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We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this

mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and

more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat mem-

brane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling

threshold is within reasonable in vivo parameter values. We account for the formation of long tubes

previously observed in cells and in purified systems. We study strongly deformed dressed membranes and

their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.
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Eukaryotic cells are highly compartmentalized, and
many of their confining structures are made of lipid bi-
layers. In order to maintain the exchanges essential for
their proper functioning, cells thus need tools that modu-
late the shape and topology of these membranes. Such
tools may be proteins that self-assemble to form tubes in
solution [1] and can impose this intrinsic tubular shape on
membranes [2]. In some other physically interesting cases,
the structure of the protein does not suggest an obvious
tubulation mechanism, as for the Endosomal Sorting
Complex Required for Transport III (ESCRT-III) [3].
This protein complex is implicated in the formation of
multivesicular bodies [4], HIV budding [5], and cytokine-
sis [6], three processes which involve deformation of the
membrane into a bud and/or severing off the resulting
membrane protrusion from the inside. Deep-etch electron
micrographs of COS-7 cells overexpressing hSnf-7, one of
the constitutive proteins of ESCRT-III, reveal circular ar-
rays of curved hSnf-7 polymers under the plasma mem-
brane [Fig. 1(a)] [7]. This is evidence of the strong affinity
of these filaments for the membrane [8] and for each other
[9], as well as of their intrinsic curvature. When an ATP-
hydrolysis deficient mutant of VPS4—an ATPase involved
in the disassembly of ESCRT-III filaments [9,10]—is
present, long membrane-covered tubes of hSnf-7 filaments
are observed [Fig. 1(c)]. Similar structures appear in
in vitro systems using purified proteins [11]. This suggests
that tubes always form in vivo but that in the presence of
normal VPS4 alone they are immediately cut off the mem-
brane to form vesicles. In this Letter, we propose that this
flat-to-tubular transition is a general feature of systems
where curved filaments with attractive interactions bind
to a membrane and study this physical effect akin to the
buckling of a rod (Fig. 1).

We consider an infinite, initially flat lipid bilayer pa-
rametrized by its radial coordinate r. A subdomain ri <
r < re of this surface is bound to an array of filaments
(Fig. 1). The dressed membrane is then put into contact

with the cytoplasm, which acts as a reservoir of filaments.
In the following, we consider only axisymmetric configu-
rations [12] and assume that the dressed membrane is very
thin. We write the free energy of the dressed membrane as
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The first term is the Helfrich free energy of the membrane,
with bending modulus �, local total curvature c, and
tension � [13]. The second term represents the attractive
interactions between filaments, characterized by a line
tension �. We assume that the filaments are closely packed;
their surface density is thus constant throughout the array.

FIG. 1 (color online). Illustration of the proposed buckling
mechanism. Overbent filaments are represented in blue, under-
bent filaments in red, and the membrane in yellow. Wedges of the
membrane were removed for visualization. (a) Curved filaments
with an affinity for each other and the membrane form
membrane-bound circular arrays. The tension and bending
modulus of the membrane tend to stabilize flat arrays.
(b) Buckling, on the other hand, allows the binding of more
filaments and the relaxation of those already bound to their
preferred (yellow) radius. These stabilizing and destabilizing
effects balance at the buckling threshold. (c) The formation of
long tubes allows the binding of an arbitrarily large number of
filaments close to their preferred radius.

PRL 103, 038101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

0031-9007=09=103(3)=038101(4) 038101-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.038101


The last term represents the free energy of the filaments.
They have a preferred curvature r�1

0 , and due to the cylin-

drical symmetry their actual curvature is r�1. A Taylor
expansion about r�1

0 to second order yields the filament

stiffness k. We denote by � the chemical potential differ-
ence between hSnf-7 in the cytoplasm and bound to the
membrane. In vivo, the circular filaments pictured in Fig. 1
are not actually continuous and can be made of several
consecutive shorter filaments. It is also possible that the
hSnf-7 filaments are ‘‘living’’ polymers and exchange
monomers with the cytoplasm. Therefore we consider
that filaments of any length are always available and that
their chemical potential per monomer does not depend on
their length, so that � is uniform throughout the filament
array. We ignore holes in the array resulting from thermal
fluctuation, which is correct in the limit of large binding
energies [14]. Equation (1) also ignores the up-down asym-
metry of the dressed membrane, a simplification discussed
later. Finally, we define the scaled filament stiffness K ¼
k=� and membrane tension � ¼ ð���Þr20=�þ k=ð2�Þ.

We first consider the stability of flat arrays of filaments
[Fig. 1(a)]. In Ref. [7], it is observed that these arrays have
a finite, rather well-defined external radius re. We attribute
this feature to a chemical equilibrium between hSnf-7 in
the array and in solution. Minimizing F with respect to re
for a flat membrane (c ¼ 0 and dA ¼ 2�rdr), one finds
that the array has a finite external equilibrium radius only if
k=2r20 >�, i.e., only if it is more favorable for a filament to

be in solution than bound to the rim of a very large (re !
þ1) array. Line tension will shrink the array and make re
vanish unless
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We now discuss the buckling of filament-dressed mem-
branes [Fig. 1(b)]. Experimentally, it is observed that the
typical length scale of a hSnf-7 protrusion is much larger
than ri and smaller than re. We therefore assume for
simplicity that ri ¼ 0 and re ! þ1. We parametrize the
dressed membrane by its altitude zðrÞ. The equilibrium

states are the solutions of the force balance equation �F
�zðrÞ ¼

0 with boundary conditions dz
dr ð0Þ ¼ 0 and dz

dr ðþ1Þ ¼ 0.

Therefore, zðrÞ is defined up to an arbitrary additive con-
stant. As in the case of a buckling rod [15], the buckling
threshold is the set of parameters where nonzero solutions
of the linearized force balance equation satisfying the
boundary conditions exist. This equation reads
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The general solution of Eq. (4) reads z0ðRÞ ¼ c1f1ðRÞ þ
c2f2ðRÞ, where c1 and c2 are arbitrary constants and
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The confluent hypergeometric functions of the second kind
U andM are defined in Ref. [16]. Nonzero solutions of this
form satisfying the boundary conditions exist only for
certain values of the parameters, thereby defining the buck-
ling threshold. Two parameter regimes must be
distinguished:
(i) For � ∉ N, we have the following asymptotic behav-

iors:
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Thus f1 diverges as R ! 0, while Eq. (6) implies f2ð0Þ ¼
0. Hence the boundary condition z0ð0Þ ¼ 0 imposes c1 ¼
0. Similarly, f2ðRÞ diverges as R ! þ1, and thus
z0ðþ1Þ ¼ 0 yields c2 ¼ 0. Therefore there is no nonzero
solution to the linearized buckling problem.
(ii) For � ¼ n 2 N, the singular terms of Eq. (7) vanish,

and f1 and f2 are both proportional to the generalized

Laguerre polynomials Lð�Þ
n ðRÞ [16]. Hence Eq. (4) has a

FIG. 2 (color online). Normal modes znðRÞ of the dressed
membrane. (a) Spatial structure of the first four normal modes
at their respective buckling thresholds for K ¼ 2:5. (b) Thin
black lines: buckling thresholds as a function of n, K, and �.
Thick black line: stability limit of long, cylindrical dressed
membrane tubes. Protrusions are obviously more stable at small
�, where the destabilizing influence of the filaments overrides
the stabilizing effect of the membrane. Therefore, the nth normal
mode of the flat dressed membrane is linearly unstable for
parameter regimes located under the nth thin black line and
long tubes exist only under the thick black line. Thin cyan (gray)
line: parameter regimes compatible with the experimental data
of Ref. [7]. Symbols are referred to in the main text.
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unique solution, up to an arbitrary amplitude C:

z0nðRÞ ¼ Ce�R=2R
ffiffiffiffiffiffiffiffiffiffiffi
1þK=2

p
Lð ffiffiffiffiffiffiffiffiffiffi

4þ2K
p Þ
n ðRÞ: (8)

Since Lð�Þ
n ðRÞ is a polynomial of degree n in R, z0n satisfies

the boundary conditions for any n. Therefore, there is an
infinity of buckling thresholds, one per integer � ¼ n. This
is again reminiscent of the buckling rod problem, as each
normal mode zn of the dressed membrane has its own
instability threshold (Fig. 2). In the following, we consider
only the most unstable mode n ¼ 0.

We now study strongly deformed dressed membranes
[Fig. 1(c)]. We first check that our model accounts for the
existence of long dressed membrane tubes similar to those
observed in Refs. [7,10,11]. For a cylindrical protrusion of
radius rt and length ‘ � rt, one can neglect the rounded
tip and base of the tube. Introducing a fictitious vertical
point force f pulling the membrane up at r ¼ 0, we mini-
mize the free energy G ¼ F � f‘ with respect to rt and ‘
and find

rt ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

2�

s
; ft ¼ 2��

r0
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ KÞ�

q
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Consider an equilibrium situation in which a long dressed
membrane tube is held at a constant length by a force f ¼
ft. The force is then suddenly set to zero. In the case of an
upward initial force ft > 0, the tube tends to retract. If ft <
0, on the contrary, ‘ increases and the dressed membrane
spontaneously tubulates. This corresponds to the region of
Fig. 2(b) located under the thick black line. Interestingly,
long tubes are always stable when the flat dressed mem-
brane is linearly unstable, but the reverse is not true. Thus
there exists a regime, located between the thick black line
and the n ¼ 0 line of Fig. 2(b), where the flat dressed
membrane is metastable. This regime is compatible with
biologically reasonable parameter values. Indeed, combin-
ing Eqs. (3) and (9), one finds

� ¼ 2ð�rertÞ2K2ð1þ KÞ
½�r2e þ 2ð�� �reÞrer2t þ �ðr2e þ r2t ÞK�2

: (10)

Inserting rt ’ 70 nm and re ’ 200 nm [7] and the esti-
mates � ¼ 20kBT, � ¼ 10�5 Nm�1, and � ¼ 1 pN in
this equation, we obtain a numerical relation between the
scaled tension and filament stiffness characterizing the
experiments of Ref. [7]. We plot this condition as a thin
cyan (gray) line on Fig. 2(b). This line traverses both the
metastable and unstable regions, making it possible that the
experiments of Ref. [7] reflect either regime.

We consider the possibility that the flat dressed mem-
branes observed in Ref. [7] are indeed metastable. In this
hypothesis, an important quantity is the energy barrier �F
separating the flat state from the more stable, tubulated
state. To compute �F , we numerically solve the full non-
linear shape equation of the tube on a finite domain 0<
R< 25 [17]. Using Z ¼ z=u, we define S as the arc length
along the dressed membrane in the ðR; ZÞ plane [Fig. 3(a)].

We parametrize the dressed membrane by RðSÞ and the
angle c ðSÞ defined by

_RðSÞ ¼ cosc ðSÞ; _ZðSÞ ¼ � sinc ðSÞ; (11)

where the dot denotes the differentiation with respect to S.
Minimization of the free energy G yields the shape equa-
tion of the dressed membrane:
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�
1

4
� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where F ¼ fu=ð2��Þ. This equation is identical to Eq. (4)
in the small-c limit and to the bare membrane tube shape
equation in the absence of protein (k ¼ 0, � ¼ 0) [17]. In
the following, we discuss the specific example K ¼ 2:5,
but we believe that other values of K yield a similar
behavior. Let us first comment on the three regimes pre-
sented in Figs. 3(a) and 3(b). For � ¼ 1:1 [indicated by 4
in Fig. 2(b)], tubes always retract in the absence of an
external force, as shown in Fig. 3(b). Lowering the surface
tension to � ¼ 0:89 (h), one reaches the boundary of the
metastable region. For 0:39< �< 0:89, a positive force is
required to extract short tubes, but long tubes grow sponta-
neously unless opposed by a negative F. At � ¼ 0:39 (�)

FIG. 3 (color online). Numerically computed mechanical
properties of strongly deformed dressed membranes for K ¼
2:5. (a) Parametrization and profiles. (b) Force-extension curves
(L ¼ ‘=u). (c) Black lines: bifurcation diagram for the F ¼ 0
problem. Cyan (gray) lines: changes induced by a weak asym-
metry of the dressed membrane. In both cases, thick (thin) lines
represent stable (unstable) solutions. (d) Activation energy �F a
flat dressed membrane needs to reach the ‘ ¼ þ1 buckled
solution.
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and lower, even short tubes grow spontaneously and can be
maintained at a finite length only by a negative force. In
Fig. 3(b), crossings of the horizontal axis by the force-
extension curves denote solutions of the biologically
relevant, F ¼ 0 problem, the stability of which is indicated
by the sign of the curve’s slope. Plotting the lengths of
these protrusions as a function of �, we obtain the diagram
Fig. 3(c), where we observe that the loss of stability of the
n ¼ 0 mode studied above yields a subcritical bifurcation.
Focusing on the metastable regime (0:39<�< 0:89), we
note that forming an infinitely long tube requires first
extruding a short tube from the dressed membrane, which
is energetically unfavorable. The associated energy bar-
rier �F is given by the free energy of the unstable solu-
tions represented by the main thin branch of Fig. 3(c).
Integrating force-extension curves similar to those of
Fig. 3(b), we calculate the work required to reach these
solutions from the stable, flat state and plot the results in
Fig. 3(d). Under the effect of thermal fluctuations, an
energy barrier of height �F is crossed at a rate

	�1e��F =kBT , where 	� ns is the characteristic relaxation
time scale of the system. When �F is of the order of a few
kBT, thermal fluctuations are sufficient to ensure the buck-
ling of the dressed membrane within experimentally ob-
servable time scales. This is, however, not the case here,
and the large energy barrier makes thermally activated
ESCRT-III-mediated budding extremely unlikely in most
of the metastable regime. Therefore, in vivo, ESCRT-III-
mediated budding either takes place only in (or close to)
the regime where the flat dressed membrane is linearly
unstable or is assisted by some unknown active process
(e.g., actin polymerization, which is regulated by the
ESCRT-associated protein Alix [18]).

We now comment on two approximations used through-
out this work. First, we assumed that the interactions
between filaments and between filament and membrane
are independent of the slope of the dressed membrane
(i.e., of whether the filaments lie in the same plane or are
stacked upon one another). For small slopes, this depen-
dence can be expanded as �ðrzÞ ¼ �0 þ�2ðrzÞ2=2þ
OððrzÞ4Þ and yields the same linear stability analysis as
above, provided we redefine � ¼ ð���0 ��2Þr20=�þ
k=ð2�Þ. Second, we ignored in Eq. (1) any terms violating
the z ! �z spatial symmetry. These terms are allowed in
general, since the dressed membrane is not up-down sym-
metric, and might be responsible for the fact that buckling
systematically occurs toward the outside of the cytoplasm
[7]. Formally, such an asymmetry destroys the bifurcation
studied here. If it is weak, however, a stable, almost flat
configuration still exists for high tensions and loses stabil-
ity close to the predicted � ¼ 0:39 threshold, as illustrated
in Fig. 3(c).

Finally, we believe that a better understanding of
ESCRT-III-mediated budding could be gained by studying
it experimentally in the absence of any active process. We
propose an in vitro setup where an aspiration pipette is used

to control the tension � of a giant unilamellar vesicle [19].
Introducing ESCRT-III proteins in the surrounding solu-
tion at a known concentration (and therefore at known �)
[11], one could vary � through � and directly measure the
buckling threshold and its dependence on �. Because of
the existence of the metastable region, we also predict a
hysteretic behavior.
In this Letter, we presented a novel buckling mechanism

relevant for a wide range of systems involving interacting
membranes and curved filaments (possibly including, e.g.,
the one studied in Ref. [20]). Our robust qualitative and
quantitative predictions can be tested in rather simple
in vitro experiments and could shed light on the biological
problem of ESCRT-III-mediated budding.
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