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Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on
scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces,
large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold
serves to favor contraction over extension. While this mechanism is well understood in highly organized
striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a
mathematical model of the actin scaffold’s local two- or three-dimensional mechanics and identify four
competing contraction mechanisms. We predict that one mechanism dominates, whereby local deforma-
tions of the actin break the balance between contraction and extension. In this mechanism, contractile
forces result mostly from motors plucking the filaments transversely rather than buckling them
longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical
understanding of contractility in the myriad of disordered actomyosin systems found in vivo.
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I. INTRODUCTION

The structure and motion of living cells is largely
controlled by the continuous remodeling of their cytoske-
leton, which crucially involves the contractility of networks
of actin filaments (F-actin) and myosin molecular motors.
How macroscopic motion emerges from the protein-scale
interactions between these components was first under-
stood in the context of striated muscle [1]. There, individual
myosins are assembled into so-called “thick filaments,”
bottlebrush-shaped clusters of myosin capable of binding
several actin filaments and sliding along them for long
distances—for brevity, we refer to them as “motors” in the
following. In striated muscle, F-actin and motors are
strongly organized into a periodic array of so-called
sarcomeres, contractile units where the sliding action of
the motors is harnessed to produce contraction through
F-actin’s geometrical arrangement [Fig. 1(a)].
However, in many biological situations, contractile

F-actin and myosin assemblies—be they one-dimensional
bundles or two- or three-dimensional networks—lack the
organization found in sarcomeres [2–8]. While the bio-
chemical processes inducing the relative motion of the
motors and filaments are similar to the ones involved in
striated muscle, here the geometrical mechanisms used to
convert this relative motion into contraction in the absence
of organization are less clear. Indeed, the filaments and
motors do not have an intrinsic propensity towards

contraction, and can a priori yield extension just as
easily. Figure 1(b) illustrates this property in a simple
one-dimensional example. Most theoretical models of
disordered actomyosin contractility circumvent this

FIG. 1. Geometrical foundations of contractility. Motors
bound to filaments slide toward their “barbed ends,” as for
myosin II thick filaments. (a) In striated muscle, motors are
localized close to the filaments’ pointed ends. When activated,
every motor pulls in the neighboring filaments and thus induces
local contraction. (b) If filament polarities are not carefully
selected, striated muscle-like locally contractile configurations
(top) are just as likely as extensile ones (bottom), and the
overall behavior of the actomyosin assembly is unclear. (c) The
symmetry between contraction and extension subsists in a two-
or three-dimensional network. Throughout this article, filament
extremities may or may not be cross-linked to the surrounding
medium. Even though this is not represented here, cross-linked
filaments extend beyond the cross-links and farther into this
medium, and thus cannot freely rotate around these cross-links.
Thus, the barbed and pointed arrow ends on this schematic
merely indicate filament polarity; the actual barbed and pointed
ends of cross-linked filaments are typically farther away, inside
the surrounding medium.
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question by assuming from the onset that motors either
induce an average contractile stress in the actomyosin
medium [9] or, in more detailed descriptions, that they give
rise to localized contractile force dipoles [10]. These
studies then typically move on to consider the macroscopic
consequences of such mesoscopic behaviors. In contrast,
in this paper, we adopt a different focus and ask how
the contractility emerges from the networks’ microscopic
components in the first place.
This question is most easily discussed in one-

dimensional actomyosin assemblies, i.e., actomyosin
bundles. There, in vitro experiments demonstrate that
sarcomerelike organization is not necessary for contraction
[11], and thus, the symmetry between contraction and
extension illustrated in Fig. 1(b) is spontaneously broken.
Because geometry in one dimension is very simple, there
are strong geometrical constraints on the type of mecha-
nisms that can lead to such symmetry breaking [12].
Combining these theoretical constraints with further experi-
ments, we have recently shown that F-actin buckling under
longitudinal compression enables contraction by favoring
local filament collapse in the absence of sarcomerelike
organization [13].
The situation in two-and three-dimensional actomyosin

networks is more complex than that of bundles. There, too,
contraction arises in random-polarity, disordered in vitro
networks [14–16]. From a theoretical standpoint, however,
geometry in two or three dimensions is considerably richer
than in one dimension. As a result, several mechanisms
can a priori give rise to contraction, and symmetry
considerations are less easily exploited than in bundles.
Accordingly, a range of mechanisms for the emergence of
actomyosin contraction have previously been invoked in
different levels of detail, ranging from cartoon pictures
[10,17] to more quantitative numerical [18] and analytical
[19] approaches. However, there is no consensus regarding
their relative roles in either in vivo or in vitro actomyosin
contractility.
Here, we present the first comprehensive comparison of

contractility-inducing mechanisms in disordered cytoske-
letal networks. We first exploit symmetry considerations
in two and three dimensions to identify all possible local
contraction mechanisms. We then study them individually
and compare their relative magnitudes, thus determining
the dominant cause of contractility as a function of
experimental conditions. Filament deformation is found
to play a crucial role in most relevant regimes.

II. REQUIREMENTS FOR CONTRACTION

We first show that, unlike in striated muscle, filament
sliding alone is not sufficient to induce contraction in
disordered networks. We do this by studying a minimal,
sliding-only model and demonstrating that it cannot yield
contractility.

We consider a single motor bound to multiple filaments.
The filaments are themselves cross-linked to a surrounding
rigid external medium as illustrated in Fig. 1(c). We show
that overall network contraction cannot occur under the
following main assumptions: 1. the motor stall force does
not depend on its position, 2. the motor is pointlike, 3. the
motor is undeformable, 4. filaments behave as rigid rods.
The essence of our argument is as follows. In a network,
individual motors may exert either contractile or extensile
local forces depending on the polarities of the neighboring
filaments [as in Fig. 1(b)]. In a disordered system satisfying
the above assumptions, there are as many contractile as
extensile motors and the forces produced by the former
exactly compensate those produced by the latter. Therefore,
the network does not contract overall. Thus, overall
disordered actomyosin contractility requires the breaking
of at least one of these assumptions.
We first introduce some notation. The overall contrac-

tility of a rigid disordered network is characterized by the
average local force dipole [20] D exerted by an individual
motor, where

D ¼
X
i

X
a¼B;P

rai · f
a
i : ð1Þ

Here, i indexes the filaments as in Fig. 1(c), a ¼ B;P
denote the directions of the filaments’ barbed and pointed
ends respectively; therefore, each term of the double sum
over i and a corresponds to a filament section in contact
with the motor. For instance, for the example of Fig. 1(c),
i ∈ f1; 2; 3g, and thus the sum has six terms. The position
vector of a cross-link is denoted as rai , and f ai is the force
exerted on it by filament i [Fig. 1(c)]. A negative (positive)
D denotes a contractile (extensile) system. The portion of
filament between the motor and cross-linker ði; aÞ is
referred to as a “filament section,” and we denote its length
by La

i . At steady state, the motor exerts a longitudinal “stall
force” f directed toward the pointed end of each filament.
This force is transmitted to the cross-linkers through the
stretching and compression of the rigid filaments. We thus
introduce the stretching moduli kðLa

i Þ of the filament
sections, i.e., their longitudinal Hookean spring constants.
In general, D is a function of f, the La

i ’s, and the kðLa
i Þ’s.

We now present our argument in more detail. Consider
the filament-motor system of Fig. 1(c). For rigid filaments,
linear elasticity applies and the forces f ai exerted on the
cross-linkers are proportional to the motor’s stall force.
Using Eq. (1) and noting that the rai are constants due to the
rigidity of the external medium, this implies

D ∝ f: ð2Þ
Now, consider a new system obtained by reversing the
filament polarities of the original system—i.e., exchanging
the barbed and pointed ends in Fig. 1(c). As polarities are
reversed, the motor reverses its sliding direction on each

MARTIN LENZ PHYS. REV. X 4, 041002 (2014)

041002-2



filament, which is equivalent to changing the sign of its stall
force: freversed ¼ −f. Using Eq. (2), the polarity-reversed
force dipole is thus Dreversed ¼ −D. Hence, if the original
system generates contractile forces, then the polarity-
reversed system generates the same amount of extensile
forces.
To complete our reasoning, we consider a large-scale

disordered network comprising many filament-motor sys-
tems embedded in a rigid medium. The rigid medium can
be described as linearly elastic, and thus the network’s
overall contractile dipole is proportional to the average
dipole of a filament-motor system. Because of the net-
work’s disorder, any individual filament-motor system is
just as likely to occur as its polarity-reversed counterpart.
Averaging the force dipoles over the whole network, we
thus find that individual contractile and extensile dipoles
cancel mutually. From this, we conclude that the network
has an overall vanishing contractile force dipole, which
completes our proof.
This result is quite general, as it requires only a minimal

form of disorder, namely, polarity-reversal symmetry (i.e.,
the property that any arrangement of filaments is just as
likely as its polarity-reversed counterpart). This is a variant
of a more powerful argument valid for one-dimensional
bundles [12]; a more formal presentation is given in the
Supplemental Material [21]. Interestingly, this polarity-
reversal symmetry can be broken not only through sarco-
meric organization, which yields contractility, but also in
solution through a dynamical process of motor-filament
coalescence and sliding, which favors extension [22].
However, this process is not relevant for the rigid networks
considered here.

III. COMPETING CONTRACTILITY
MECHANISMS

While the model considered in the previous section
cannot generate contractility, such contractility is exper-
imentally observed in actomyosin networks [11,14,16,23].
This discrepancy implies that this model is an oversimpli-
fication: one or several of its assumptions must be violated.
By successively relaxing each of these assumptions,
here we systematically review all essential contraction
mechanisms and predict the magnitude of the associated
contractile forces.

A. Position-dependent stall force

Early models of nonsarcomeric actomyosin bundles
[24,25] and networks [19] proposed that motors stop upon
reaching the filament barbed ends, staying there for some
time before eventually detaching. Although experimental
evidence for this behavior in actomyosin is lacking, the
resulting accumulation of immobile motors at the filament
barbed ends would generate sarcomerelike cross-linking
[Fig. 1(a)] and thus favor contraction.

We consider a two-filament system where the motor
operation has such a dependence on its distance l from the
barbed end [Figs. 2(a) and 2(b)]. Specifically, we assume
that the stall force exerted on a filament vanishes [26] as the
motor approaches its barbed end closer than a distance
d ≪ ξ:

fðlÞ ¼ fð1 − e−l=dÞ: ð3Þ

The force dipole exerted by a specific configuration
depends on whether each of its filament ends is cross-
linked to the surrounding medium. For instance, we
compute the force dipole associated with Fig. 2(a) by
resolving force balance under the assumption that the
passive cross-links impose clamped boundary conditions:

D ¼ −fðl2ÞLB
2 − fðl1Þ

LB
1 kðLB

1 Þ − LP
1 kðLP

1 Þ
kðLP

1 Þ þ kðLB
1 Þ

; ð4Þ

where l1 and l2 are the distances from the motor to the
barbed ends of filaments 1 and 2, respectively. The first
term on the right-hand side of Eq. (4) is always negative,
indicating that filament 2 transmits the stall force fðl2Þ to
the bottom right-hand cross-link, exerting only pulling
forces. In contrast, the second term can be either positive or
negative as filament 1 distributes this force across two
cross-links and thus exerts both pulling and pushing force.
Note that Eq. (4) is derived in the rigid filament limit
ϵ ¼ f=ξkðξÞ → 0, where ξ is the average distance between
the motor and the neighboring cross-linker.
Similar to our derivation of Eq. (4), we compute the

expressions of the force dipoles associated with each
possible motor–cross-linker configuration [Fig. 2(c)].
Assuming that both the motor and the cross-linkers are
uniformly distributed on the filaments, we use these
expressions to compute the force dipole averaged over

FIG. 2. Contraction induced by a position-dependent stall
force. As in Fig. 1 in all other figures, black squares and blue
circles represent cross-links and motors, respectively. (a) Motors
in the vicinity of a pointed end typically induce an overall
contractile (pulling) force dipole as indicated by gray arrows
representing the projection of the forces on the direction of the
filaments. (b) Motors close to a barbed end have the opposite
effect. (c) We characterize the resulting net contractility by
averaging over all possible local cross-linking configurations.
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all possible configurations and over filament section
lengths:

hDdwelli ∼
d≪ξ≪Lf

− 2d
Lf

fξ; ð5Þ

where Lf is the total length of a filament. The condition
Lf ≫ ξ guarantees that filaments are cross-linked several
times and, therefore, are not free to rotate.
To understand why the dipole of Eq. (5) is contractile, we

remind ourselves that if the stall force were the same
irrespective of motor position, the contractile force dipole
of Fig. 2(a) would exactly cancel the extensile dipole of its
polarity-reversed image [Fig. 2(b)]. According to Eq. (3),
however, the motor in Fig. 2(b) exerts a weaker force on
filament 2 than in Fig. 2(a) due to the proximity of the
filament barbed end. The contractility of Fig. 2(a) thus
exceeds the extensility of Fig. 2(b), resulting in overall
contractility. The corresponding average force dipole
[Eq. (5)] is thus proportional to the probability d=Lf for
the motor to be within a distance d of a barbed end,
multiplied by the typical force dipole fξ.

B. Finite motor size

Unlike the pointlike motors considered above, a finite-
size motor bound to two filaments is not constrained to
remain at their intersection. It tends to move towards their
barbed ends, as shown in Fig. 3(a). This motion breaks the
equivalence between barbed and pointed end (also known as
polarity-reversal symmetry), thus enabling contraction [18].
We consider two filaments intersecting at an angle θ as in

Fig. 3(a). All filament sections are cross-linked, have length
ξ, and are considered rigid. The motor is modeled as a rigid
dumbbell of length Lm whose heads slide on the filaments
until their stall force is reached. To enforce this condition,
we minimize the pseudoenergy [18]

Em ¼ −fðLP
1 þ LP

2 Þ ð6Þ

under the constraint of constant Lm. Once the motor is
stalled, the midpoint of the motor is offset from the filament
intersection by a distance Lm=½2 tanðθ=2Þ�. Computing the
force dipole DðθÞ from force balance as in the previous
section, we find that small values of θ yield large motor
displacements and thus large force dipoles. We average
this force dipole over angles in three dimensions using
kðLÞ ∝ L−4, as expected for filaments with predominantly
entropic elasticity [27,28]:

hDfinite sizei ¼
1

2

Z
π

0

Dfinite sizeðθÞ sin θdθ ∼
Lm≪ξ

− 16fLm:

ð7Þ
To understand the source of this contractile dipole, we

draw an analogy between the motor and the slider of a

zipper [Figs. 3(b) and 3(c)]. Assimilating the motor’s
propensity to slide along the filaments to a closing force
applied on the zipper tab, we see that the motor pulls the
filament barbed ends together as it progresses, just like
the two sides of the zipper chain are pulled together as the
zipper closes. This induces a predominantly contractile
force dipole.
Importantly, this zipper effect induces contraction only if

the motor is displaced from the intersection of the fila-
ments, as is the case for a finite-size motor. Indeed, while
the motor pulls on the filaments’ barbed end cross-links,
it also pushes out on the pointed end cross-links, as shown
in Fig. 3(c). These two effects compensate exactly for
vanishing motor length Lm ¼ 0, suggesting that for small
Lm, D is generically proportional to Lm. Additionally, D is
proportional to f in the rigid filament limit as discussed
above. We thus expect zipperlike contractility to scale as

D ≈ −fLm; ð8Þ
consistent with the result of Eq. (7).

FIG. 3. Contraction induced by finite-size and deformable
motors. (a) A finite-size motor minimizes the pseudoenergy
[Eq. (6)] by orienting itself perpendicular to the bisector of the
filaments (dotted line) as shown by the gray arrows. (b) The
contractility induced by such a motor is analogous to the closing
force (thin gray arrows) of a zipper when its slider is being slid
shut (thick cyan arrow). (c) In practice, the zipperlike pulling
forces exerted at the barbed end cross-links are partially com-
pensated by pointed end pushing forces. (d) An attaching-
detaching flexible motor generates contractility in a similar
fashion. (e) Scaling regimes for the deformable motor dipole
[Eq. (10)]. Black lines present the limits of small (top curve) and
large (bottom curve) detachment rate koff and thin gray lines
display intermediate regimes.
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C. Deformable motor

We now consider a variant of the previous model where
an initially pointlike motor can be stretched to a nonzero
size, again implying zipperlike contractility. We also
consider motor attachment and detachment, as experiments
indicate that it can have a significant influence on force
buildup in the regimes where the present mechanism will
eventually be found to dominate [13].
We consider the geometry of Fig. 3(d) with a motor of

variable length Lm and an associated stretching energy
Es ¼ kmL2

m=2, where km plays the role of a motor “spring
constant.” The motor detaches from the filaments at a fixed
rate koff and reattaches with kon ¼ k0on expð−Es=kBTÞ, thus
satisfying detailed balance. This rate is substantial only in
the region where Es ≈ kBT, implying a motor length Lm ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=km

p
of the order of a detached motor’s root-mean-

square thermal extension. We define the ratio η ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=km

p
=ξ of typical motor size to filament section

length and consider the stiff motor limit η ≪ 1, analogous
to the Lm=ξ ≪ 1 regime considered above. The velocity vi
of motor head i depends on the projection f∥i of the motor
tension onto the direction of the filament through its force-
velocity relationship, assumed linear for simplicity:

vi ¼ v0ð1 − f∥i =fÞ; ð9Þ

where v0 is the motor’s unloaded velocity. Taking into
account the stochastic attachment and detachment of the
motor and its sliding under thermal agitation, we calculate
the probability to find it in a given position on the filaments
and average the resulting steady-state force dipole over
all angles θ in three dimensions (see Supplemental
Material [21]). We find

hDexti ¼ −8πkBT
�
1þ β2

ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p − ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1þ αÞð2þ αÞp

�
; ð10Þ

where α ¼ kofff=2v0km is the ratio of the time required to
reach stall to the spontaneous detachment time and β ¼
f=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmkBT

p
is the ratio of the motor stall force to the force

scale over which the attachment rate varies. The two terms
in the square brackets of Eq. (10) correspond to two
different origins for contractility. We denote the first,
β-independent term as Dpassive

ext . This term does not involve
the motor stall force and describes the equilibrium effects
of motor binding, which tends to pull the filaments together
and exert a contractile force dipole:

Dpassive
ext ≈ −kBT: ð11Þ

The second term, denoted here by Dactive
ext , has two distinct

asymptotic regimes. If α ≫ 1, the motor spontaneously
detaches long before reaching stall, yielding a typical

extension Lm ≈ v0=koff . In this regime, the motor exerts
a typical force ≈kmLm on the filaments, equal to the tension
of the spring. The resulting typical force dipole is given by
Eq. (8) as

Dactive
ext ≈

α≫1
− ðkmLmÞLm ≈ −kmv20=k2off : ð12Þ

Conversely, if α ≪ 1, the motor reaches stall for moderate
angles, implying a force f and an extension Lm ¼ f=km.
However, in this case, the average force dipole is not
dominated by moderate angles, but rather by small angle
configurations for which θ ≈

ffiffiffi
α

p
. In these configurations,

the two filaments are so close to parallel that the motor can
slide without stalling until its spontaneous detachment.
Similar to the typical motor of the α ≫ 1 regime, these
motors have Lm ≈ v0θ=koff and a spring force ≈kmLm.
In the regime θ ≈

ffiffiffi
α

p
, this yields a force dipole

Dactive
ext ðθ ≈ ffiffiffi

α
p Þ ≈ −kmv20α=k2off . Taking into account the

fact that motors can bind to both filaments only in the
region where these filaments are within a distance ≈ Lm of
each other, and noting that this region is much larger for
pair of filaments separated by a small θ, we find that motors
in the small-angle regime θ ≈

ffiffiffi
α

p
≪ 1 represent a fractionffiffiffi

α
p

of the total motor population. This leads to an average
force dipole

Dactive
ext ≈

α≪1

ffiffiffi
α

p
Dactive

ext ðθ ≈ ffiffiffi
α

p Þ ≈ − f3=2v1=20

k1=2m k1=2off

: ð13Þ

As in the previous section, configurations where the
filaments are nearly parallel exert disproportionately large
force dipoles that dominate the average.
Figure 3(e) ties together the asymptotic regimes dis-

cussed here as a function of the original model parameters.
In the large detachment rate regime (bottom black curve),
detachment is too fast to allow the motors to escape their
initial binding region and the force dipole is dominated by
its passive component. Conversely, if detachment is slow
(top black curve), the magnitude of the motor’s stall force
matters. The passive dipole still prevails for small forces,
while intermediate and large forces are, respectively,
dominated by the active regimes of Eqs. (13) and (12).

D. Deformable filaments

While the previous sections assumed straight, stiff fila-
ments, here we consider the effect of filament deformation
on contractility. Related mechanisms were previously dis-
cussed for actomyosin bundles [12,13,29] and gels [10,17].
We discuss two asymptotic regimes: small motor forces,
which mostly induce filament bending, and large motor
forces, which significantly stretch out the filaments’ thermal
fluctuations. The typical force separating the two regimes is
f ≈ kBTl

1=2
p =ξ3=2, i.e., the transverse force required to pull

out a significant fraction of these fluctuations.
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1. Small-force regime f ≪ kBTl
1=2
p =ξ3=2

In the absence of significant filament stretching, we
consider the filament profile as a weakly perturbed straight
line described by the wormlike chain model [Fig. 4(a)]:

E ¼ 2

�
kBTlp

2

Z
ξ

−ξ

�
d2x
dz2

�
2

dz − fδl
�
; ð14Þ

where z is the filament’s longitudinal direction, x its
transverse displacement, δl the motor’s longitudinal dis-
placement, and lp the filament persistence length. The last
term of Eq. (14) represents the motor pseudoenergy as in
Eq. (6), and contact of the motor with the filaments
imposes xðδlÞ ¼ δl tanðθ=2Þ.
In this problem, the motor can only progress toward the

barbed ends by deforming the filaments. The amplitude x
of this deformation is obtained by balancing the filament
and motor forces, implying that the filament and motor
(pseudo)energies are of comparable magnitudes and so that
x ≈ fξ3=ðkBTlpÞ. The dominant source of contractile
forces is different from the zipperlike mechanism discussed
above. Here, the displacement of the motor plucks the
filament like the finger of the musician does the string of a
harp; interestingly, this mode of deformation induces much
larger contractile force than filament buckling [10,17] in
the ξ ≪ lp limit. A small transverse displacement ≈x
induces a longitudinal strain γ ≈ ðx=ξÞ2 along the filament.
This in turn implies a filament tension T ≈ ðkBTl2

p=ξ4Þγ,
where kBTl2

p=ξ4 is the typical entropic stretching modulus
of the filament [27]. The resulting force dipole scales
as D ≈ −Tξ ≈ −f2ξ2=kBT. A detailed calculation (see
Supplemental Material [21]) reveals that small angles again
have a disproportionately large contribution to the average
force dipole, adding a (weak) logarithmic correction to the
predicted scaling:

hDbendi ∼
f≪kBTl

1=2
p =ξ3=2;ξ≪lp

− 3

16

f2ξ2

kBT
ln

�
kBTl

1=2
p

cbendfξ3=2

�
; ð15Þ

where cbend ≃ 0.191859. This expression holds until the
thermal fluctuations of the filament, which are responsible
for its elongational compliance, are pulled out. This occurs
for γ ≈ ξ=lp, implying that the small-force regime dis-
cussed here is defined by f ≪ kBTl

1=2
p =ξ3=2, as indicated

in Eq. (15).

2. Large-force regime f ≫ kBTl
1=2
p =ξ3=2

Under strong extension, the entropic fluctuations of the
semiflexible filaments are entirely pulled out, freeing an
excess length s ≈ ξ2=lp ≪ ξ, as shown in Fig. 4(b). The
filaments are, therefore, analogous to inextensible strings of
fixed arclength 2ξþ s, implying a transverse displacement
x ≈

ffiffiffiffiffi
ξs

p
. Since the stalled motor exerts a transverse force f,

force balance along the x direction imposes a longitudinal
filament tension T ≈ fξ=x. The force dipole is thus
essentially equal to Tξ ≈ f

ffiffiffiffiffiffiffiffi
ξlp

p
, consistent with the result

of a detailed calculation (see Supplemental Material [21]):

hDstretchi ∼
f≫kBTl2p=ξ3;ξ≪lp

− cstretchf
ffiffiffiffiffiffiffiffi
ξlp

q
; ð16Þ

with a numerical prefactor cstretch ≃ 1.73463.
We illustrate the crossover between the small- and large-

force regimes in Fig. 4(c).

IV. RELATIVE IMPORTANCE OF
EACH MECHANISM

To determine the dominant contraction mechanism, we
compare the force dipoles induced by each mechanism
presented above as a function of two experimentally
controllable parameters: the number of myosin heads per
myosin thick filamentN [30] and the inter-cross-link length
ξ. We consider actin filaments with length Lf ¼ 5 μm and
persistence length lp ¼ 10 μm. The myosin thick fila-
ments have length Lm ¼ Nlm with lm ¼ 3 nm, unloaded
velocity v0 ¼ 200 nm s−1, and stall force f ¼ Nf0. Since
motor heads spend only a fraction of their time bound to
actin, we estimate f0 ¼ 0.1 pN on average. We use km ¼
μ=Lm with μ ¼ 45 nN a typical protein filament rigidity
[31]. Myosin II has a duty ratio 1 − pd ≃ 4% and a
characteristic attachment-detachment time of τd ¼ 3 ms
[32], yielding a motor detachment rate koff ¼ pN

d =τd.
Finally, we assume that motors slow down when their
distance to the barbed end is comparable to their
size: d ¼ Lm.
The colored domains in Fig. 5 indicate as a function of N

and ξ which of the four dipoles computed in Sec. III has
the largest magnitude [Eqs. (5), (7), (10), (15)–(16)]. The
bottom right-hand half of the diagram is left blank, as it
involves very large motors (Lm > ξ) not captured by our

FIG. 4. Contraction induced by filament deformation. (a) For
small motor forces, the cost of filament deformation is mainly due
to bending. The ðx; zÞ coordinate system is given for the darker
filament. (b) For large motor forces, filaments are fully stretched.
(c) Crossover of the force dipole D between the asymptotic
regimes of Eqs. (15) and (16). The interpolating black line is
discussed in the Supplemental Material [21].
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current approach; our assumptions ξ < lp and d < ξ < Lf

are satisfied throughout the top left-hand (colored) half.
The finite motor size mechanism tends to dominate in the
vicinity of the diagonal where the motor size Lm is largest.
The deformable motor mechanism dominates in the bottom
left-hand corner of the diagram; for these small values of
N and ξ, and given that the myosin thick filaments are
hardly stretchable (μ ≫ f), thermal agitation dominates
and Dactive

ext ≪ Dpassive
ext . Deformable filament mechanisms

govern contractility in large-ξ regions where the filament
sections are most flexible and can thus be deformed by
motor forces. Finally, the position-dependent stall force
mechanism is always negligible in front of the finite-size
motor mechanism; thus, it never dominates contractility.
This picture is remarkably insensitive on precise parameter
values (see Supplemental Material [21]).
We next consider the total force dipole hDi, defined as

the sum of the four force dipoles computed in Sec. III. The
magnitude of the total dipole per myosin head hDi=N is
represented by contour lines in Fig. 5. In the ξ≳ 0.3 μm
region, these forces compare with the force dipole exerted
by a myosin head in striated muscle D=N ¼
ð500 pN × 3 μmÞ=300 ¼ 5 pN μm; filament deformation-
based mechanisms dominate most of this parameter region.
Conversely, for ξ≲ 0.3 μm, forces are much weaker, and
possibly too small for experimental observation. Consistent

with this, the typical network parameters used in in vitro
experimental studies of actomyosin contractility are con-
fined to the strong-contractility region (Fig. 5, symbols
[35]). Interestingly, these symbols lie between the deform-
able filaments and the finite motor size contraction
domains, suggesting that both mechanisms could play a
role in these experiments.

V. DISCUSSION

While the emergence of contractility in strongly organ-
ized actomyosin assemblies is well understood, here we
consider this process in disordered networks such as those
found in nonmuscle cells. Among all possible local con-
traction models, actin filament deformation (bending or
stretching) is most prominent in favoring locally contractile
configurations of motors and filaments over locally exten-
sile ones. In this mechanism, filament deformation causes
contractility rather than being a mere by-product of it.
Local rearrangements due to the motors’ finite size could
also play a role in in vitro experiments. We formulate
quantitative predictions of the forces generated by these
mechanisms, yielding insights into the influence of the
network’s microstructure and enabling experimental
verifications.
The predicted importance of filament deformation is

consistent with in vitro studies where the deformation of a
reconstituted actomyosin sheet is found to exactly coincide
with the amount of deformation of individual filaments,
suggesting that filament deformation indeed causes con-
traction [14]. We also account for the observed inhibition of
contractility by excessive cross-linking (D vanishes for
ξ → 0) [15]. Additionally, the fact that almost parallel
filaments dominate contractility in most of the mechanisms
studied here is in good agreement with simulations sug-
gesting that filament alignment favors contraction [37]. It
would be interesting to extend our results to partially
bundled networks—which readily form in vitro [38]—
knowing that contraction within a bundle also crucially
involves filament deformation [12,13]. Note, however, that
in the mechanism described here, motors pull on the
filaments in both the longitudinal and transverse direction,
while in bundles only longitudinal forces are significant.
Consequently, motors pulling transverse to a bundle might
be much more effective at deforming the actin and thus
generating contraction than the motors within, as the latter
are deforming the filaments through comparatively inef-
fective buckling. Finally, we note that in vitro parallel
bundles of actin filaments contract considerably less than
antiparallel bundles [23], in contradiction with a robust
prediction of the position-dependent stall force model [24];
this supports our finding that the position-dependent stall
force has little effect on contractility. This conclusion
could, however, be modified in networks of, e.g., kinesin
motors and the stiff filaments microtubules.

FIG. 5. Contractile forces as a function of experimentally
controllable parameters. Colors identify the dominant contraction
mechanism in each parameter regime. Contours indicate the
magnitude of the contractile force dipole per myosin head
hDi=N. Symbols indicate the in vitro experimental regimes of
Ref. [16] (circle), Refs. [15,33] (square) and Ref. [34] (triangle).
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Although we find that filament deformations dominate
many significant regimes of actomyosin contraction, our
focus on local actin deformation could still lead to an
underestimation of their effect. Indeed, nonlocal deforma-
tions of the network over several mesh sizes could be more
favorable than local deformations in heavily cross-linked
networks or regimes where motors are larger than the inter-
cross-link length. Collective effects could also be of
importance, as stress propagation through the elastic
filament network could lead to cooperativity between
distant motors. We note that our weakly deformed networks
approach is only relevant for small motor forces or during
the very early stages of larger-scale contraction. Further
work is required to analyze strongly deformed or dynami-
cally reorganizing networks and the corresponding syner-
gies between several of the mechanisms described here.
On such longer time scales, the microscopic interactions
between filaments and motors considered here could
furthermore shed light on the self-organization of
disordered actomyosin networks into more organized
structures [7].
Assessments of the experimental relevance of the mech-

anisms described here will be facilitated by recent develop-
ments in in vitro assays [11,14,16,23,30]. Indeed, these
now allow precise tuning of the motor and network
characteristics as well as detailed monitoring of the net-
work deformations, from which the magnitude of the local
force dipole could be inferred. How these considerations
apply in vivo is a fascinating question, which requires
further investigations into alternatives to the paradigm of
sarcomerelike contraction.
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