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Large-scale force generation is essential for biological functions
such as cell motility, embryonic development, and muscle contrac-
tion. In these processes, forces generated at the molecular level by
motor proteins are transmitted by disordered fiber networks,
resulting in large-scale active stresses. Although these fiber net-
works are well characterized macroscopically, this stress generation
by microscopic active units is not well understood. Here we
theoretically study force transmission in these networks. We find
that collective fiber buckling in the vicinity of a local active unit
results in a rectification of stress towards strongly amplified isotropic
contraction. This stress amplification is reinforced by the networks’
disordered nature, but saturates for high densities of active units.
Our predictions are quantitatively consistent with experiments on
reconstituted tissues and actomyosin networks and shed light on the
role of the network microstructure in shaping active stresses in cells
and tissue.
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Living systems constantly convert biochemical energy into
forces and motion. In cells, forces are largely generated in-

ternally by molecular motors acting on the cytoskeleton, a scaf-
fold of protein fibers (Fig. 1A). Forces from multiple motors are
propagated along this fiber network, driving numerous processes
such as mitosis and cell motility (1) and allowing the cell as a
whole to exert stresses on its surroundings. At the larger scale of
connective tissue, many such stress-exerting cells act on another
type of fiber network known as the extracellular matrix (Fig. 1B).
This network propagates cellular forces to the scale of the whole
tissue, powering processes such as wound healing and morpho-
genesis. Despite important differences in molecular details and
length scales, a common physical principle thus governs stress
generation in biological matter: Internal forces from multiple
localized “active units”—motors or cells—are propagated by a
fiber network to generate large-scale stresses. However, a theo-
retical framework relating microscopic internal active forces to
macroscopic stresses in these networks is lacking. Here we pro-
pose such a theory for elastic networks.
This generic stress generation problem is confounded by the in-

terplay of network disorder and nonlinear elasticity. Active units
generate forces at the scale of the network mesh size, and force
transmission to larger scales thus sensitively depends on local net-
work heterogeneities. In the special case of linear elastic networks,
the macroscopic active stress is simply given by the density of active
force dipoles, irrespective of network characteristics (2). Importantly,
however, this relationship is not applicable to most biological sys-
tems, because typical active forces are amply sufficient to probe the
nonlinear properties of their constitutive fibers, which stiffen under
tension and buckle under compression (3). Indeed, recent experi-
ments on reconstituted biopolymer gels have shown that individual
active units induce widespread buckling and stiffening (4, 5), and
theory suggests that such fiber nonlinearities can enhance the range
of force propagation (6, 7).
Fiber networks also exhibit complex, nonlinear mechanical

properties arising at larger scales, owing to collective deformations
favored by the networks’ weak connectivity (3, 8). The role of
connectivity in elasticity was famously investigated by Maxwell,
who noticed that a spring network in dimension d becomes
mechanically unstable for connectivities z< 2d. Interestingly, most

biological fiber networks exhibit connectivities well below this
threshold and therefore cannot be stabilized solely by the longi-
tudinal stretching rigidity of their fibers. Instead, their macroscopic
mechanical properties are typically controlled by the fiber bending
rigidity (9). In contrast to stretching-dominated networks with
connectivities above the Maxwell threshold, such weakly connected,
bending-dominated networks are soft and extremely sensitive to
mechanical perturbations (9–11). In these networks, stresses gen-
erated by active units propagate along intricate force chains (12, 13)
whose effects on force transmission remain unexplored. Collections
of such active units generate large stresses, with dramatic effects
such as macroscopic network stiffening (14–16) and network
remodeling (5, 17).
Here we study the theoretical principles underlying stress

generation by localized active units embedded in disordered fiber
networks (Fig. 1C). We find that arbitrary local force distributions
generically induce large isotropic, contractile stress fields at the
network level, provided that the active forces are large enough to
induce buckling in the network. In this case, the stress generated in
a biopolymer network dramatically exceeds the stress level that
would be produced in a linear elastic medium (2), implying a
striking network-induced amplification of active stress. Our find-
ings elucidate the origins and magnitude of stress amplification
observed in experiments on reconstituted tissues (4, 18) and ac-
tomyosin networks (14, 17). We thus provide a conceptual
framework for stress generation in biological fiber networks.

A Lattice Model for Elastic Fiber Networks
We investigate force transmission, using a lattice-based fiber
network model (3). In our model, straight fibers are connected at
each lattice vertex by cross-links that do not constrain their rel-
ative angles. Each lattice edge represents a “bond” made of two
straight segments and can thus stretch, bend, or buckle (Fig. 1D
and Fig. S1). Segments have stretching rigidity μ and a rest length
equal to one, implying a stretching energy μðℓ− 1Þ2=2 per seg-
ment of length ℓ. The fiber bending rigidity is set to unity by
penalizing angular deflections θ between consecutive segments
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through a bending energy 2 sin2ðθ=2Þ. Consequently, individual
bonds buckle under a critical force Fb = 1, and we consider nearly
inextensible fibers by assuming μ � 1 (henceforth we use μ= 103).
Network disorder is introduced through bond depletion, i.e., by

randomly decimating the lattice so that two neighboring vertices
are connected by a bond with probability p. This probability
controls the network’s connectivity, giving rise to distinct elastic
regimes delimited by two thresholds pcf and pb. The network
is stretching dominated for p> pcf, bending dominated for
pb < p< pcf, and mechanically unstable for p< pb. Here we con-
sider 2D hexagonal lattices, for which pb ’ 0.45 and pcf ’ 0.65,
and 3D face-centered cubic lattices with pb ’ 0.27 and
pcf ’ 0.47. Because the network displays singular behavior in the
vicinity of pb and pcf, here we focus our investigations on the
generic stretching- and bending-dominated regimes away from
these critical points (9).
We model active units as local sets of forces Fi exerted on network

vertices i with positions Ri. We impose that the total force and
torque exerted by such units vanish, as expected if the active units are
not subjected to any external force. We consider networks at me-
chanical equilibrium under the influence of these forces. We denote
by σ the trace (i.e., the isotropic component) of the coarse-grained
active stress induced in the fiber network by a density ρ of such units.
The relationship between this active stress and local forces in

homogeneous linear networks is very simple and yields (2)

σ = σlin =−ρDloc, [1]

where Dloc =
P

iFi ·Ri is the dipole moment of the forces associ-
ated with a single active unit. Eq. 1 is generically violated in
disordered or nonlinear networks, although it holds on average
in linear networks with homogeneous disorder

hσi= σlin, [2]

where h · i denotes the average over disorder (2). To quantify
violations of Eq. 1, we define the far-field force dipole Dfar
through the relation

σ =−ρDfar ⇒
Dfar

Dloc
=

σ

σlin
. [3]

Conceptually, this far-field dipole characterizes the apparent
strength of an individual active unit renormalized by force
transmission in the disordered, nonlinear network. It quantifies how
contractile (Dfar < 0) or extensile (Dfar > 0) the active medium is, and
the dipole amplification ratio Dfar=Dloc (or equivalently the stress

amplification ratio σ=σlin) measures the deviation from linear homo-
geneous force transmission.

Contractility Robustly Emerges from Large Local Forces
Stress generation by active units integrates mechanical contri-
butions from a range of length scales. We first consider the im-
mediate vicinity of the active unit. Network disorder plays a
crucial role at that scale, because forces are transmitted
through a random pattern of force lines determined by the
specific configuration of depleted bonds (Fig. 2 A and B, Insets).
To understand how these patterns affect force transmission, we
investigate the probability distribution of the far-field force dipole
Dfar for simple active units consisting of two equal and opposite
point forces of magnitude F0.
We first consider the linear regime F0 � Fb, where the aver-

age dipole amplification equals unity: hDfar=Dloci= 1 (Eqs. 2 and 3).
The fluctuations around this average are strikingly broad
compared with this average, shown by plotting the distribution
of dipole amplifications (Fig. 2 A and B). For instance, a sig-
nificant fraction (37%) of all network geometries yield negative
amplification, i.e., an effective extensility in response to a
contractile dipole (Fig. 2A, Inset). Due to linearity, contractility
in response to an extensile dipole is just as likely. Overall, the
far-field response in the linear regime is only loosely correlated
to the applied force dipole.
The situation is dramatically different in the large force regime

(F0 � Fb), where fibers buckle and induce nonlinear network
response. This is illustrated by the distributions of dipole am-
plifications in two opposite cases: a large contractile and a large
extensile force dipole (Fig. 2 C and D). Although the detailed
shapes of these curves are model dependent, three robust features
emerge: First, locally extensile dipoles predominantly undergo
negative amplification, implying far-field contractility irrespective
of the sign of Dloc (as in, e.g., Fig. 2D, Inset). Second, the ran-
domization observed in the linear regime is strongly attenuated,
and the sign of the amplification is very reproducible (positive for
98% of the contractile dipoles and negative for 86% of the ex-
tensile ones). Third, the magnitude of the average amplification is
significantly larger than one (in Fig. 2 C and D, hDfar=Dloci= 6.9
and −3.2 for contractile and extensile dipoles, respectively).
To understand these three effects, we consider contractile and

extensile dipoles in a simpler regular network (no bond depletion,
Fig. 2 E and F). Qualitatively, these uniform networks behave
similarly to the randomly depleted ones described above: Force
dipole conservation holds for F0 � Fb, whereas for F0 � Fb dipoles
are rectified toward contraction and their magnitude is amplified
(Fig. 2G). The origin of these behaviors is apparent from the spatial
arrangement of the forces in Fig. 2 E and F. Whereas contractile and
extensile active units both induce compressive and tensile stresses in
their immediate surroundings, the buckling of the individual bonds
prevents the long-range propagation of the former. This results in
enhanced tensile stresses in the far field and thus in strongly con-
tractile far-field dipoles. In addition, this nonlinear response renders
the far-field stresses uniformly tensile and therefore more isotropic
than the active unit forces. We quantify this effect in Fig. 2G, Inset,
using an anisotropy parameter for the far-field stresses 1−
ðPμσ

μμÞ2=ðd Pμ,νσ
μνσνμÞ, where d is the dimension of space and

σμν is the coarse-grained active stress tensor of the active
medium (Supporting Information). This anisotropy parameter
indeed becomes very small for large local dipoles of either sign as
shown in Fig. 2G.
Moving to a systematic quantification of force transmission

in depleted, bending-dominated networks, we show in Fig. 2 H
and I the same three effects of rectification, amplification,
and isotropization, which set in at smaller forces than in
regular networks. Overall, these effects are very general and
hold in both bending- and stretching-dominated depleted
networks, in two and three dimensions, and for active units
with complicated force distributions not along lattice direc-
tions (Figs. S3 and S4). Thus, beyond the immediate neigh-
borhood of the active force-generating unit, strong isotropic

A

B

C D

Fig. 1. Biological fiber networks (green) transmit forces generated by
localized active units (red). (A) Myosin molecular motors exert forces on
the actin cytoskeleton. (B) Contractile cells exert forces on the extra-
cellular matrix. (C ) The large nonlinear deformations induced by a model
active unit in the surrounding fiber network result in stress amplifica-
tion, as shown in this paper. Fiber color code is shown in D. (D) Each bond
in the network comprises two rigid segments hinged together to allow
buckling.
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contractile stresses emerge in the system from a generic local
force distribution due to the nonlinear force propagation prop-
erties of the fiber network.

A Model for Active Units as Isotropic Pullers
Whereas nonlinear force transmission over large length
scales involves large active forces, the model for active units
used above can exert only moderate dipoles in soft, weakly
connected networks. Indeed, for large enough contractile di-
poles the two vertices on which the forces are applied collapse
to a point as in Fig. 2C, Inset, preventing further contraction. In
contrast, molecular motors and contractile cells continuously
pull fibers in without collapsing. To study the response of fiber
networks to large active forces, we thus introduce an active unit
model capable of exerting arbitrarily large forces without
changing its size. We assume an isotropic force distribution, an
approximation valid in the large force regime, where compli-
cated force distributions are locally rectified toward isotropic
contraction by the network (Fig. 2 G and I).
Our model active unit is centered on a vertex i and pulls on

every vertex j within a distance 2R0 with a radial force

Fij =

−F0
rij
R0

r̂ij if   rij <R0

−F0

�
2−

rij
R0

�
r̂ij if   R0 ≤ rij < 2R0

,

8>><
>>:

[4]

where F0 is the maximum force exerted by the unit on a vertex, rij
is the distance between i and j, and r̂ij is the associated unit
vector. A strong active unit in a soft network may pull in many
fibers, exerting a force ≈F0 on each of them. Adding the con-
tributions of all these fibers results in a large local dipole, the
magnitude of which is not well reflected by the value of F0. The
influence of the active unit on the surrounding network is
better characterized by the force F, which we define as the
average force per unit area exerted on the surrounding net-
work by the active unit at its outer surface (r= 2R0). These
isotropically pulling units are thus suited to the study of

arbitrarily large active forces, and we use them in the remain-
der of this article.

Contractile Forces Are Long Ranged in Bucklable Media
We now study force propagation beyond the immediate vi-
cinity of an active unit, using the above-described isotropic
puller. We identify two asymptotic regimes for this propaga-
tion. Close to the active unit, forces are large and fiber
buckling affects force transmission, whereas beyond a cross-
over distance R* forces are weak and linear elasticity prevails.
To describe the near-field regime, we note that fiber

buckling prevents the network from sustaining compressive
stresses above the buckling threshold. Close to the active unit,
the network is thus effectively equivalent to a network of
floppy ropes, i.e., filaments with tensile strength but no re-
sistance to compression or bending. The active unit pulls on
these ropes and thus becomes the center of a radial arrangement
of tensed ropes. Force balance on a small portion of a spherical
shell centered on the active unit imposes that radial stresses in
this rope-like medium decay as

σrrðrÞ∝ r−ðd−1Þ, r � R* , [5]

where r is the distance from the active unit and d the dimension
of space (19). In the far field, stresses are small and buckling
does not occur, implying that force transmission crosses over
from rope-like to linear elasticity:

σrrðrÞ∝ r−d, r � R*. [6]

Stress decay is thus significantly slower in the rope-like near field
than in the linear far field, leading to an increased range for force
transmission (7). Conceptually, the faster decay in a linear elastic
medium can again be understood by balancing forces on a fraction
of spherical shell centered on the active unit, where radial stresses
are now partially compensated by orthoradial stresses. We expect
that the crossover between these two regimes occurs when radial
stresses are comparable to the buckling stress, implying that the
crossover length depends on the active force:

A

B

C

D

E

F

G

H I

Fig. 2. Network buckling converts active forces into emergent isotropic contraction over a few mesh sizes. (A and B) In the linear response regime (F0 � Fb),
the far-field dipole Dfar exhibits a broad distribution with average Dloc (histogram; the gray and white areas correspond to contractile and extensile systems,
respectively). The square and the red bars indicate the mean and standard deviation of the distribution. Insets show contractile and extensile active forces (red
arrowheads) propagate along a complex network of force lines (blue, tension; red, compression), resulting in randomized force distributions at a fixed
boundary (black arrows). (C and D) At larger forces (here F0 = 20Fb), both contractile and extensile dipoles typically result in contractile forces at the boundary
(Dfar < 0). The corresponding distributions of amplifications are narrower than in the linear case. (E and F) Regular networks subjected to large (F0 = 500Fb)
local dipoles of either sign exert uniformly contractile forces on the fixed boundary. (G) Corresponding far-field dipole as a function of the local dipole,
showing amplification and rectification in the nonlinear regime. The dashed line indicates the linear prediction Dfar =Dloc. Inset shows stress anisotropy
parameter (defined in the main text) as a function of the local dipole. (H and I) Far-field dipole and anisotropy as a function of the local dipole in a bending-
dominated 2D network. Parameters: μ= 103; for depleted networks p= 0.6, averages over 104 samples.
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R* ≈R0

�
F
Fb

�1=ðd−1Þ
. [7]

To test this two-regime scenario, we simulate force propagation
away from a single active unit in both stretching- and bending-
dominated networks in two and three dimensions. In all cases,
rope-like radial stresses and bond buckling are predominant in
the vicinity of the active unit (Fig. 3 A–C). Monitoring the decay
of radial stresses with r, we find a crossover from rope-like to
linear behavior, consistent with Eqs. 5 and 6 (Fig. 3 D, F, and H).
Visually, the crossover length R* coincides with the outer

boundary of the radially tensed, buckling-rich region (Fig. 3 A–C,
black circles). In stretching-dominated networks, our prediction
of Eq. 7 captures the force dependence of this crossover length
(Fig. 3E and Fig. S5). In contrast, bending-dominated networks
display a more complex behavior: Although the system still ex-
hibits a transition from rope-like to linear force transmission, the
crossover region is much broader (Fig. 3 F and H) and rope-like
force transmission extends much farther than predicted by Eq. 7.
Instead, we find behavior that is reasonably well described by a
power law R* ∝Fα with anomalous exponents α≈ 0.4 in 2D and
α≈ 0.25 in 3D (Fig. 3 G and I). These exponents appear to be
insensitive to the exact value of the depletion parameter p within
the bending-dominated regime (Fig. S5). We speculate that this
extended range for nonlinear force transmission is mediated by
the strong concentration of tensile stresses along force chains
(12, 20) observed in Fig. 3 B and C. Indeed, such force chains are
much more pronounced in bending-dominated than in stretching-
dominated networks (Fig. S5). The difference between stretching-
and bending-dominated exponents thus suggests that these elastic
heterogeneities qualitatively affect force transmission in such soft
networks. As a result, contractile forces large enough to induce
buckling benefit from an enhanced range of transmission, char-
acterized by the mesoscopic radius of the rope-like region R* .

Amplification by a Collection of Active Units
Over large length scales, active stresses in biological systems are
generated by multiple active units. We thus compute the stress
amplification ratio in the presence of a finite density of ran-
domly positioned active units in 2D and 3D for various densi-
ties ρ and depletion parameters p (Fig. 4A). In all cases we
observe three stress amplification regimes as a function of the
unit force F: a low-force plateau without amplification, an in-
termediate regime of increasing amplification, and a saturation
of the amplification at a level that depends on ρ.
In the low-force regime, linear force transmission prevails

(Fig. 4B) and the active stress is given by Eq. 1:

σ = σlin =−ρDloc ≈ ρFR0. [8]

For moderate forces, the fibers in the network buckle in the
vicinity of each active unit, up to a distance R* . Individual units
are thus typically surrounded by nonoverlapping nonlinear re-
gions of size R* , as illustrated in Fig. 4C. To predict the resulting
active stress in the system, we model each nonlinear region as an
effective active unit of size R* and force dipole Deff ≈−FR* ,
where we use Eq. 5 to describe force propagation within the
nonlinear region. As the effective units are themselves embedded
in a linear medium, linear force transmission (Eq. 1) outside of
these units implies

σ ≈−ρDeff ≈ ρFR* . [9]

We thus predict that stress amplification in this regime scales as
σ=σlin ≈R* =R0. We confirm this prediction in Fig. 4E. Because R*
increases with the active unit force in this regime, the large-scale
stress amplification σ=σlin increases with F as previously observed
in Fig. 4A.
For large forces, the radius of the rope-like regions becomes

so large as to exceed the typical distance between adjacent

Fig. 3. Nonlinear network behavior enhances the range over which stresses are transmitted. (A–C) A localized, isotropically pulling active unit (red circle of
radius R0 = 1.95) induces stress lines (A–C, Left: blue, tension; red, compression) and buckling (A–C, Right: red, buckling; green, nonbuckled bonds) in the
surrounding fiber network. Black circle: radius R* of the rope-like region. C shows a slice of a 3D system. (D, F, and H) Decay of the average radial stress in the
network (corrected for boundary effects) (Supporting Information and Fig. S2) as a function of the distance to the active unit. Fitting the curve with the power
laws of Eqs. 5 and 6 yields a measure of the crossover radius R*. (E, G, and I) We tentatively describe the dependence of the crossover radius on active unit
force by a power law (solid line) in the intermediate-F regime where it is not complicated by finite size effects due to either the active unit size (at small F) or
that of the system boundary (at large F). Results were obtained in a 2D circular (3D spherical) network of radius 200 with fixed boundaries and averaged over
100 samples for disordered networks.
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active units Ra.u. = ρ−1=d. This causes the nonlinear regions as-
sociated to neighboring active units to overlap and renders the
whole network mechanically equivalent to a collection of
tensed, inextensible ropes whose geometry does not change
significantly upon further increase of the force. To estimate the
resulting network stress, we approximate the system as a mosaic
of effective active units of size Ra.u. each with a force dipole
Deff ≈−FRa.u. (Fig. 4D). This yields

σ ≈−ρDeff ≈ ρFRa.u. = ρ1−1=dF. [10]

The resulting prediction for the stress amplification, σ=σlin ≈Ra.u.=R0,
is confirmed in Fig. 4F. Strikingly, the stress generated in this large-
force regime has a nonlinear dependence on ρ, again consistent with
Fig. 4A. Indeed, the addition or removal of active units leads to large
rearrangements of the rope network, resulting in significant local
modifications of force transmission.
We summarize the physics of collective stress generation by many

active units in a phase diagram (Fig. 4G). In each regime, the

magnitude of an active unit’s effective force dipole is directly pro-
portional to one of the three length scales R0, R* , and Ra.u. (Eqs. 8–
10). Whereas we have shown that R* depends on the dimensionality
and connectivity of the network, the other two length scales are
purely geometrical. An important consequence of these findings is
that the active stress generated in the associated regimes is essen-
tially independent of the detailed properties of the fiber network.

Discussion
In living organisms, microscopic units exert active forces that are
transmitted by fibrous networks to generate large-scale stresses.
The challenge in analyzing this force-transmission problem stems
from the disordered architecture of such fibrous networks and
the nonlinearities associated with the strong forces exerted by
biological active units. Despite this complexity, we find surpris-
ingly simple and robust behaviors: In response to any distribution
of active forces, dramatically amplified contractile stresses emerge
in the network on large scales. This remarkable property hinges
only on the local asymmetry in elastic response between tensed
and compressed fibers and is enhanced by network disorder. Our

A G

B C D

E F

Fig. 4. Force transmission in the presence of a finite density ρ of active units. (A) Fiber networks in different dimensions and elastic regimes all display three stress
amplification regimes as a function of active unit density and force, as suggested by the colored background. (B–D) Schematics of the network structure in each regime.
The low-force linear regime (B) transitions to a regime of nonoverlapping nonlinear regions (C) as soon as F is sufficient to induce buckling. These nonlinear regions grow
with increasing F, and amplification saturates as they start overlapping, which turns the whole network into a rope network (D). (E) In the intermediate-force regime, the
stress amplification ratio is equal to the ratio R*=R0 as predicted by Eq. 9. Color code as inA. (F) In the large-force regime, the stress amplification ratio is equal to the ratio
Ra.u.=R0 as predicted by Eq. 10. (G) Schematic phase diagram indicating the domain of applicability of the three stress amplification regimes, with representative
snapshots of the corresponding systems in the background. Note that the picture described here is also valid for dense collections of anisotropic active units (Fig. S6).

Table 1. Experimental data support stress amplification in fiber networks

System (source) R0, μm Ra.u., μm R* = R0ðF=FbÞ1=ðd−1Þ, μm σlin σth σexp

I: 3D actomyosin (14) 1 1 0.8 (linear regime) 12  Pa 12  Pa 14  Pa
II: 2D actomyosin (17) 1 20 15 (force controlled) 0.014  pN=μm ≥0.2  pN=μm ≥1  pN=μm
III: 3D blood clot (4, 18) 2 15 350 (density controlled) 9  Pa 70  Pa 150  Pa

The rope-like radius R*, linear-theory active stress σlin, and predicted amplified stress σth are computed using Eqs. 8–10 from in-
dependent estimates of the single-unit force F (Supporting Information) for comparison with the experimentally measured active stress
σexp. We use the stretching-dominated scaling for R* (Eq. 7), and thus the predicted active stress in system II is a lower bound as indicated
by the ≥ symbol in the σth column; the ≥ in the σexp column reflects experimental uncertainties.
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simple, yet realistic description of individual fibers yields a uni-
versal scenario for force transmission: long-ranged, rope-like
propagation near a strong active unit and linear transmission in
the far field. This generic result should be contrasted with recent
studies focused on fibers with special singular force-extension re-
lation (7) and resulting in nonuniversal force transmission regimes.
Our generic phase diagram (Fig. 4G) recapitulates our quan-

titative understanding of stress generation by a collection of
active units based on the interplay between three length scales:
active unit size R0, rope-like length R* , and typical distance
between units Ra.u.. To validate these predictions, we compare
them with existing measurements on a broad range of in vitro
systems (Table 1). We first consider system I, a dense 3D actin
network with mesh size ’ 200  nm in the presence of myosin
motors, which assemble into so-called myosin thick filaments. A
thick filament—which we consider as an individual active unit—
exerts a typical force F = 6  pN, smaller than the buckling
threshold Fb ≈ 10  pN associated with a single 200‐nm bond.
This implies an active stress identical to the linear prediction,
confirmed by the experimental result (14). We next consider
system II, a 2D actin network bound to the outer surface of a
lipid vesicle. The active units are essentially the same as in sys-
tem I, but are much more sparsely distributed (Ra.u. ’ 20  μm).
The network in system II is also much looser (mesh  size ’ 1  μm)
than in system I, resulting in a much smaller bond buckling force.
The combination of a low buckling threshold and a large spacing
between active units leads us to predict a significant stress am-
plification R* =R0 ’ 15 associated to the force-controlled regime
(Fig. 4 C andG), in reasonable agreement with experiments (17).
Finally, we consider a clot comprised of fibrin filaments and
contractile platelets as active units (system III). The large forces
exerted by platelets allow for long-range nonlinear effects,
placing this in vitro system deep in the density-controlled regime
(Fig. 4 D and G). Consequently, we expect stress amplification to
be controlled by the distance between active units, irrespective of
the large value of the active force F ≈ 104   Fb. We thus predict an
amplification factor Ra.u=R0 ’ 8, in good agreement with ex-
perimental data (4, 18). These three examples demonstrate our
theory’s ability to quantitatively account for stress amplification,
and recent progress in the micromechanical characterization of
active fiber networks opens promising perspectives for further
exploring active stress amplification (4, 5, 17).
Far from merely transmitting active forces, we show that fiber

networks dramatically alter force propagation as contractility

emerges from arbitrary spatial distributions of local active
forces. This could imply that living organisms do not have to
fine-tune the detailed geometry of their active units, because
any local force distribution yields essentially the same effects on
large length scales. This emergence of contractility sheds a new light
on the longstanding debate in cytoskeletal mechanics regarding the
emergence of macroscopic contraction in nonmuscle actomyosin
despite the absence of an intrinsic contractility of individual myo-
sin motors (20–23). Indeed, although these motors exert equal
amounts of local pushing and pulling forces (24, 25), our result
suggests that the surrounding network rectifies pushing contribu-
tions into uniform contraction. This rectification effect in two and
three dimensions contrasts with the behavior of previously studied
one-dimensional actomyosin systems, where extensile dipoles are
attenuated but not reversed (26). It complements more local effects
biasing the effects of a motor toward contractility (25), such as local
buckling (24) and polarity-induced treadmilling (27). More broadly,
we suggest that this strong propensity for the emergence of con-
traction in fibrous materials can explain the overwhelming domi-
nance of contractile stresses in active biological materials up to the
tissue level. Clearly, this does not mean that it is impossible to
generate large-scale expansion in living organisms as required for
limb abduction and extension or for lung inflation. Nevertheless, in
each of these examples the expansion actually results from the
clever harnessing of muscle contraction through lever structures
involving the skeleton. Our findings connect widely used phenom-
enological “active gel” theories (28) to the underlying molecular
scale forces, a crucial step in bringing theory and experiments to-
gether in the study of active biological matter, and call for further
progress in characterizing force transmission in fiber networks. For
instance, whereas our results concern the short-time elastic re-
sponse of the network, it will be interesting to see how they are
modified on longer timescales as cross-linker detachment and cy-
toskeletal remodeling induce flow in the fibrous matrix.
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Methods
Network Energy Minimization. Using the network model described
in the main text, we investigate the response to localized active
forces of the form −Fi ·Ri, where Ri is the position of vertex i of
the network, as illustrated in Fig. S1. Summing the associated
elastic energy with all fiber stretching and bending contributions,
our total Hamiltonian reads

H=−
X

forces  i

Fi ·Ri +
X

segments  ði, jÞ
μ

�
ℓij − 1

�2
2

+
X

hinges  ði, j, kÞ
2 sin2  

θijk
2
,

[S1]

where ℓij is the length of the segment ði, jÞ linking vertices i and j,
θijk is the angle formed between two consecutive segments ði, jÞ
and ðj, kÞ, and Ri is the position of vertex i at which the force Fi is
applied. We consider only the athermal equilibrium response of
the system, which is obtained by minimizing the total Hamilto-
nian of the system, using conjugate gradient methods.

Active Stress Measurements. The contractility of our active net-
works is quantified by the value of its macroscopic active stress. To
quantify this stress, we use a framework previously developed by
us and suited for the analysis of random discrete networks with
next-nearest neighbor interactions (2). This framework includes
different prescriptions for systems with fixed and periodic
boundary conditions.
For fixed boundary conditions, we compute the system’s active

stress tensor σ μν from the forces exerted by the network on its
boundaries,

σ μν =−
1
V

X
boundary
sites  i

f μi r
ν
i , [S2]

where the sum runs over the network’s boundary sites with po-
sitions ri, f i is the force exerted by the network on the boundary
at site i, and V is the volume of the system. Note that

P
f μi r

ν
i is in

fact the force dipole tensor associated with these boundary
forces. In the large length-scale limit our active stress tensor
σ μν is exactly identical to the active stress tensor appearing in
hydrodynamic active gel theories (28).
For periodic boundary conditions (used in Fig. 4 of the main

text), we use the so-called mean-stress theorem

σ μν =
Σμν

V
−
Dμν

loc

V
, [S3]

where Dμν
loc =

P
iF

μ
i R

ν
i is the force dipole tensor associated with

the active forces and Σμν =
P

i,jσ
μν
ði, jÞ is total stress inside the sys-

tem, given as a function as the discrete stress σμνði, jÞ associated with
bond ði, jÞ (2). Numerical computations of the active stress from
Eq. S3 are straightforward, as both Dμν

loc and Σμν are readily ac-
cessible local quantities.

Measurements of the Rope-Like Region Radius.Our definition of the
radius R* of the rope-like region surrounding an isolated active
unit relies on the identification of the crossover of the radial
stress σrrðrÞ between rope-like and linear stress propagation (Eqs.
5 and 6 of the main text). We measure σrrðrÞ by performing a
virtual “cut” of the system in a circular (or spherical in three

dimensions) shell and averaging the radial components of the
stress (including the bending tension) of all fibers that cross this
shell. To this end, we use the discrete stress definition introduced
in ref. 2.
The identification of the crossover length is complicated by the

fact that the linear regime is not a pure scaling regime. Indeed, it is
affected by the boundary conditions of the system. For an iso-
tropic elastic continuum with spherical symmetry, the generic
solution to the linear elastic equations for the radial displacement
urðrÞ is

urðrÞ=Ar−ðd−1Þ +Br, [S4]

where d is the space dimension, and the constants A and B are
set by the boundary conditions. The radial stress thus reads

σrr =−2dμAr−d + 2μ
1+ ν

1− ðd− 1ÞνB, [S5]

where μ is the shear modulus and ν is the Poisson ratio of the
material. In the case of an infinite system, B= 0 and the linear
regime is a pure scaling regime σrr ∝ r−d. However, in a finite
system, any choice of boundary conditions will lead to a finite
value for B, thus perturbing the scaling regime and complicating
the estimation of R* [raw value of σrrðrÞ in Fig. S2].
In the case of fixed boundary conditions, as in Fig. 3 of the main

text, we have B=−A=Rd, where R is the radius of the system. In
addition, the Poisson ratio of elastic fiber networks is easily
measured, and we numerically find that it is independent of the
precise geometry and connectivity of the network: In d= 2,
ν= 3=5 and in d= 3, ν= 5=13 (note that these values do not
correspond to actual experimental Poisson ratios, but only to
idealized fiber networks, and are exact for regular networks). We
can thus extrapolate the infinite-system value of the radial stress
by subtracting the part due to the fixed boundaries. To avoid
issues associated with bonds that intersect the system’s boundary,
we measure the radial stress at a radius R1 slightly smaller than R
and compute the corrected “infinite system” stress as a function
of our finite-size “raw” measurement, using the formula

σðinfinite  systemÞ
rr ðrÞ= σðrawÞrr ðrÞ− Rd

1

Rd
1 + gRd

  σðrawÞrr ðR1Þ, [S6]

where g= d− d2ν=ð1+ νÞ. Interestingly, in both d= 2 and d= 3 we
find g= 1=2. The corrected stress exhibits a clear scaling regime
in the far field, as demonstrated in Fig. S2, which can then be
used to clearly define the rope-like radius R* .

Experimental Data. As shown in Table 1 of the main text, our
predictions on stress amplification are quantitatively supported by
a range of experiments in d= 2 and d= 3 in reconstituted cyto-
skeletal as well as extracellular networks. Here we detail the
estimates leading to the figures shown in the main text.
Our first example (“system I” in the main text) illustrates the

linear regime (Fig. 4 B andG of the main text) in 3D actomyosin.
In ref. 14, a cross-linked actin network with mesh size ξ= 200  nm
is populated by myosin thick filaments of size R0 = 1  μm, each
comprising ’ 300 myosin heads. Each head actively exerts a
f = 4  pN force 2% of the time (26). Of these 300 heads, half
pull in each direction. Furthermore, we use the simplifying as-
sumption that the myosin thick filament is uniformly decorated
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withmotor heads, and thus the average span of the force dipole isR0=2.
This results in a local force dipole Dloc =−150×R0=2× f × 2%
and each thick filament as a whole exerts a typical force
F =Dloc=R0 ’ 6  pN on the network. Actin filaments have a
persistence length ℓp ’ 10  μm, implying a buckling force
Fb ≈ π2kBTℓp=ξ2 = 10  pN for a single network bond. As a result,
the active unit force is too small to induce filament buckling, and
we thus expect linear force transmission in this experiment.
Hence σth =−ρDloc = ρFR0 ’ 12  Pa, where we used ρ= 2  μm−3.
This number is in very good agreement with the estimation
σexp ’ 14  Pa of the macroscopic stress in ref. 14.
Our second example (“system II” in the main text) illustrates

force-controlled amplification in 2D actomyosin networks (Fig.
4 C and G of the main text). Ref. 17 reports active stresses
generated by a membrane-supported two-dimensional acto-
myosin sheet competing with the tension of a bare lipid mem-
brane. This reveals that the active stresses generated by thick
filaments (F ’ 6  pN as above) in a 2D actin network
(ξ=R0 = 1  μm) covering a giant unilamellar vesicle of radius
r ’ 10  μm are of the same order as the tension of the mem-
brane, σexp ≈ σmembrane ≈ 10−6 − 10−4  N ·m−1 [the vesicles are
electroformed and contain a mixture of egg-phosphatidylcholine
(EPC) and biotin-PEG lipids]. The range of tensions given
here shows typical values for such vesicles as no direct tension
measurements are available in these experiments. The ex-
periments involve an average of three myosin thick filaments
per vesicle, implying ρ= 3=ð4πr2Þ ’ 2× 10−3μm−2. Computing
the buckling force as Fb ≈ π2kBTℓp=ξ2 = 0.4  pN and assuming
a stretching-dominated network, we predict a buckling ra-
dius R* =R0F=Fb = 15  μm that is both larger than the mesh size
and smaller than the intermotor spacing Ra.u. = ρ−1=2 ’ 20  μm,
placing this system in the force-controlled amplification regime

(Fig. 4 C and G of the main text). This yields an amplification
factor σth=σlin =R* =R0 ’ 15 and an overall 2D active stress
σth = ρFR* ’ 2× 10−7  N ·m−1.
Our last example (“system III” in the main text) addresses

the density-controlled amplification regime (Fig. 4 D and G
of the main text). We consider stress generation in a recon-
stituted clot composed of a fibrin network rendered contractile
by a concentration ρ= 3× 108   cells ·mL−1 of blood platelets
(18). Atomic force microscopy measurements on individual
platelets (4) show that each platelet of size R0 = 2  μm ex-
erts a pulling force F = 15  nN, thus yielding a force dipole
Dloc =−Fd=−3× 10−14  N ·m (4). The linear prediction for the
active stress is thus σlin =−ρDloc ≈ 9  Pa. Comparing this to the
experimentally measured active contractile stress σexp = 150  Pa
generated by a blood clot, we thus find a stress amplification
factor σexp=σlin = 17. As the microstructure of the fibrin network
was not investigated in ref. 18, we assume that the network
essentially consists of single fibrin filaments or of small-diameter
fibrin bundles and thus estimate a persistence length ℓp = 0.5  μm
and a mesh size larger than 200 nm (ξ  ≥   200  nm) (29). To as-
sess the validity of these estimates, we note that they imply a
network shear modulus G′≈ 6kBTℓ 2p=ξ

5 ’ 20  Pa (3), consistent
with the value G′= 70  Pa reported in ref. 18. They moreover
imply a rope-like region size R* = ξðF=FbÞ1=2 ≥ 350  μm (with
Fb ≈ π2kBTℓp=ξ2), much larger than the intercell distance
Ra.u. = ρ−1=3 ’ 15  μm. The rope-like regions of neighboring cells
thus interpenetrate, implying density-controlled amplification. In
this regime, we predict a contractile stress σth ’ 70  Pa and a
stress amplification factor σth=σlin =Ra.u.=R0 ’ 8, in order of
magnitude agreement with the experimental result. Note that as
system III is deep in the density-controlled regime, this pre-
diction is insensitive to our precise estimates of ℓp and ξ.

Fig. S1. Schematic representation of the lattice model. The midbond vertices allow buckling of individual bonds.

Ronceray et al. www.pnas.org/cgi/content/short/1514208113 2 of 5

www.pnas.org/cgi/content/short/1514208113


Fig. S2. Compensation of the effect of the fixed boundaries of the system on the spatial distribution of radial stresses.

Fig. S3. Rectification, amplification, and isotropization effects are generic features of force transmission in fiber networks. (A–C) Illustration of the rectifi-
cation effect in response to an extensile force dipole in various networks. Because compressed segments buckle (red bonds), only tensile stresses (blue bonds)
are propagated to the far field. (D, F, and H) The far-field dipole becomes large and contractile for large local force dipoles of either sign. (E, G, and I) The
anisotropy of the far-field stress vanishes for large local force dipoles. Note that we apply force dipoles on next-to-nearest neighbors rather than nearest
neighbors, such that the two point forces are exerted on distinct fibers. The rationale for this choice is both physical and practical. Physically, cells embedded in
extracellular matrix, as well as myosin motors pulling on actin, typically exert forces on different filaments (a myosin thick filament will, for instance, anchor to
a pair of actin filaments). Practically, force dipoles applied on nearest-neighbor vertices result in a stress response that is dominated by the very stiff stretching
response of the bond joining the two vertices. In such a situation, the response of the system will be dominated by local effects even in the bending-dominated
regime, which is both unrealistic and trivial. An alternative option would have been to systematically remove the bond joining the two vertices. However, this
biases the network to be locally softer than average, whereas applying the forces on next-to-nearest neighbors does not introduce such a bias.
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Fig. S4. Rectification of arbitrary local force distributions into far-field contractility. We consider systems where random forces are applied in a small area
of seven lattice vertices, with the constraint that the total force and torque vanish. By symmetry, the resulting average local force dipole is equal to zero.
(A) Typical configuration, showing rectification at large forces. (B) The distribution of the effective dipole measured at the boundary in the linear limit (F � Fb).
As expected, the distribution is centered around zero, and the average effective dipole thus vanishes. (C) In the large force limit, effective dipoles are
overwhelmingly contractile (95% of cases), demonstrating the generality of the rectification effect. Here p= 0.8.

Fig. S5. The force transmission mechanism presented in the main text is insensitive to the specific choice of parameters of the system and in particular to the
choice of the depletion parameter p characterizing the connectivity of the network. (A–C) A localized, isotropically pulling active unit (red circle of radius
R0 = 1.95) induces stress lines (A–C, Left: blue, tension; red, compression) and buckling (A–C, Right: red, buckling; green, nonbuckled bonds) in the surrounding
fiber network. Black circle shows radius R* of the rope-like region. B shows a slice of a 3D system. (D, F, and H) Decay of the average radial stress in the network
as a function of the distance to the active unit. (E, G, and I) The exponent α that relates the rope-like radius R* to the active force F depends only on the
elasticity regime—stretching or bending dominated—and not on the specific value of p. Indeed, α=1=ðd− 1Þ in stretching-dominated networks (E and G), and
the 2D anomalous exponent in bending-dominated networks α=0.4 is reproduced for a lower connectivity than in the main text (I). Results were obtained in a
circular (spherical) network of radius 200 with fixed boundaries and averaged over 100 samples for disordered networks.
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Fig. S6. The stress amplification regimes for a collection of two-point force dipoles of the type used in Fig. 2 of the main text are qualitatively similar to those
obtained with isotropically pulling active units (Fig. 4 A and E of the main text). (A) Stress amplification as a function of active force F and active unit density ρ
in a regular 3D face-centered cubic network. The three regimes are suggested by the colored background. (B) Maximum stress amplification in the large-force
regime, as a function of the distance Ra.u. between active units for isotropic pullers (circles) and two-point force dipoles (red stars). Eq. 10 of the main text holds
for dipoles as in the analysis of the main text, although here with a prefactor slightly larger than unity.
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