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Deformation of Dynamin Helices Damped by Membrane Friction
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ABSTRACT Dynamin and other proteins of the dynamin superfamily are widely used by cells to sever lipid bilayers. During this
process, a short helical dynamin polymer (one to three helical turns) assembles around a membrane tubule and reduces
its radius and pitch upon guanosine triphosphate hydrolysis. This deformation is thought to be crucial for dynamin’s severing
action and results in an observable twisting of the helix. Here, we quantitatively characterize the dynamics of this deformation
by studying long dynamin helices (many helical turns). We perform in vitro experiments where we attach small beads to
the dynamin helix and track their rotation in real time, thus collecting information about the space and time dependence of
the deformation. We develop a theoretical formalism to predict the dynamics of a mechanically continuous helix deforming
on long timescales. Longer helices deform more slowly, as predicted by theory. This could account for the previously reported
observation that they are less fission-competent. Comparison between experiments and our model indicates that the deforma-
tion dynamics is dominated by the draining of the membrane out of the helix, allowing quantification of helix-membrane

interactions.

INTRODUCTION

Living cells are open systems, which continuously exchange
matter with their surroundings. A major route for these
exchanges is membrane traffic, during which lipid
membranes are shaped, fissioned, and fused. The dynamin
protein is a tool used by eukaryotic cells to break
membranes apart (1). This happens during clathrin-coated
endocytosis, for example. Toward the end of this endocy-
tosis process, a roughly spherical membrane bud is attached
to the cell membrane by a thin membrane neck. Dynamin
polymerizes into a helix of internal radius » = 10 nm and
pitch 2p = 13 nm around this neck and severs it upon
guanosine triphosphate (GTP) hydrolysis (2).

In vitro, long (several tens of micrometers) helical
dynamin-covered membrane tubules (henceforth referred
to as tubes) form in the absence of GTP when dynamin is
added to a negatively charged membrane template (3).
Addition of GTP induces a deformation of the tubes,
and their radius and pitch become r + Ar = 5 nm and
27(p + Ap) = 9 nm, respectively, while the dynamin helix
as a whole undergoes a right-handed twist (Ar and Ap are
negative). At the structural level, this deformation is related
to a conformational change of dynamin: in the constricted
state, dynamin dimers are more condensed toward the inside
of the tube, and each helical turn comprises 13 dimers,
compared to 14 in the relaxed state (4). GTP hydrolysis
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by dynamin is required for tube breaking (3), suggesting
a relationship between this conformational change and
fission.

The precise biochemical and biomechanical processes
underlying tube fission are still a matter of debate. It was
demonstrated by Danino et al. (5) that breaking requires
that the tubes adhere to a solid substrate (6—8). We moreover
observed (6) that longitudinal tension increases in tubes
rigidly attached at both ends after treatment with GTP.
Rupture then occurs within a few seconds, similar to the
situation of tubes adhered to a solid substrate. This suggests
that force build-up within the dynamin helix is an important
condition for fission. Another indication of stress build-up is
that tubes treated with GTP tend to form supercoils, which
indicates the presence of torque within the helix. However,
it was recently observed that helix depolymerization can
occur before breakage in tubes treated with GTP (7,8).
These studies hypothesize that the main effect of GTP
hydrolysis is not to generate stresses, but to break molecular
bonds within the dynamin polymer and with the membrane.
This would then release the highly constricted membrane,
and could lead to spontaneous membrane fission. In this
model, breakage would thus be due to depolymerization
rather than to deformation and stresses. This raises questions
regarding the ability of the dynamin helix to withstand such
stresses—i.e., its mechanical continuity—which is required
for a deformation-based fission mechanism but would be
compromised by a large-scale disassembly of the dynamin
polymer.

Another interesting finding, by Pucadyil and Schmid (7),
is that tube rupture is less likely in long tubes than in short
ones. This observation yields interesting insights into the
dynamics of dynamin deformation, the typical timescale
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of which, it has been suggested (9), is imposed by the damp-
ing of tube constriction, torsion, and contraction by friction
against the surrounding medium and the membrane. As such
effects are more pronounced in longer tubes, they could lead
to a slower tube deformation there and therefore hinder
fission, as hypothesized previously (10).

In this article, we tackle these issues through a quantitative
study of the dynamics of the GTP-induced deformation of
dynamin. A good understanding of this phenomenon on
the timescales over which fission occurs is an important
step toward the characterization of the dynamin severing
action and the role of deformation therein. Using a joint
experimental and theoretical approach, we clarify the
physics of this process.

We first present experiments in which the space-depen-
dent twisting of long tubes is monitored by tracking small
polystyrene beads attached to the dynamin coat. This meth-
odology allows us to record the tube rotation velocity and
number of turns in several locations as a function of time.
A theoretical analysis of the deformation is then proposed,
which yields detailed predictions regarding this bead
motion. We then combine the results of the two approaches,
and show that upon GTP hydrolysis, long dynamin coats
are able to withhold stresses as a consequence of their
continuity or through viscous coupling over small gaps
separating essentially continuous adjacent helices. On
observable timescales, which coincide with the timescales
implicated in dynamin-mediated fission (6), the rate-
limiting step for the dynamics of this deformation is the
drainage of the membrane out of the helix. We also gain
some geometrical insight into the successive steps involved
in the deformation. Finally, we discuss the implications of
our findings for dynamin’s membrane-severing action, and
their potential impact on previously proposed models of
dynamin-mediated membrane fission.

MATERIALS AND METHODS

Lipids

All lipids were purchased from Avanti Polar Lipids (Alabaster, AL). We use
a synthetic lipid mixture composed of 30% brain phosphatidylethanolamine
(PE), 5% liver phosphoinositides (PIs), 30% palmitoyl-oleoyl phosphati-
dylserine (POPS), and 35% palmitoyl-oleoyl phosphatidylcholine (POPC)
and supplement it with 15% (m/m) cholesterol and 5% (m/m) final
phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P,). This composition
mimics a commercial porcine brain polar lipid extract (141101, Avanti)

without the 30% unknown lipids. Nucleotides are obtained from Roche
Biosciences (Palo Alto, CA).

Dynamin purification and labeling

Dynamin is purified from six rat brains using the GST-tagged SH3 domain
of rat amphiphysin 2 as an affinity ligand (6). After elution with low pH and
salt, the two fractions most enriched in dynamin are pooled (2 ml total),
dialyzed against storage buffer (20 mM HEPES, pH 7.4, 100 mM NaCl,
50% v/v glycerol—final volume ~0.5 ml, typical concentration ~2 mg/ml),
flash-frozen in liquid nitrogen, and stored at —80°C. For conjugation to
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biotin, DSB-X biotin C2-iodoacetamide (D-30753, Invitrogen, Carlsbad,
CA) is dissolved into dimethyl sulfoxide (DMSO) at a 10 mg/ml stock.
Dynamin is labeled for a few minutes by adding a 10x molar excess of
DSB-X. Labeled dynamin is dialyzed against storage buffer, aliquoted,
flash-frozen, and stored at —80°C. Thiol-reactive biotin DSB-X ensures
good functionality of dynamin after labeling.

Formation of membrane sheets

Glass coverslips 22 x 40 mm in size are cleaned by sonication (5 min) in
1% Decon 90 (Modec, Houston , TX) in distilled water, followed by thor-
ough washing and sonication (5 min) in distilled water to remove any trace
of detergent and a final wash with 100% ethanol before storage in ethanol.
Coverslips are dried under a N, flux, and 1-ul droplets of lipid solution
(10 mg/ml in pure chloroform) are deposited and allowed to dry on the
coverslip. Typically, two drops are deposited at different sites on the
same coverslip. The use of pure chloroform is essential to allow lipid
droplet drying in a way that is optimal for the subsequent formation of
membrane sheets upon hydration. Coverslips are then dried again under
vacuum (0.2 millitorr) for at least 1 h and kept up to several days under
vacuum.

Tube preparation

Before use, coverslips are placed for 20-30 min in a wet incubator (37°C,
100% humidity) to allow partial hydration of the lipids. Next, a small
chamber (~15-ul volume) is built by placing the coverslip onto a glass slide
with lipids facing the glass slide, using a double-sided Scotch (3M, St. Paul,
MN) tape as a spacer. The lipids are fully rehydrated by applying to the side
of the chamber 15-20 ul of GTPase buffer (20 mM HEPES, pH 7.4,
100 mM NaCl, 1 mM MgCl,), which is taken up into the chamber by capil-
larity. Lipid deposits then transform into membrane sheets. The glass slide
is placed on the stage of an Axiovert 150 microscope (Zeiss, Oberkochen,
Germany) for observation with a JAI Pulnix (San Jose, CA) TMR-1405L
camera and Streampix software for video acquisition (Norpix, Montreal,
Quebec, Canada). A dynamin-containing solution (5 ul) is applied to one
side of the chamber and the deformation of membrane sheets produced
by its diffusion into the chamber is recorded at normal video rate (30 fps)
with high resolution (1300 x 1024) imaging under differential interference
contrast (DIC) settings. Nucleotide-containing GTPase buffer (5 ul) is
added after formation of the tubes.

Bead labeling and observation

In experiments involving streptavidin-coated polystyrene beads (190-nm
diameter, Bangs Labs, Fishers, IN), biotinylated dynamin is used, and the
dynamin solution also contains beads at an ~500- to 1000-fold dilution rela-
tive to the commercial stock solution. For the experiments, only tubes
adherent to the glass surface at their ends but not throughout their length
are selected for observation.

Movie processing and compression

Uncompressed DIC movies (AVI files) are resized, contrasted, and acceler-
ated using the VirtualDub freeware (www.virtualdub.org). Raw movies are
compressed using the DivX codec (San Diego, CA) to ensure good quality
compression for data storage. For the analysis of bead movement, movies
are contrasted using VirtualDub, and transformed to 8-bit grayscale stack
(.stk) files using the ImageJ (National Institutes of Health, Bethesda,
MD) freeware. The spinning beads are tracked using the optional Tracking
function of the Metamorph software (Molecular Devices, Silicon Valley,
CA), which detects the beads on each frame by pixel thresholding and re-
turns the center of mass of the selected pixels. The bead trajectories are then
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analyzed with the pick peaks tool in the Origin Pro software (OriginLab,
Northampton, MA), yielding the number of turns as a function of time
for each bead. We finally obtain the rotation velocity as a function of
both time and position along the dynamin helix.

REAL-TIME OBSERVATION OF THE
DEFORMATION

We follow the rotation of beads attached to dynamin-coated
membrane tubules during GTP hydrolysis in vitro. Our
setup is similar to one used in a previous study (6), with
minor modifications. We first prepare membrane sheets by
drying a mixture of pure lipids with 5% phosphatidylinosi-
tol-4,5-bisphosphate on a coverslip (this mixture comprises
the main components of a plasma membrane in similar
proportions—see Materials and Methods). Brain purified
dynamin, including 1/5 biotinylated dynamin, and streptavi-
din-coated polystyrene beads (diameter 190 nm), are then
injected into the lipids after rehydration with buffer. As
a result, the membrane is deformed into tubules, each coated
by a dynamin helix to which beads are anchored through
streptavidin-biotin bonds. Tubes are typically several tens
of micrometers long, with many beads attached (Fig. 1,
a and b). This is in contrast to the procedure in our previous
study (6), where only single beads were monitored. To best
observe the dynamics along the whole helix, we focus only
on tubes that lie more or less parallel to and mostly away
from the glass surface forming the bottom of our experi-
mental chamber, which enables free rotation of the beads
(Fig. S1). The membrane tubules forming the core of those
tubes usually adhere non-specifically to the glass at one of
their ends and are connected at the other end to the thick
(50 um) lipid deposit, which acts as a membrane reservoir.
Whether the dynamin helix itself is firmly anchored to the
glass or is free to rotate cannot be determined before GTP
addition. We next inject 100 uM GTP into the chamber
and monitor the rotation of the beads around the tubes
(Movie S1). This relatively low GTP concentration leads
to arelatively slow bead dynamics (6), which allows for reli-
able tracking of the beads. Movies are acquired in DIC
microscopy at 30 frames/s. We track the displacement of
a bead perpendicular to the tube (Fig. 1 ¢). The beads appear
to move right and left of the tube, and each quasiperiod of
this motion corresponds to a full rotation of the bead around
the tube. We can thus calculate the bead rotation velocity as
a function of both time and position along the dynamin helix
(Fig. 1 d). Treatment with 100 uM GTP induces no bead
detachment but causes the tubes to shrink longitudinally,
which occasionally leads to their breakage (6). During this
contraction, beads move closer to each other in a homoge-
neous and well-coordinated manner, suggesting that the
coat does not break apart and behaves as a single continuous
unit.

More detailed information about the coat continuity is ob-
tained by analyzing the bead rotation. The rotation velocity

Biophysical Journal 99(11) 3580-3588

Morlot et al.
a d
z .
Time (s)
0 1 2
T T —
12.5
)
“E” 10.0
2
2
o
] 75
o 7.5
>
©
c
i)
g A
£ 50 \\
fan\IN
2.5

FIGURE 1 Direct observation of the bead motion. (a) Cartoon of a
dynamin-coated membrane tubule with beads attached. () DIC image of
a tube with several beads. Scale bar, 5 um. (¢) Tracking of seven beads
perpendicular to the tube axis. The different amplitudes of oscillation are
due to variation in bead size. (d) Rotation velocities as a function of
time, calculated from the traces of ¢ and with the same color-coding. The
rotation velocity of each bead decreases with time, and neighboring beads
have similar rotation velocities. The beads toward the center of the tube
rotate the fastest.

of each bead usually increases very rapidly after GTP
addition, reaches a short plateau phase after three to five
turns, then decreases (6) (Fig. 1 d). Some tubes undergo
fission at this stage, but for most tubes, the motion smoothly
slows down to a halt within a few seconds. It is important
to note that the beads all start rotating at the same time
and that neighboring beads have a similar rotation velocity
(Fig. 1 d and Movie S1). The bead velocity profile indicates
the boundary conditions on the dynamin polymer: an
increase of the velocity near one end indicates that the
helix is free to rotate, whereas a decrease to zero implies
that it is blocked (see Fig. S2). The coordinated bead
rotation, just like the coordinated longitudinal motion, again
suggests that the dynamin coat remains mechanically
continuous throughout GTP hydrolysis. This is confirmed
by the fact that no obvious discontinuities in the dynamin
coat are observed upon GTP treatment in fluorescence
microscopy (Fig. S3). Note that discontinuities smaller
than the optical resolution might still be present. However,
if they are few and <100 nm, they allow the transmission
of stresses through viscous coupling and therefore have
little influence on the tube dynamics (see Supporting
Material).

THEORETICAL ANALYSIS

Here, we describe the long-time dynamics of a long tube
(L > r) during GTP hydrolysis. We show that beads bound
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to a mechanically continuous deforming helix display
distinctive patterns of motion, among which the coordina-
tion of neighboring beads discussed above. Even when
tube fission occurs, we only consider deformations that
precede it (and possibly lead up to it) and thus describe
the tube as continuous. We find that on observable time-
scales it has a diffusive dynamics dominated by an effective
helix-membrane friction. These predictions are tested
against experimental data in the next section.

We do not describe the local relaxation of the tube but
focus on the propagation of the deformation along the
tube axis. We are interested in the timescales on which these
modes of deformation propagate over distances of order L. It
is fairly intuitive that propagation over a longer tube should
take a longer time. Therefore, we expect the relaxation time-
scales of interest to diverge in the so-called hydrodynamic
limit L/r—4o. The systematic study of relaxation
phenomena obeying this criterion is known as generalized
hydrodynamics, and it can be shown that the complete
hydrodynamic behavior of a system can be captured by
focusing on its conserved quantities (e.g., mass, momentum,
etc.) and broken symmetry variables (describing periodic
order in the system) (11). We collectively refer to these as
the hydrodynamic variables of the system. Even systems
as complex as the dynamin-membrane tube have only a
few hydrodynamic relaxation processes, and we are able
to give a simple, yet complete mathematical description of
its dynamics on those so-called hydrodynamic timescales.
This simplicity stems from the fact that generalized hydro-
dynamics allows us to systematically enclose the unknown
microscopic details of the tube in a few phenomenological
coefficients. For clarity in this section, we further restrict
our discussion to experimentally observable timescales,
but a more comprehensive presentation of our formalism
is given in Lenz et al. (9).

We follow the standard hydrodynamic approach, which
starts by writing conservation equations for the hydrodynamic
variables. These equations express, €.g., the time derivative of
the mass as a function of a mass current, and we supplement
them with a discussion of the timescales involved. For
a system close to equilibrium, this current (or flux) is generi-
cally proportional to some thermodynamic forces (including,
e.g., chemical potential gradients), which characterize how
far from equilibrium the system is. These forces are then
related to the hydrodynamic variables, which results in
a closed set of equations describing the system studied.

Mass conservation and helical structure

We now present the rather minimal set of assumptions
required by our formalism: the conservation of dynamin
and membrane mass, and a seamless helical structure of
the tube. Our approach implies coarse-graining the tube
over a lengthscale of =r. We thus treat it as a one-dimen-
sional system with spatial coordinate z (Fig. 1 a).
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We assume that exchanges of dynamin or membrane
between the tube and the surrounding solution are negligible
over seconds, and thus the helix and membrane densities,
pn(z,t) and p,,(z,f) (i.e., masses of helix and membrane per
unit length), are conserved quantities. Equivalently, we
can consider the local tube mass density, p(z,t) = ps + Pm»
and mass fraction of dynamin, ®(z,f) = p;/p, as conserved
quantities, which implies the conservation law

p0,® = —0.J, 1

where a nonlinear advection term was dropped, as we
assume that the tube is weakly displaced from its reference
state (defined as its state in the absence of GTP and of exter-
nally applied force and torque). Here, J(z,f) is the mass flow
of helix in the local center-of-mass reference frame.

We furthermore hypothesize that the helix does not break,
and thus retains a solid-like periodic structure throughout. We
define 6(z,1) as the angle at which the helix intersects the
horizontal plane located at altitude z (Fig. 1 a). As the helix
rotates or translates, the intersection point between the
static plane and the moving helix is displaced, and thus,
6(z,t) varies. We further define the torsional strain
u9(z,t) = 0,6(z,t). Because of the helix continuity, this
strain component is a broken-symmetry variable, i.e., plays
asimilarrole to a conserved quantity. Indeed, just like a deple-
tion of tube mass (a conserved quantity) can only occur
through mass flow to neighboring regions, a local extension
(decrease in strain) of the solid-like helix requires that the
neighboring regions be compressed (increase in strain).

On hydrodynamic timescales, all dynamical processes
that occur within the tube are slaved to the hydrodynamic
variables 0p, Oug, and 0® (here, 6 denotes the deviation
from the reference state). Thus, we may describe the tube
state only by these three degrees of freedom.

Comparison of typical timescales

The fact that the tube has three hydrodynamic variables
implies that it has three relaxation modes (11). Because its
dynamics is overdamped, all three modes are diffusive. The
relaxation of these modes toward the new steady state
imposed by GTP hydrolysis is driven by the tube elasticity,
which is characterized by its persistence length,
£, = 37x4 um (12). Energy dissipation during this process
occurs through two different phenomena: hydrodynamic
drag against the surrounding water (characterized by the water
viscosity, 7=10"2 Pa-s) and relative helix-membrane
motion, which involves intra-membrane dissipative pheno-
mena (characterized by an inter-monolayer friction coeffi-
cient 3=10% Pa/(m-s~!) (13)). The two phenomena
happen on widely different timescales, as seen when
comparing the associated characteristic diffusion coefficients:

_keTY, ksTY,
= ey

D, =10%um?-s"'>D,, = =10°um?-s7'. (2)
nr Br
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Since we are concerned with describing experimental
systems with lengths of order 10 um over timescales of
order 1 s, we are only interested in phenomena characterized
by diffusion coefficients of order 10? p,mz-s*l, i.e., only in
those involving helix-membrane friction. The hydrody-
namic drag of water is thus neglected in the following
analysis, so that no external forces are applied to the tube
except at its ends. Using o (z, f) and 7(z, f) to denote the local
internal longitudinal tension of the tube and its local internal
torque, respectively, this implies that ¢ and 7 are indepen-
dent of z. They are thus equal to the force and torque
imposed at the ends of the tube, which we assume to be
constant.

Internal forces governing tube relaxation

The relaxation of the tube is driven by the reactive forces
conjugate to its hydrodynamic variables: the longitudinal
pressure, 6p(z,¢) (which has units of force in a one-
dimensional system); the elastic torque, 0/4(z,7); and the
helix-membrane exchange chemical potential, du,(z, 7). All
of these vanish in the reference state. They are defined in
terms of derivatives of the tube free energy per unit length,
f(z,t), and for small deviations from the reference state
they are linearly related to the hydrodynamic variables:

op P20, /P,y op
oh = auzaf"p,(p =X 5”:0 5 (3)
T p~'0af|,,., oD

where the 3 x 3 susceptibility matrix x expresses this linear
relation. This matrix characterizes the tube elasticity. The
derivatives in Eq. 3 are taken in the tube reference state.

Dissipative processes, including GTP hydrolysis

Whereas the conservative (reactive) part of the tube
dynamics close to equilibrium is captured by Eq. 3, dissipa-
tive phenomena are described by the flux-force relations in
an isothermal tube:

g —0p—oh/p = EAu (4a)
T+ 0h = E\Ap (4b)
J = —A0.0u, — ad.oh. (4¢)

The left-hand sides of Eqs. 4a, 4b, and 4c are equal to the
dissipative fluxes of linear momentum (dissipative force),
angular momentum (dissipative torque), and helix mass
(diffusion flux), respectively. Those fluxes are linearly
related to thermodynamic forces Au (representing the free
energy liberated by GTP hydrolysis), ,0u,, and 9,0h through
the phenomenological transport coefficients £.,%y, A and a.
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Although the values of these coefficients are a priori
unknown, only certain couplings are allowed by symme-
tries. In agreement with structural data (4,14,15), we assume
that the tube is nonpolar, i.e., invariant under up-down
symmetry. As a consequence, Eqgs. 4a and 4b (where the
fluxes are even under this transformation), but not Eq. 4c
(where the fluxes are odd), involve the chemical potential
difference, Ay, between GTP and its hydrolysis products
(which is even). Therefore, GTP hydrolysis plays the
same role in the tube dynamics as an externally applied
force and torque, as seen in Eq. 4. Note that viscous
terms are omitted from Eqs. 4a and 4b, as they are subdom-
inant compared to £.Au and ggA,u in the hydrodynamic
limit.

The coefficient A relates the amount of helix-membrane
motion (characterized by J) to the force, ou,, that drives
this motion. It is therefore essentially a helix-membrane
friction coefficient. Here, we consider that helix-membrane
friction stems from intra-membrane dissipative phenomena,
and thus involves the membrane viscosity. To be able to
quantitatively test this hypothesis, we consider the
simplistic model described in our previous article (9), where
the helix is rigidly attached to the membrane’s outer mono-
layer, which itself drags against the inner monolayer. This
model yields the estimate A = %%z 10726 kg-m~!-s,
which is compared to experimental measurements in the
next section. Note that in this formula 4 is related to B and
thus characterizes the dominant form of dissipation discussed
above (see Eq. 2).

Tube behavior on observable timescales

Combining Eqgs. 1, 3, and 4, and using the fact that ¢ and 7
are constants, we find that the hydrodynamic behavior on
observable timescales is given by the diffusion equation

dety
X1,1X22 — X1A2X2,1.
()

A
0,0u.y = D,,0*0u.9, where D,, = —
i p

The associated relaxation timescale is set by the friction of
the helix against the membrane. In a previous article (9), we
computed y using an elastic model of the tube (see also
Fig. 3) and predicted D,,=2.2 x 10*> um?-s~!.

TUBE DYNAMICS CONTROLLED BY MEMBRANE
FRICTION

The previous section characterizes the dynamics of long
(L > r) unbroken dynamin helices. In this section, we
compare its predictions to data from the experiments
described in Real-Time Observation of the Deformation.
We find that they are indeed compatible, and argue that
this can only be accounted for by the fact that helices in
our experiments are mostly unbroken. We then discuss the
physics underlying the relaxation.
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We find that the longest relaxation timescale of the tube
apparently diverges with its length, which indicates a hydro-
dynamic relaxation process. According to our theoretical
reasoning, only two types of relaxation processes are
compatible with this behavior: 1) friction against water,
and 2) friction between the helix and the membrane. Ac-
cording to the estimate of Eq. 2, the timescales involved
in 1), are of the order of D, L*=100 us. The longest
relaxation time of the tube is observed to be of the order
of 1 s (Fig. 1 d), i.e., much longer than this. This allows
us to rule out friction against water as a major influence in
the relaxation process on observable timescales. On the
other hand, we show below that the relaxation timescale
involved in 2), and predicted using our estimate of the
friction coefficient 2 is indeed compatible with the experi-
ments. This supports our hypothesis that helix-membrane
friction is mostly due to effects related to the membrane
viscosity.

Final state of the tube

Let us consider an unbroken helix stuck to the glass at z = 0
(thus imposing 6(0, ) = 0) and free to rotate at its other end,
z = L, and discuss the motion of a bead located at altitude z.
As a consequence of the helix continuity, the piece of helix
between 0 and z cannot rotate without dragging along the
piece between z and L in its rotation. Each turn of helix even-
tually undergoes an identical twisting deformation and thus
rotates the portion of the helix above it by a fixed quantity.
As these elementary rotations add up, the total number of
rotations of a bead increases linearly with increasing z.
This reads Af(z) = Au.yz, where Auy is a constant. More
specifically, this is due to the up-down symmetry of the
tube, which imposes that GTP hydrolysis acts as a force
and torque and thus imposes a constant strain on the helix.

In Fig. 2 a, we present two experiments where the tubes
do not break after addition of 100 uM GTP, which allows
us to count the total number of turns of each bead between
GTP injection and the end of the deformation. As expected,
these data display a linear relationship between bead posi-
tion z and the total amount of rotation, A#, with
Au.g =2.8rad-um~"' (open circles) and 1.5rad-um™!
(solid circles). This is to be compared with the structural
data of Zhang and colleagues (14,15), where it is stated
that the helix goes from 14.2 to 13.2 dimers/helical turn,
which corresponds to Au,y = 7.9 rad- um~'. Although these
numbers are in order-of-magnitude agreement, our measure-
ments yield noticeably smaller values, meaning that tubes
submitted to 100 uM GTP (as opposed to the nucleotide
concentration of 1 mM used in Zhang and Hinshaw (14))
only reach a partially constricted state.

These observations are consistent with structural
evidence of the up-down symmetry of the helix (14,15).
More important, they constitute strong evidence of its
mechanical continuity, meaning that if gaps in the helix
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FIGURE 2 Experimental data validate the predictions from our hydrody-
namic formalism, implying that dynamin deforms as a mechanically contin-
uous entity and that this process is damped by an internal friction. (a) Linear
relationship between Af(z) and z, where Af(z) is determined by counting
the final number of rotations in a trace similar to those presented in
Fig. 1 ¢ for the bead located in z. Open and solid circles represent data
from two independent experiments. For each of these, the Af values are
divided by the value of Au.y indicated in the main text to collapse the
data onto a line. (b) Exponential relaxation of bead rotation on long
timescales. As the rotation velocity Q = 9,6 (measured as in Fig. 1 d)
decreases, tracking becomes increasingly difficult and no data are collected
for =200 rad. (c) Velocity profiles for two independent experiments, each
involving a single tube. The Q values of the experiment represented by open
circles and solid circles were divided by Qp=S52rad-s~! and
Qp=9.2rad-s™!, respectively, and the bead positions, z, were scaled by
the independently measured L = 31 um and L = 47um, respectively, to
collapse the data onto a sinusoidal master curve. (d) Dependence of the
largest relaxation time (fit procedure described in Fig. S4) on the largest
wavelength compatible with the tube boundary conditions. Horizontal error
bars represent the estimated uncertainty regarding the length of each tube,
and vertical error bars stand for the fit uncertainty as calculated by the
Origin software.

are present, they are few and significantly smaller than
100 nm. Indeed, larger gaps would spoil the linear relation-
ship observed here (see discussion above and the Supporting
Material). Note that large, optically resolvable gaps are
observed when multiple dynamin polymers nucleate on a
preformed membrane tubule (16), but not when tubes are
grown from a flat membrane, as is the case here. The data
presented in Fig. 2 a also show that bead rotation in our
experiments is not due to the unbraiding of two tubes, as
was suggested previously (7) (see Supporting Material).

Bead rotation dynamics

The diffusive dynamics of Eq. 5 predicts the long-time
relaxation of bead rotation as a function of space and

Biophysical Journal 99(11) 3580-3588



3586

time. At long times, the strain du,y is dominated by its
longest-lived Fourier mode, i.e., the one with the largest
wavelength Ap,x compatible with the boundary conditions.

This yields
2
e—l‘/’fmux sin (;{ 7TZ> . (6)

max

0(Z7t: +Oo)_6(zat) x
— + o
In this paragraph, we focus our attention on the time depen-
dence of this relaxation, which decays exponentially with
time constant
AZ

max — e 7
T 4m2D,, @

This can be equivalently expressed as

Q(z,t) = 0,0(z,t) = —7.L [0(z,1) — O0(z,t = + ®)]. (8)

max

In Fig. 2 b, we test this linear relationship between # and the
rotation velocity, €2, in an experiment where a 1 mM GTP
concentration is used, which allows for the observation of
many turns of the bead and therefore provides a stringent
test of Eq. 8. The agreement is very good, and the slope
of the linear fit yields 7p,x = 3.7 s. In this experiment, we
evaluate the length of the tube to be L=100 pum= Ay, /2,
which yields D,,=3.0 x 10> um?-s~!. This is in good
order-of-magnitude agreement with our theoretical
prediction.

Long-time bead velocity profile

Now turning to the spatial profile described in Eq. 6, we
expect € to have a sinusoidal dependence in the coordinate
z. In Fig. 2 ¢, we plot the value of the velocities of beads
attached to two different tubes as a function of their scaled
positions and after addition of 100 uM GTP. The motion of
neighboring beads is clearly coordinated, as expected from
our continuous helix model.

Relation between length and relaxation time

Using sinusoidal fits similar to those seen in Fig. 2 ¢, we
establish that Apn.x = 4L for tubes attached at only one
end, whereas Ay.x = 2L for tubes attached at both ends
(see Fig. S2; the possibility for a tube attached at both
ends to rotate is discussed in the Supporting Material).
Therefore, Eq. 7 predicts that long tubes have a slower
long-time dynamics than short ones. We test this by
measuring Tm.,x for several tubes with either one or two
ends attached (fit procedure described in Fig. S4). These
data are plotted against A, in Fig. 2 d.

A quadratic fit corresponding to Eq. 7 is represented by
a line in Fig. 2 d and yields D,, = 2.0 x 10*> um?-s~', in
agreement with our prediction. Note that the experimental
relaxation times are larger than predicted by theory for short
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tubes (Amax <40 um). This is likely due to the injection of
GTP into the experimental chamber, which takes a few
tenths of a second and could interfere with the relaxation
of the tube on this timescale: as the amount of available
GTP increases with time over this period, the bead rotation
tends to accelerate, and the predicted slowing down is not
observed until after the end of GTP injection. This leads
to an experimental overestimation of 7T, that is most
apparent in short tubes. Another possible cause for this
delay is the inherent timescale associated with GTP hydro-
lysis by dynamin, which is also of the order of a few
hundreds of milliseconds (14). These timescales are negli-
gible in the hydrodynamic limit L/r— + o, where our
formalism is valid. Indeed, Fig. 2 d clearly shows that the
longest relaxation time of the tubes is an increasing function
of their length, which retrospectively justifies our focusing
on hydrodynamic timescales. This is further evidence of
the mechanical continuity of the tubes used in our experi-
ments, as we would expect a broken long tube to behave
similarly to a collection of small tubes (e.g., have the
same relaxation time as short tubes), which is not observed
here. Finally, the reasonable agreement between the values
of D,, inferred from Fig. 2 b (where [GTP] = | mM) and
the value fitted in Fig. 2 d ([GTP] = 100 uM) confirms
our prediction that the tube relaxation timescale does not
depend on GTP concentration (see Eq. 5).

Full predictions for the deformation dynamics

The good agreement of our theoretical analysis with exper-
imental results suggests that it may also give a reasonable
description of dynamin-coated membrane tubes on shorter
length- and timescales. In Fig. 3, we present predictions
from a detailed analysis of our hydrodynamic formalism
(9) (see also Supporting Material) in the case where the
tube reaches its full deformation, as when treated with
1 mM GTP (5).

This analysis is based on the changes of pitch and radius
of the helix observed by Danino et al. (5), which allow us
to infer the active force and torque .;;;ZA,u and ggA,u
describing GTP hydrolysis. We also assume that the helix
elastic properties are similar to those of a spring with persis-
tence length £, = 37+4 um (12). This somewhat coarse
assumption implies that the details of the deformation
described in Fig. 3 are speculative to some extent, although
plausible and thermodynamically consistent. A more refined
characterization of the matrix x could be obtained through
additional mechanical measurements (e.g., of the compres-
sional elasticity of the helix). We allow membrane bending
and stretching and assume that the corresponding moduli
have the typical values 10 kg7 and 0.25 N-m~! (9). This
allows us to evaluate the elastic susceptibility matrix .
As discussed previously, the tube dynamics can be
decomposed into three chronologically well-separated
diffusive modes, and we evaluate the associated diffusion
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FIGURE 3 Illustration of the time-dependent deformation as predicted
by the full hydrodynamic formalism of Lenz et al. (9). (See the Supporting
Material for a proper description of the membrane reservoir.) The images in
this figure represent the tube state during the lag phases between the relax-
ation of the three well-separated diffusive relaxation modes of the tube. See
Movie S2 for an animated version. Note that our model allows for both
stretching and bending of the membrane, but in practice, the membrane
area per polar head varies by <1.5% and the inhomogeneities in membrane
radius due to bending are always <7%—they are thus hardly discernible in
this figure.

coefficients, Dy=D,,>D,=D, >D,,, as well as the
amplitude of the deformations, as pictured in Fig. 3.

On short (although hydrodynamic) timescales
(11 =L*/D; =100 us), the tube undergoes an almost imper-
ceptible retraction in the vertical direction, without rotation
or relative helix-membrane motion—longitudinal friction on
the surrounding medium is the dominant dissipative mecha-
nism. On intermediate timescales 7, =IL? /D> =10 ms, the
tube radius decreases. Both longitudinal friction and
the dissipation associated with the flux of water inside the
tube are negligible (9). Rotational friction against water
is the dominant dissipative mechanism, and no relative
helix-membrane flux occurs (helix and membrane extend
longitudinally at the same rate). Only on timescales of order
Tmax = L? /D=1 s is membrane expelled from the helix to
the membrane reservoirs at its boundaries. Fig. 3 shows
that this process involves a decrease in tube pitch, which is
consistent with the notion that membrane is being squeezed
out of the helix.

DISCUSSION

This article describes the deformation dynamics of long
dynamin-coated membrane tubules upon GTP hydrolysis
as essentially governed by dynamin flow, membrane flow,
and the winding of the dynamin helix. Combining experi-
mental data and theoretical analysis, we show that on
observable timescales this dynamics essentially consists in
the drainage of the membrane out of the mechanically
continuous helix by nucleotide-induced effective force and
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torque. The numerical value of the relevant friction coeffi-
cient suggests that dissipation occurs mostly within the lipid
bilayer, possibly as strongly dynamin-bound lipids move
relative to and exert friction against the surrounding non-
bound lipids. As a consequence, short tubes deform more
slowly than long ones.

Although our study focuses on long tubes, our results
reveal the stability of the dynamin helix throughout GTP
hydrolysis, as well as the nature of the out-of-equilibrium
interactions between dynamin and membrane. These find-
ings can readily be transposed to short helices such as those
encountered in vivo, and are therefore of interest for the
study of dynamin in a biological context. Note, however,
that the separation of timescales between microscopic and
hydrodynamic relaxation processes does not hold in such
short helices; for instance, Fig. 2 d shows that dynamin-
membrane friction dominates the dynamics only in tubes
longer than a few microns. It is therefore likely that other
relaxation phenomena also have an influence on the
dynamics of short tubes, and it is thus not obvious what
mechanisms set the timescale for their breaking.

Our approach also allows us to use macroscopic informa-
tion from in vitro experiments to predict the shape and
dynamics of the helix on small (=10 nm) lengthscales
without need of further structural studies (Fig. 3). This
provides a qualitative picture of the microscopic dynamics
of the tube.

Our results have implications for the mechanism of dyna-
min-mediated membrane fission and shed new light on
several previous models. A first possibility is that dynamin
drives fission purely by constricting the membrane. As indi-
cated in Fig. 3, we expect this type of deformation to take
place on timescales of the order of 10 ms after GTP injec-
tion. After having been brought into close proximity by
constriction, the two sides of the membrane would presum-
ably fuse together to complete fission. This step implicates
an energy barrier of several kg7, and may thus take a long
time to complete. In our in vitro experiments and in a
previous article (6), fission typically occurs a few seconds
after GTP injection, and another study (7) reports fission
times of several tens of seconds. Since we predict that the
radius of the tube shrinks on a much shorter timescale
(Fig. 3), we may interpret these fission times as dominated
by the barrier crossing step, which could provide insight
into the energetics of the membrane fusion process.
However, the observation made in other studies (5,6) that
anchoring of the tube to the substrate is required for
breaking is not accounted for by this mechanism. Pure
constriction might thus not be able to account for the dyna-
min-mediated fission observed in those experiments.

Another proposal is that helix constriction plays a negli-
gible role in membrane fission, whereas an increase in
the helix pitch would drive a dramatic thinning of the
membrane tubule on short timescales. This would fuse the
opposite sides of the tubule (18), leading to breakage. Our
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predictions of the tube dynamics on timescales ranging from
a few hundreds of microseconds (17) to seconds (Fig. 3)
suggest that neither this nor dramatic membrane stretching
occur on hydrodynamic length- and timescales. If correct,
this scenario is therefore likely to apply only to short dyna-
min helices, such as those observed in vivo.

Our results also allow a discussion of results from more
recent studies (7,8), where it is reported that dynamin disas-
sembles from the membrane during GTP hydrolysis. The
authors suggest that long dynamin coats are quickly released
from the membrane upon GTP addition and are promptly
replaced by smaller, more fission-competent coats. This
would imply that helix depolymerization is the central event
of dynamin-mediated membrane fission, and therefore that
dynamin deformation is secondary, if not irrelevant, to its
severing action. Our results concerning the mechanical
continuity of the dynamin helix upon GTP hydrolysis do
not support this picture and indeed suggest that in our
experimental system, the mechanochemical action of
dynamin is central to its severing action.

Lenz et al. (19) propose that deformation on a time-
scale shorter than the membrane viscoelastic timescale
might lead to a tear in the membrane, possibly through
shearing, which could initiate tube fission. We estimate
this viscoelastic timescale, 7,,, as the ratio of a typical lipid
surface viscosity, =5 x 107 kg-s™' (20), to a typical
membrane stretching modulus, =0.25 N-m™! (21), yielding
T, ~107% s. Here, we report that the tube dynamics is
slower for longer tubes, which could imply a less efficient
tearing action for tubes where 7, >>T,., i.e., in tubes
longer than +/D,,7,., which is a few nanometers. This is
compatible with the observation made by Pucadyil and
Schmid (7) that long dynamin-covered membrane tubules
are less likely to break than short ones. More broadly, this
model puts forward the interesting notion that the strong
helix-membrane interactions characterized in this article
may participate in the destabilization of the bilayer during
fission. Such interactions have indeed been shown to be
essential for the membrane fission activity of dynamin
(22). This finding and our new theoretical insight into
dynamin deformation pave the way for further quantitative
studies of dynamin-mediated fission.

SUPPORTING MATERIAL

Supporting theoretical text, four figures, and two movies are available at
http://www.biophysj.org/biophysj/supplemental/S0006-3495(10)01265-8.
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S1 Supporting theoretical analysis

S1.1 Screening of rotation by bare membrane sections

Here we discuss the consequences of the presence of a hypothetical break in the helix. If the break
is very short, the resulting bare membrane region is still able to transmit torques thanks to its
membrane viscosity, and therefore the break is not evident in the measurements presented in Fig. 2
of the main text. Longer breaks, however, result in a mechanical discontinuity of the tube and
would therefore have noticeable consequences on bead rotation.

Let us consider a tube with a dynamin coat disassembled between two altitudes z; and zs.
In that case, it is difficult for the piece of helix between 0 and z; to drag the piece between zo
and L along, as the mechanical connection between the two is only realized through a section of
bare membrane tubule. In order to assess the range of this mechanical connection, we consider an
infinite membrane tubule covered by dynamin only up to the altitude z;. We denoting by Q(z) the
rotation velocity of the membrane tubule and the water it encloses at altitude z € [z, +00]. It is
easily shown that the upward flux of angular momentum transmitted through the water within the
tubule at altitude z is equal to %777’4@@. The angular momentum transmitted by the membrane
is 27r3n,,0.9, where 1,, ~ 10 %kg.m *.s7! is a typical membrane viscosity (1). Meanwhile, the
surrounding fluid exerts a friction on the tubule. It thus acts as a momentum drain and sucks
an amount 277r2Q of angular momentum per unit length per unit time (this expression assumes
that the length scale ¢ over which Q varies is much larger than r). Writing the conservation of
angular momentum along the membrane tubule, we conclude that its rotational velocity decays as
Q(z) = Q(z1) exp [—(z — 21)/{], where { = %\/1 +40n o~ \/me ~ 100nm > r. Therefore, friction
of the membrane with the surrounding fluid screens the tube’s rotation over length scales of order
£. This means that disassembling the helix over a patch of size ~ 100 nm would be enough to spoil
the linear relationship observed in Fig. 2(a), as well as the sinusoidal profile of Fig. 2(c). From this
we deduce that if any helix discontinuities are present in our experiments, they must be few and
much smaller than 100 nm.

S1.2 Bead rotation is not due to unbraiding

It has been suggested in Ref. (2) that bead rotation in experiments similar to ours (3) is due to the
unwinding of a braid formed by two tubes attached at z = 0 and z = L respectively—here we refer
to those as tubes 1 and 2. Within this hypothesis, a bead attached to tube 1 in the vicinity of z =0
should rotate by only a modest amount, as it is close to the tube attachment point. Statistically,
about half of the beads in this region should be bound to tube 2. These are expected to rotate by
a large amount, comparable to those located in z = L in Fig. 2(a) of the main text. That no such
dispersion is observed in our data is proof that we monitor the rotation of a single tube.
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S1.3 Thermodynamic description of the membrane reservoir

In order to predict the dynamics of a tube as in Fig. 3 of the main text, the diffusion equation
Eq. (5) of the main text [or more generally Eq. (21) of Ref. (4)] must be supplemented with boundary
conditions. Ref. (4) proposes the boundary condition duc(z = 0) = due(z = L) = 0, where z = 0
and z = L correspond to the extremities of the tube. This is meant to describe contact of the tube
with two reservoir: one of membrane and one of helix. Although the former is perfectly legitimate
in our experimental setting, interpreting the latter is somewhat more difficult. Moreover, using
this boundary condition leads to very strongly bent and stretched membrane profiles [Eq. (45) and
Fig. 3 of Ref. (4)]. These profiles suggest that the membrane should break much sooner than is
actually observed (5), and are somewhat at odds with the physical intuition that the membrane
should relax to a weakly bent, low-energy configuration at long times.

In this section we propose a more satisfactory set of boundary conditions by properly describing
the contact of the tube with membrane-only reservoirs in z = 0 and z = L. Denoting by

of
o= = S1
8[) uva(I) ( )
the tube total chemical potential, the Gibbs-Duhem relation reads
d(é oh
d(op) = (pp) + oped(6P) + ?d(éuze). (S2)

As the two last terms in the right-hand side are of second order in ¢ (defined in the main text), we
neglect them in the following. The chemical potential is defined up to a constant, which we choose
such that du = 0 in the reference state (hence the § in du). Contact with a membrane reservoir
fixes the membrane chemical potential, which is defined as

of

Hm
Ph>sUz6

where pp, = p® and p,, = p(1 — ®) are the mass densities of helix and membrane, respectively.
Egs. S1, S3 and the definition of du. [see Eq. (3) of the main text] imply that p, = du — Pdpe.
Because of the convention chosen above, du vanishes in the reference state. According to its
definition, so does du.. Therefore dp = due = 0 in contact with the reservoir. Since the definition
of the reference state assumes that the tube is in equilibrium with the reservoir, we deduce from
this that equilibrium with the membrane reservoir is expressed by the condition u,, = 0, and we
can thus write iy, = 0m.

Integrating Eq. (S2) to first order in § yields du = 0p/p, and so dpy = 0 = 0p/p — Pope.
Combining this with Eqs. 4a and 4b!, the boundary conditions are expressed by the fact that the
reactive forces 0p(z = 0 or z = L,t), h(z = 0 or z = L,t) and due(z = 0 or z = L,t) in contact
with the membrane reservoirs are respectively equal to

(5PT = Oext + Text - (ngM+ §9Alu> (843)
p p
Oh" = —Text + EpAp (S4b)
Oext Text ng,U/ é@A,U,
pe = + - + ; S4dc
: p®  p®p ( p® p®p (84e)

'In the more general case where the two first modes of the tube are not ignored, this equation should be combined
with Egs. (19a) and (19b) of Ref. (4). Noting that the terms with z-derivatives in these equations are vanishingly
small in the hydrodynamic limit, this yields the same result as the one presented here.
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where we use the fact that the tube’s tension and torque at its endpoints are equal to the externally
applied force and torque oeyxt and Text. Combining Eq. (21) of Ref. (4) and Eqs. S4 with the initial
condition (dp, dug, dP)(z,t = 0) = (0,0,0), we compute the tube’s full relaxation dynamics in the
case Oext = 0, Text = 0, which yields the results presented in Fig. 3 of the main text. As in Ref. (4),
the values of the active terms are chosen to reproduce the changes of pitch and radius observed in
electron microscopy (6), which reads

EAp~—-35x10""UN and &Ap~2.6x 107" N.m. (S5)

Note that this new description yields a negative EZA,U, as opposed to the positive EZAM calculated
in Ref. (4). This means that we now predict that the tube tends to contract upon GTP hydrolysis,
whereas a positive fNZA,u implies an extension. Our new description, unlike that of Ref. (4), is
therefore in agreement with the experimental observations of Ref. (3) and the main text.

S1.4 Long-time dynamics of a tube attached at both ends

In this paragraph we discuss the possibility for a continuous tube attached to the glass in two
points (and therefore prevented from rotating) to induce bead rotation. Assuming a continuous
helix whose axis is a straight line throughout the dynamics, no such motion seems possible, and
indeed none is expected from our formalism. In order to show this we consider a tube whose initial
state is described by du,(z,t = 0) = 0. As discussed in the main text and the previous section, the
final state has a uniform tension o and torque 7, as well as a uniform membrane chemical potential,
which implies du,g(z,t = +00) = constant. Moreover, the fact that the helix is held in z = 0 and
z = L implies

[0(L, +00) — O(L,0)] — [0(0, +00) — 6(0,0)] = Suzg(z, +00)L = 0, (S6)

hence dug(z,+00) = 0 and the tube does not undergo any rotation.

Rotation of a tube bound at its two ends is however observed in Fig. 2(c), and is found to yield
a sinusoidal velocity profile. Here we propose a possible explanation for this observation. Because
of the propensity of the helix to rotate, torques build up in the tube following GTP injection, and
have been observed to lead to supercoiling of the tube (3, 6). The formation of a supercoil from a
stressed rod is a local phenomenon, which does not require an overall rotation of the rod or flow of
membrane. Consequently, we expect supercoils to form quickly (on non-hydrodynamic time scales)
following the GTP-induced build-up of torque. To simplify, let us assume that the formation of
these supercoils is irreversible—once formed they are thus “frozen” for the rest of the dynamics.
Supercoil formation leads to a local relaxation of the tube, and therefore we expect that the helix
in the vicinity of the supercoils will change its pitch and radius to some extent. This creates
an inhomogeneous initial condition for the tube’s hydrodynamic relaxation. As a consequence,
and unlike in the case considered above, du,g(z,t = 0) is not equal to zero everywhere. The
precise structure of this initial condition depends on the details of the supercoiling mechanism, and
is beyond the scope of this study. Assuming however that no additional supercoiling occurs on
hydrodynamic time scales, we predict that this initial condition relaxes according to the diffusion
equation Eq. (5). Since the now complicated function du,g(z,t = 0) generically has a non-vanishing
projection onto the slowest mode of the diffusion equation, we expect that the long-time dynamics
of the tube is dominated by the sinusoidal profile observed in Fig. 2(c).

Note that the mechanism presented here might not be the only possible explanation for this
phenomenon, and is only meant as an illustration of the fact that rotation in a tube bound at its
two ends is not logically forbidden. Moreover, it illustrates the general feature that if the paradox
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proposed here is indeed resolved through local, microscopic relaxation processes, then the form of
long-time relaxation of the tube is not affected and we expect our hydrodynamic predictions to
hold.
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S2 Supporting movies—Ilegends

S2.1 Supporting movie 1

Experimental movie corresponding to Fig. 1(b). See main text for legend.

S2.2 Supporting movie 2

Ilustration of the dynamics presented in Fig. 3 of the main text. Only a few helical turns are
shown, and in this small region the deformation looks spatially homogeneous—it however has
a more complicated spatial structure on larger length scales, as discussed in the main text and
in Ref. (4). The movie displays the asymptotically exponential relaxation of the helix’s three
hydrodynamic modes. The relaxation times involved in a real system are well separated and range
from hundreds of microseconds to seconds (see Fig. 3). Here these time scales are modified for
easier visualization. Each of the three modes therefore appears to have a relaxation time equal
to 0.4s. Note that the amplitude of the first mode is very small compared to the next two and
might therefore escape the reader’s attention on first viewing. Finally, the model used allows for
both bending and stretching of the membrane (4). Although its amplitude is small, the former
induces some bulging of the membrane visible in this movie. The membrane is represented as a
semi-transparent surface, and its transparency is proportional to its stretching ratio.
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S3 Supporting figures
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Figure S1: Geometry of the membrane sheets assay. (a-c) Side-view schematics representing (a) the
membrane sheets after rehydration and before dynamin injection, (b) the appearance of dynamin-
coated tubes on membrane sheets after dynamin injection, and (c) tubes bound to the coverslip
following dynamin injection. Note that the tubes represented here are essentially parallel to the
coverslip, enabling us to monitor their dynamics, but are some distance away from it, thus allowing
the beads to rotate freely. (d) Top-view fluorescence microscopy image of a membrane sheet at the
stage represented in (c¢) (dynamin is fluorescently labeled). Scale bar, 5 pum.
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Figure S2: Experimental determination of the boundary conditions for a tube bound at one end
only. In order to calculate the maximum wavelength Ap,.x compatible with the boundary conditions
of a given tube, we assume that tubes visibly bound to the glass at both ends obey the boundary
conditions d0(z = 0,t) = d0(z = L,t) = 0, which yields Apax = 2L. Fig. 2(c) of the main
text demonstrates the validity of this description, as it shows that the best sinusoidal fit to the
bead velocity data coincides with the boundary conditions directly assessed from video microscopy
data. For tubes bound in z = 0 and free to rotate in z = L, we assume 60(z = 0,t) = 0
and 0,00(z = L,t) = 0, where the latter condition corresponds to a zero torque being applied
to the tube in z = L. This implies Apax = 4L. In this figure we present experimental data
(circles) similar to that of Fig. 2(c) for such a tube, as well as the best sinusoidal fit of the form
Q = Qosin [27(z — 20)/Amax] for this data (line), where g, zo and Apax are adjustable parameters.
The sinusoidal fit yields Apax =~ 160 pm, consistent with the direct measurement L ~ 45 um. Note
that no beads are attached to the vicinity of the end of this tube, and therefore no data was
collected in the region z > 30 um. Moreover, the fit places the tube’s origin within 2 ym of the
directly observed attachment point (zp = 1.6 um). This shows that a sinusoid with Apax = 4L
is a good description of a tube bound at one end only, and validates the use of this condition in
constructing Fig. 2(d).
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Figure S3: Direct epifluorescence observation of an Alexa-488-dynamin polymer [prepared as in
Ref. (3)] during GTP hydrolysis using an EMCCD Andor camera. (a) tube anchored at both
ends after injection of 6.3 uM fluorescently labeled dynamin on membrane sheets and before GTP
injection. (b) 12.74s after injection of 100 uM GTP. (c) 13.33s after GTP injection. (d) Fission
occurs (white arrow) 13.93 s after GTP injection. (e) 15.11s after GTP injection and 1.18s after
tube fission. As mentioned in the main text, no significant discontinuity of the dynamin helix is
observed during this experiment apart from the main breaking event. This is evidence that the
dynamin coat remains continuous up until tube breaking. Scale bar: 5 um.
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Figure S4: Fit procedure for the relaxation times presented in Fig. 2(d) of the main text. Relaxation
times are deduced from the data points representing the number of turns 6/27 of a specific bead
as a function of time ¢ (black squares). Ignoring the initial phase where GTP injection and short
wavelength modes interfere with the tube relaxation, these curves are fitted with the function
0/27 = aexp(—t/T) + b in the Origin 8.1 software (red line), where a, b and 7 are adjustable
parameters. The optimal value for 7 is the relaxation time plotted in Fig. 2(d).
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