-hand part (inside the islands) and have a strong effect on
the tunneling states. The energy of EBK quantized trajectories
for n = 0 to n = 10 is plotted in Fig. 7(b)—even trajectories
as thin black solid curves and odd trajectories as thin cyan
(gray) dashed curves. The thick solid black curve is the energy
of the even tunneling state, and the thick solid cyan (gray)
curve is the odd tunneling state, both found from numerical
diagonalization of the integrable approximation to the full
Hamiltonian, Eq. (9). In Fig. 5 it is easy to see the avoided
level crossings between Floquet states with the same parity.
The curve for the quasienergy of each tunneling Floquet state
changes direction at each avoided crossing, resulting in regular
crossings of the quasienergies of the odd and even Floquet
tunneling states, resulting in 	E = 0 and an infinite tunneling
period. It seems quite reasonable that this explanation applies
directly to the quasi-integrable Hamiltonian (2) in the QRR
regime.

We have found that the spacing of the occurrences of
	E = 0 as a function of 1/h̄eff decreases with increasing κ . For
example, it can be seen in Fig. 3 that the spacing of the valleys
as a function of 1/h̄eff decreases between (a) with κ = 1.2
and (b) with κ = 2.0. This can be explained in the following
manner. We find that that the period-one islands remain of
a similar phase space area for a given κ . Let the minimum
action of any closed trajectory that lies entirely outside the
islands be denoted as J1. Likewise, let the maximum action
of any closed trajectory that lies entirely inside the islands be
denoted as J2. The nth (with n large enough) crossing then
will occur between 1/h̄eff = (n + 3/2)/J1 and (n + 1/2)/J2.
As κ increases, the distance between the islands in phase space
increases, meaning J1 and J2 increase, and the spacing between
the nth and (n + 1)th quasi-energy degeneracy of the tunneling
states will decrease. This is in agreement with the behavior of
the Floquet spectrum of the full system.

In summary, in this section we have shown that the
quantized integrable approximation Eq. (9) accounts for all
the significant features of dynamical tunneling of the full
system Hamiltonian Eq. (2) in the QRR. Therefore, we have
demonstrated that the underlying classical nonintegrability of
the full system has little effect in the QRR.

C. Classical chaotic regime

The defining characteristic of the classical chaotic regime
is the irregular and large fluctuations of the quasienergy
splitting 	E as the parameters 1/h̄eff and ε are varied.
Before considering the fluctuations, we comment on the
coarse behavior of the tunnel splitting as we enter the CCR
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FIG. 8. (Color online) Quasienergy splitting of the tunneling
Floquet states versus 1/h̄eff for κ = 1.2, ε = 0.75. Thin solid
black line: Exact result. Thick cyan (gray) solid line: Numerical
diagonalization of the integrable approximation. Dashed red line:
Result of the Podolskiy-Narimanov theory with the proportionality
coefficient of Eq. (12) as a fitting parameter. Inset: Poincaré sections
of the full Hamiltonian (right) and of its integrable approximation
(left). The tunneling behavior of the full Hamiltonian Hm [Eq. (2)]
agrees with the integrable approximation Hi [Eq. (9)] as long as the
quantum coarse-graining effect prevents the quantum particle from
seeing the layers of chaos. For smaller values of h̄eff , tunneling is
enhanced by the presence of chaos in the underlying classical phase
space according to the Podolskiy-Narimanov model [24].

from the QRR, by choosing ε near the upper boundaries of
Figs. 3(a)–3(b) and then increasing 1/h̄eff .

Averaging over the fluctuations of the quasienergy differ-
ence of the Floquet states as a function of 1/h̄eff , we find
that the overall tendency of the tunneling splitting variation
resembles an exponential decrease with increasing 1/h̄eff , as
expected for dynamical tunneling phenomena [22,34]. It is
not surprising that the tunnel splitting tends to decrease as the
potential strength κ is increased and the two islands move
away from each other in phase space. However, it should
be noted that after initially decreasing with increasing ε,
	E starts increasing again as the system enters the CCR
[17]. This latter phenomenon can be attributed to so-called
chaos-assisted tunneling. This occurs when the dominant
transport mechanism from one island to the other is no longer
direct quantum transport as in a regular system but instead a
three-step process. First, particles tunnel from the center of
one island to the sea of chaos, then are classically transported
through the chaotic sea from the vicinity of this island to the
vicinity of the other, and then eventually tunnel from the sea
of chaos to the center of this latter island [24]. The complete
behavior of 	E as 1/h̄eff is increased is shown in Figs. 8 and 9.
A number of regions with distinct changes in the average slope
of the log10(	E) versus 1/h̄eff curve are evident. These indeed
can be partially accounted for by changes of the dominant
transport mechanism from one island to the other.

For large values of h̄eff , we expect the quantum behavior
of chaotic systems to approach that of regular systems, as
the quantum “coarse-graining” makes them insensitive to the
presence of fine phase-space structures. We are, hence, in the
QRR, where the quasienergy splittings of the time-modulated
system agree with those of the integrable approximation,
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FIG. 9. (Color online) Quasienergy splitting of the tunneling
Floquet states as a function of h̄eff for κ = 2, ε = 15/32. Solid
black line: Exact numerical result. Red dashed line: Podolskiy-
Narimanov theory (one fitting parameter). Blue dash-dot line:
Eltschka-Schlagheck theory (no fitting parameter). Inset: Poincaré
section centered on I+. One secondary resonances chain is clearly
dominant. For large values of h̄eff , the quantum coarse-graining
prevents the system from seeing these small phase-space structures,
and its behavior is then well described by Eq. (12). For smaller values
of h̄eff the Eltschka-Schlagheck model [21], which takes the island
chain into account, shows much better agreement with the numerical
data.

showing that the dominant transport mechanism from one
island to the other is direct tunneling.

Starting from the QRR and decreasing the effective Planck’s
constant, we reach a regime where h̄eff is comparable to the
phase-space area of the period-one islands of regular motion.
If chaos is present in the classical phase space, the dominant
tunneling mechanism is then expected to be chaos-assisted
tunneling, as described earlier. According to Podolskiy and
Narimanov [24], the tunnel splittings yielded by such a
mechanism have the following dependence on h̄eff :

	E ∝ h̄eff

 (A/πh̄eff,2A/πh̄eff)


 (A/πh̄eff + 1,0)
, (12)

where A is the phase-space area of one island of regular motion
and 
 the upper incomplete 
 function [35]. We observe
the transition from the QRR to this regime in Fig. 8, where
the tunneling behavior of Hm diverges from the approximate
exponential behaviour yielded by Hi to follow the Podolskiy-
Narimanov theory as h̄eff is decreased. A more generic result
than Eq. (12) for the chaos-assisted tunneling splitting has
recently been found by Bäcker et al. [26].

However, neither the Podolskiy-Narimanov model nor the
Bäcker et al. model takes into account the fine features of the
classical phase space, for example, partial dynamical barriers
embedded in the sea of chaos [36], or the internal structure
of the islands of regular motion themselves. Therefore, even
if some systems are well described by these models for a
certain range of h̄eff , decreasing this parameter, and, therefore,
the resolution of the quantum coarse-graining, can make the
system “see” those small structures. As can be seen in Fig. 9,
this leads to dramatic deviations from Eq. (12).

For h̄eff � 0.1, it is once again possible to explain the
observed deviations by a change in the dominant transport
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mechanism from one island to the other. It is known that in the
semiclassical limit h̄eff → 0, tunneling through regular phase
space is greatly facilitated by the presence of resonance chains
[19,20]. It is therefore expected that for low h̄eff tunneling
between an island of regular motion and the sea of chaos will
be enhanced by the presence of a secondary resonance chain
embedded in this island.

A model reflecting this idea has been developed by Eltschka
and Schlagheck [21], with a detailed description given in
Ref. [25]. Let us assume each of the symmetric islands of
regular motion supports a r:s secondary resonance chain—i.e.,
where s internal oscillation periods match r driving periods,
and r subislands are visible on the Poincaré section. This
situation is well illustrated in our system for the parameters
presented in Fig. 9 (see inset). First, the authors approximate
the dynamics within the island to that of a pendulum and treat
the pendulum potential 2Vr:s cos rθ as a perturbation. This
perturbation couples the ground state |ψ0〉 of the unperturbed
approximate Hamiltonian only to the excited states |ψlr 〉 where
l is an integer. In the following, we will denote |φl〉 = |ψlr〉.
Denoting by 2πIc the phase-space area of the island of regular
motion (measured on a Poincaré section), they calculate the
coupling of the unperturbed ground state of the island to its
kth φ-type state through this resonance, where k is defined by
I(k−1) < Ic < Ik (Il , l ∈ N denotes the action associated with
the lth φ state). In other words, they calculate the coupling of
the approximate ground state of the island to the lowest φ-state
localized in a region where chaos is present for the exact
Hamiltonian. They then assume that this coupling describes
the effective coupling of φ0 to the sea of chaos and model the
latter by two matrices of the Gaussian orthogonal ensemble
(one for each parity), which means that they neglect the effects
of partial barriers in the chaotic part of phase space. Using the
results from Ref. [23], they are therefore able to calculate
an expectation value for the logarithm of the quasienergy
splittings for each set of parameters, which we compare to
our numerical results in Fig. 9.

We find reasonable qualitative and quantitative agreement
in the range h̄eff < 0.1, which is expected as this is precisely
the order of magnitude of the phase-space area of the dominant
chain’s resonances. We also observe an effect already noted
by Eltschka and Schlagheck [21], namely the fact that
the sharp decrease of the analytically calculated tunneling
splittings is shifted to lower values of h̄eff as compared to the
similar decrease of the splittings obtained from the numerical
simulations. Such steps occur when the value of the index
k changes, i.e., every time an unperturbed φ state of the
approximate Hamiltonian crosses the somewhat artificial limit
Ic of the island of regular motion. This happens for every
integer l such that Ic = h̄eff(lr + 1/2) (in our case, r = 6
and l = 1). It is known, however, that states that are neither
chaotic nor regular (hierarchical states: see Ref. [37]) can be
localized in the vicinity of the island. Therefore, the “effective
value” of the islands’ phase-space area could be a little higher
than 2π × Ic. This could account for the observed shift of
the step.

Recently, a unified description that can predict tunnel
splittings from the direct tunneling regime to the resonance
assisted regime has been developed [38]. It is hopeful that this
theory would provide an improved description of the the data

FIG. 10. (Color online) Schematic of the arrangement of con-
densate, confining potentials, and atom-chip surface (yellow) with
characteristic z-shaped wire. The atom-chip potential has the form
Eq. (2) along x = q (red) and is weakly harmonic along z (potential
not shown). Superimposed is an optical lattice potential (blue),
freezing out the dynamics along y. The gray shaded volume is the
resulting isodensity surface of a trapped BEC. Embedded density
profiles along the x, y, z, coordinate directions are also sketched.

in Fig. 9; however, its complexity puts it beyond the scope of
this paper.

IV. PROSPECTS FOR EXPERIMENTS

We now examine the feasibility of performing dynamical
tunneling experiments that explore the effects presented in
the previous sections with a Bose-Einstein condensate in a
magnetic microtrap. To this end we discuss the realization
of a one-dimensional Hamiltonian in Sec. IV A, realistic
parameters for the trapping potential in Sec. IV B, the effects
of atomic interactions in Sec. IV C, the initial state creation
and loading in Sec. IV D, and, finally, condensate sizes and
inelastic losses in Sec. IV E.

A. Confinement geometry

A key difficulty is that the form of the Hamiltonian Eq. (2) is
realized in terms of the two-dimensional (2D) radial coordinate
r =

√
x2 + y2 of the atom-chip trap, see Appendix A. Instead,

we require it to describe a 1D degree of freedom, say q = x.
Without this constraint, the islands of classically bounded
regular motion can be dynamically linked via the second
radial dimension (y). Classical diffusion can then populate the
other island and mask the signature of dynamical tunneling.
While the tunneling and diffusion rates will, in general, differ
markedly, it would be desirable to avoid this effect altogether
by freezing out the dynamics in the y direction. This could be
achieved by applying an optical lattice formed by two laser
beams propagating along the ±y directions and confining the
atoms in one well of the lattice, as sketched in Fig. 10.

In contrast to the y dimension, the z dimension can be
very weakly confined on an atom chip. The condensate in that
direction then has an approximately “infinite” extension. We
will check this assumption below in Sec. IV E.

B. Accessible tunneling parameters

We begin by proposing a regime in which it is feasible to
observe dynamical tunneling. From a practical point of view,
we wish to minimise the tunneling period and the sensitivity
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FIG. 11. (a) Poincaré section at t = 0 for the proposed exper-
imental parameters κ = 1.01, h̄eff = 1/73, ε = 0.48. Note that no
chaos is present between the islands. (b) Husimi function for the even
tunneling state. (c) Husimi function for the odd tunneling state.

of the tunneling to any small fluctuations in experimental
parameters. Distinguishable period-one islands appear in the
Poincaré section for κ > 1, and the closer the islands are in
phase space, the shorter the tunneling period. However, if the
two islands are too close to each other, separating them in
time-of-flight absorption images could be challenging. High
values of h̄eff yield faster tunneling but require very tight
trapping potentials. A convenient and accessible choice of
parameters within the QRR is κ = 1.01, h̄eff = 1/73, and
ε = 0.48, which gives a relatively short tunneling period of 159
modulations of the trapping potential. This has the additional
advantage that the tunneling period is relatively insensitive to
small, uncontrolled experimental variations in the exact value
of the parameters, with the strongest dependence being on κ .
We calculate that the following variations would induce shifts
of less than 10% in the tunneling period:

1.009 < κ < 1.011,1/77 < h̄eff < 1/69,0.37 < ε < 0.59.

(13)

The Poincaré section and Husimi functions of the two
tunneling Floquet states are shown in Fig. 11. To achieve
this with a BEC of 87Rb atoms in the F = 2, mF = 2
magnetic substate confined on an atom chip would require
a current through the trapping wire of I = 63 mA and a bias
magnetic field of Bb = 5 G. In the limit of an infinitesimal
wire, this yields a trap 25 μm from the wire which, when
combined with an axial magnetic field of B0 = 0.25 G, has
a radial trapping frequency in the harmonic approximation
of ωr = 2π × 5 kHz. At such distances wire imperfections
that could distort the confining potential and cause cloud
fragmentation can be avoided [39]. The trap depth is of the

same order of magnitude as the atomic Zeeman energy from
the magnetic field due to the wire current at the location of
the trap minimum. For our parameters it is roughly equal to
Emag = gmF μBBb ≈ 0.3 mK, more than sufficient to trap a
BEC at nanokelvin temperatures.

C. Bose-Einstein condensates and mean-field effects

So far we have considered the physics of single atoms
within the driven potential. This has previously been sufficient
to describe experiments in very dilute thermal or condensed
gases [9,12]. However, to work with a trapping potential with
a single minimum, to controllably load small regions of phase
space, and to still be able to image the resulting dynamics, it
is necessary to use atoms that are sufficiently cold and dense
that they are Bose condensed. In realistic BECs nonlinear
mean-field interactions arising from atomic s-wave collisions
can play an important role in the dynamics [40]. These
can be described using the one-dimensional Gross-Pitaevskii
equation (GPE),

ih̄eff
∂

∂t
ψ =

[
− h̄2

eff

2

∂2

∂q2
+ V (q,t) + U1D|ψ |2

]
ψ. (14)

Here the condensate wave function ψ(q,t) is normalized to 1
and the potential is V (q,t) = κ(1 + ε cos(t))(1 + q2)1/2. The
relation between the effective one-dimensional interaction-
strength U1D and the physical parameters of the system is
derived in Appendix B.

We have performed numerical simulations of the 1D Gross-
Pitaevskii equation (14) with the BEC intially loaded in the
pure Floquet superposition state |φ+〉. For the case described
in Sec. IV B, we find that dynamical tunneling oscillations
can be observed with Eq. (14) for nonlinearities up to about
Umax = 1.8 × 10−4, beyond which the nonlinearity shuts down
dynamical tunneling. For these particular parameters we have
found that this is an example of macroscopic quantum self-
trapping, which we have analyzed in detail elsewhere [41].
For the purposes of this paper, we choose U1D = 1 × 10−4

which results in unhindered dynamical tunneling oscillations
as demonstrated in Fig. 12(b), where we show the momentum-
space distribution at integer multiples of the modulation
period. This momentum-space image constitutes a direct
experimental observable, as standard time-of-flight expansion
and absorption imaging techniques convert the center-of-mass
momentum into spatial positions that are easily resolved [42].
An improved signal-to-noise ratio can potentially be obtained
by imaging along the weakly trapped z direction, as the atomic
density will be spread across fewer pixels on the camera.

Finally, we note that the onset of suppression of dynamical
tunneling by nonlinearities depends strongly on the system
parameters, and in some regimes does not occur at all. We have
studied the presence and absence of macroscopic quantum
self-trapping in Ref. [41].

D. Experimental and numerical initial states

In this section we consider how to best load the initial
Floquet superposition |φ+〉 experimentally, as well as the
effects of imperfect loading. In Fig. 12(c) we show the results
of a simulation with the same parameters as for Fig. 12(b), but
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with the initial state being a BEC dynamically prepared from
the ground state of the trapping potential such that it obtains a
large overlap with the Floquet superposition |φ+〉. We label the
resulting state |ϕ+〉. Numerically, we create |ϕ+〉 as follows:
(i) We assume an initial potential strength κini, differing
from κ . In the potential V (q) = κini(1 + ε)(1 + q2)1/2, we
determine the condensate ground state using imaginary time
evolution [42]. (ii) The resulting wave function f1(q) is given
a momentum kick f2 = f1 exp [ip0h̄eff t]. (iii) We vary κini and
p0 to maximize the overlap 〈φ+|f2〉 and finally take this as
the initial state |ϕ+〉[κini,p0] for our simulation. We see the
dynamical tunneling arising from this procedure in Fig. 12(c),
where we have used p0 = 0.244 and κini = 4.5.

The corresponding experimental sequence is as follows:
we begin with a stationary BEC trapped in the ground state
of the magnetic potential with trap strength given by κini. The
wire current would then be slowly decreased by an amount
δI = 0.78 mA and then suddenly switched back to 63 mA
to start the cloud oscillating about the center of the trap
minimum, acquiring the maximal momentum p0. When the
BEC passes the bottom of the trap for the first time (t = 0),
the simultaneous modulation of wire current and bias magnetic
fields at ε = 0.48 and � = 2π × 4.975 kHz begins, resulting
in the loading of an equal superposition of the odd and even
tunneling Floquet states with a fidelity of up to 95%. At this
moment the trap strength is also changed to κ . Following the
described sequence, the state |ϕ+〉 can be directly created in
the experiment.

On closer inspection, the simulations beginning with this
initial state show a slightly different dynamical tunneling
period compared to those that begin from a Floquet state
superposition. We find such modifications in the presence of
nonlinear interactions whenever the initial state slightly differs
from the exact Floquet state |φ+〉. As we vary κini and p0

used to define |ϕ+〉, the tunneling period undergoes small but
continuous changes. This effect is absent in the linear case
with U = 0.

E. Condensate parameters

The parameters of Figs. 12(a)–12(c) amount to a condensate
of N = 171 atoms [Eq. (B7)], assuming the axial extension of
the condensate is 50 μm, with a corresponding peak density of
2 × 1014 cm−3. For comparison, we show in Figs. 12(d)–12(f)
a second parameter set with much larger h̄eff = 1/2, with other
parameters κ = 1.3, ε = 0.2, and U1D = 0.01, corresponding
to N = 20 atoms. Realizing h̄eff = 1/2 would either require us
to lower B0 to 17 mG or increase ωx to about 2π × 300 kHz.
While challenging, precise imaging of small clouds of atoms
as discussed here has been achieved [43,44]; however, the
reliability of mean-field theory in this regime is questionable.

We estimate that three-body losses in this scenario would
limit the BEC lifetime to a few hundred milliseconds [45]
which is sufficiently long to conduct the experiment. The
Majorana transition-induced losses will be negligible as
ωLarmor/

dθ
dt

� 10 at all times, where θ is the angle between
the magnetic field and the z axis at the position of a classical
period-one resonance.

As mentioned in Sec. IV A, the freezing of the y direction
could be achieved by applying an optical lattice formed by two
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FIG. 12. (Color online) [(a)–(c)] Dynamical tunneling signatures
from condensate mean-field theory according to Eq. (14) for pa-
rameters as in Fig. 11 and U1D = 1 × 10−4. (a) Husimi function
(full width at half-maximum) of the initial state located within the
Poincaré section: (thick red, solid) initial Floquet state |φ+〉, (thick
blue, dashed) experimentally accessible Gaussian approximation as
explained in the text, |ϕ+〉. (b) Dynamical tunneling in momentum
space from initial Floquet state and (c) from initial Gaussian
approximation as explained in the text. [(d)–(f)] The same as (a)–(c)
but for parameters κ = 1.3, h̄eff = 0.5, ε = 0.2, and U1D = 0.01, with
p0 = 0.65 and κini = 0.4.

laser beams propagating along the ±y directions and confining
the atoms in one well of the lattice. The transverse (radial) size
of the condensate with 171 atoms is less than 200 nm, which
would easily fit into a single lattice site. Therefore, not only
would dynamical tunneling take place exclusively in the plane
perpendicular to the lattice, it would also occur in a single
lattice site.

Finally, we have assessed the influence of the trapping
potential in the z dimension and of experimental imperfections
in the trap alignment. We have explicitly verified that the
weakly confined z dimension can be ignored, as mentioned
in Sec. IV A. To this end, we modelled the dynamics of
Fig. 12 using the full two-dimensional GPE, Eq. (B3), with
a weak harmonic trap in the z direction. The axial condensate
wave function had a nontrivial Thomas-Fermi profile [42]. The
tunneling signal in momentum space is as clear as those shown
in Figs. 12(b) and 12(c), even accounting for imaging along
the z axis. Furthermore, in two-dimensional simulations we
have found the dynamical tunneling to be robust to changes in
the initial state away from the ideal Floquet superposition, as
well as small offsets from the trap center.

Unfortunately, it seems that the tight trapping potentials
combined with the small atom numbers present a significant
experimental challenge for dynamical tunneling with BECs to
be realized as described here. The small atom numbers found
for these examples are mostly due to the need to freeze-out
dynamics in the y direction. An investigation to what extent
dynamical tunneling can still be identified if dynamics in the
y direction is retained would be of interest but is beyond the
scope of the present paper. Note that the small number of atoms
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is required in order to keep the peak-density low enough for
the effect of interactions to remain small. The effect of stronger
interactions can be quite complicated, but elsewhere we have
found that it is possible to observe dynamical tunneling in
regimes with much larger atom numbers [41].

V. CONCLUSIONS

We have studied dynamical tunneling in a driven 1D single-
well potential provided by the magnetic field of a current-
carrying wire on an atom chip. An experiment performed
in this geometry would provide the possibility of studying
the quantum-classical transition as a function of the effective
Planck’s constant. It also has a clear correspondence to the
classical dynamical picture, uncomplicated by coherences
between neighboring wells of a standing wave [12].

We have analyzed the dependence of the dynamical tunnel-
ing rate with the experimental parameters and observed that it
fluctuates considerably, a feature previously observed for other
trapping potentials. In the limiting case of the quantum regular
regime, we were able to relate the variation in the tunneling
rate to the energy spectrum of an integrable Hamiltonian. In
the classical chaotic regime, the variation in the tunneling rate
is linked to a chaos-assisted tunneling phenomenon for high
h̄eff . For lower h̄eff we have underlined the role of classical
resonances linking the islands of regular motion with the sea
of chaos.

Finally, we have considered the experimental prospects
for realizing dynamical tunneling with a BEC in a magnetic
microtrap. We have found that dynamical tunneling would
be observable on a 10-ms time scale for realistic atom-chip
parameters provided the dynamics in the plane perpendicular
to the motion could be frozen out. However, this requires BECs
with a rather small number of atoms. Our conclusions hold in
the presence of nonlinearities due to atomic interactions as
long as these are not too large.
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APPENDIX A: ATOM-CHIP HAMILTONIANS

We consider atoms trapped in a magnetic potential formed
by a current flowing in the positive z direction along single
infinite conductor, with a constant bias field Bb in the negative
y direction. This forms a 2D potential in the x and y

dimensions. For now we will ignore any dynamics in the z

dimension—this is reasonable as on typical atom chips the
trapping potential in this dimension is much weaker and the
dynamics are correspondingly slower.

The magnetic field strength a distance
√

x2 + y2 from the
conductor will be

|B(r)| = μ0

2π

I√
x2 + y2

. (A1)

The bias field Bb cancels the field from the wire along the line
defined by

x = x0 = μ0I

2πBb

, (A2)

where the field gradient will be

|B ′| = μ0

2π

I

x2
0

= Bb

x0
. (A3)

We define x ′ = x − x0 and r =
√

x ′2 + y2. If we add a small,
possibly time-dependent, offset field in the z dimension of
magnitude B0, then the magnitude of the field at a distance r

from the minimum can be approximated by

B =
√

(rB ′)2 + B2
0 , (A4)

which will be valid for r � x0 (for more detail see the next
section). The radial potential that the atoms see will be

V (r) = gmF μBB0

√
(B ′/B0)2r2 + 1, (A5)

where g is the Landé g factor, mF is the magnetic sublevel that
is trapped, and μB is the Bohr magneton. For (B ′/B0)2r2 � 1
a Taylor expansion gives

V (r) = 1

2
gmF μB

B ′2

B0
r2 + const., (A6)

i.e., the minimum of the potential is approximately harmonic
with a radial trapping frequency of

ωr = B ′
√

gmF μB

mB0
. (A7)

The system Hamiltonian is then

H = p2

2m
+ gmF μBB0

√
(B ′/B0)2r2 + 1. (A8)

We define the dimensionless quantities

r̃ = B ′

B0
r, τ = �t, p̃ = B ′

B0m�
p, H̃ = B ′2

m�2B2
0

H,

(A9)

where � will be the angular frequency of the modulation. After
dropping tildes, we find our dimensionless Hamiltonian is

H = p2

2
+ κ

√
r2 + 1, (A10)

where we have defined the dimensionless parameter

κ = gmF μBB ′2

mB0�2
≡ ω2

r

�2
. (A11)

The effective Planck’s constant for this system is

h̄eff = h̄B ′2

B2
0m�

≡ √
κ

h̄ωr

gmF μBB0
. (A12)

013635-11



MARTIN LENZ et al. PHYSICAL REVIEW A 88, 013635 (2013)

1. Modulation of the trapping potential

We now consider the possible ways we can modulate the
trapping potential for the atoms. The magnetic field at location
(x,y) is given by

B =
{

− yBw(t)√
x2 + y2

,
xBw(t)√
x2 + y2

− Bb(t),B0(t)

}
, (A13)

where B0(t) is the offset field along the z direction, Bw(t) is the
field from the 1D conductor, and Bb(t) is the bias field along
the y direction. We have

Bb(t) = Bb0(1 + fb), (A14)

B0(t) = B0(1 + fz), (A15)

Bw(t) = μ0

2π

I0√
x2 + y2

(1 + fw),

= x0Bb0√
x2 + y2

(1 + fw), (A16)

where we have used the shorthand fa = fa(t) for any modu-
lation for t > 0. We also define the constant

x0 = μ0I0

2πBb0
, (A17)

which is the location of the trap minimum with no driving.
The magnitude of the magnetic field can be shown to be

B2 = B2
0 (1 + fz)

2 + B2
b0

(x0 + x ′)2 + y2

[
(1 + fb)2(x ′2 + y2)

+ (fb − fw)2x2
0 + 2(1 + fb)(fb − fw)x ′x0

]
. (A18)

where x ′ = x − x0.

2. Choice of time-dependent modulations

Various Hamiltonians can be realized with appropriate
choices of modulation of the magnetic fields and currents.
Here we detail two that are potentially of interest.

1. fb = fw = fz: In this case the trap minimum is sta-
tionary, and both the field gradient and the offset field B0 are
modulated. This yields the magnetic field

B = B0(1 + fb)(1 + r̃2)1/2, (A19)

which has a similar form to the modulated standing wave used
in Refs. [9,12]—a potential with a stationary minimum but a
modulated strength.

2. fb = 0, fz = 0: This case is probably the easiest
experimentally, as only the current in the trapping wire needs
to be modulated. This avoids any difficulties with inductances
in the coils providing the bias and offset magnetic fields. The
field in this case is

B = B0

{
1 +

(
B ′

B0

)2 [
y2 + (

x ′ − x0fw

)2
}]1/2

. (A20)

This potential has a constant strength but the position of its
minimum oscillates.

In summary, the experimentally relevant Hamiltonians in
dimensionless units are

H = p2

2
+ κ(1 + ε cos τ )

[
1 + (x ′2 + y2)

]1/2
, (A21)

H = p2

2
+ κ

[
1 + y2 + (

x ′ − x0ε cos τ
)2

]1/2
. (A22)

In this paper we have only considered Hamiltonian (A21)
as this is analogous to the experiments performed in the
modulated standing wave.

APPENDIX B: DIMENSIONAL REDUCTION OF THE
GROSS-PITAEVSKII EQUATION

We begin with the standard Gross-Pitaevskii equation for
the mean field of a condensate tightly confined along the y

dimension [40]

ih̄
∂

∂t
ψ(x,z) =

[
− h̄2

2m

(
∂2

∂x2
+ ∂2

∂z2

)
+ V (x,z,t)

+γ2D|ψ(x,z)|2
]
ψ(x,z), (B1)

with

V (x,z,t) = V0
[
1 + ε cos(�t)

]√
1 + (x/d)2. (B2)

The effective 2D interaction is γ2D = 2
√

2πh̄2as/(may) [46],
where as is the 3D scattering length and ay = √

h̄/(mωy) the
oscillator length in the frozen y direction.

∫
dxdz|ψ |2 = N ,

the total 3D number of atoms. The parameters of the potential
can be read from Eq. (A8) with the identification x ↔ r .

We now measure length in units of d and time in units of
�−1 [see Eq. (3)] and employ the dimensionless wave function
ψ̃ = ψ

√
d/N , which is normalized to 1. Finally, relabelling

ψ̃ → ψ , we obtain

ih̄eff
∂

∂t
ψ =

[
− h̄2

eff

2

(
∂2

∂x2
+ ∂2

∂z2

)
+ V (x,z,t)

+U2D|ψ(x,z)|2
]
ψ, (B3)

where

V (x,z,t) = κ[1 + ε cos(t)]
√

1 + x2. (B4)

Importantly U2D = Nγ2D/m�2d4. We now eliminate the
dimension z, assuming the size of the condensate in that direc-
tion, Lz, to be large and the dynamics hence slow. We simply
set ψ(x,z) = ψ̃(x)φ(z), with φ(z) = θ (L̃/2 − |z|)/

√
L̃, where

θ is the Heaviside function and L̃ = Lz/d. Insertion into
Eq. (B3) yields

ih̄eff
∂

∂t
ψ̃ =

[
−h̄2

eff

2

∂2

∂x2
+ V (x,t) + U1D|ψ̃(x)|2

]
ψ̃, (B5)

with U1D = U2D/Lz. We obtain Eq. (14) by replacing x → q

and have

U1D = Nγ2D

m�2d3Lz

= 2
√

2πh̄2asN

m2ay�2d3Lz

= 2
√

2πh̄2asNκ

maydLzV0
. (B6)

To rewrite Eq. (B6) in terms of the quantities h̄eff , κ , ε, and U1D

that underly most of our numerical results, we substitute d =
B0/B

′, V0 = gmF μBB0 [comparing Eq. (B2) and Eq. (A8)]
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and then use Eq. (A12) to arrive at

N = LzU1D

2
√

2πash̄
3/2
eff κ1/4

√
ωx

ωy

. (B7)

The atom numbers and densities quoted in Sec. IV C
correspond to Lz = 50 μm, ωz = 2π × 18.6 Hz, ωy =
2π × 30 kHz and other parameters as given in
Sec. IV B.
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