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l active forces to macroscopic
stress in elastic media

Pierre Ronceray* and Martin Lenz*

In contrast with ordinary materials, living matter drives its own motion by generating active, out-of-

equilibrium internal stresses. These stresses typically originate from localized active elements embedded

in an elastic medium, such as molecular motors inside the cell or contractile cells in a tissue. While many

large-scale phenomenological theories of such active media have been developed, a systematic

understanding of the emergence of stress from the local force-generating elements is lacking. In this

paper, we present a rigorous theoretical framework to study this relationship. We show that the

medium's macroscopic active stress tensor is equal to the active elements' force dipole tensor per unit

volume in both continuum and discrete linear homogeneous media of arbitrary geometries. This

relationship is conserved on average in the presence of disorder, but can be violated in nonlinear elastic

media. Such effects can lead to either a reinforcement or an attenuation of the active stresses, giving us

a glimpse of the ways in which nature might harness microscopic forces to create active materials.
1 Introduction

Forces in living systems are largely generated at the nanometric
protein level, and yet biological function oen requires them to
be transmitted to much larger length scales. In the actomyosin
cytoskeleton for instance, local forces exerted by myosin
molecular motors on a disordered elastic scaffold of actin bers
determine the mechanical properties of the cell and help drive
mitosis, cell migration and adhesion.1 At a larger scale,
contractile cells exert forces on their surroundings to partici-
pate in muscular contraction, clot stiffening2 and wound heal-
ing.3 Due to their physiological relevance, such systems have
been extensively studied in vitro, and direct, dynamical imaging
has recently progressed from macroscopic observations4 to
visualizations of the networks' microstructure5,6 as well as
individual components7 during contraction.

The abundance of different macroscopic behaviors gener-
ated by apparently similar microscopic components, which is
particularly spectacular in the cytoskeleton, has attracted
signicant theoretical attention over the last decade. Two
prominent theoretical strategies have emerged.

On the one hand, so-called “active gels” models emphasize
macroscopic ows within the cytoskeleton, and do not formulate
detailed assumptions about the microscopic interactions between
motors and laments.8–10 Instead, they rely on symmetry consid-
erations to derive the most general equations compatible with the
problem considered, and successfully predict intricate patterns of
motion resembling experimentally observed dynamical structures.
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While very general, these approaches involve a large number of
unprescribed parameters enclosing the relevant aspects of the
microscopic dynamics; in particular, the most important, speci-
cally active aspects of the cytoskeletal dynamics are typically
described by a phenomenological “active stress tensor”.

On the other hand, length scales too small to be accurately
captured by an active gel formalism have typically been
modeled using both continuum11 and discrete18 elastic models.
Such models yield insights into specic cellular processes such
as mitotic spindle organization,13 lamellipodium growth14 or
intracellular propulsion,15 as well as into the propagation of
dipolar forces generated by cells embedded in an elastic
matrix.16 However, although the bulk elastic properties of such
models have been thoroughly investigated16,17 on a general
basis, force transmission from the microscopic to the macro-
scopic level was only considered in numerical simulations of
specic geometries,18–23 and a general theoretical framework to
understand this process is lacking.

In this paper, we introduce such a formalism under the form
of a direct relation – termed “dipole conservation” – between the
macroscopic active stress and the force dipole tensor, a local
quantity describing the individual force-exerting elements.
Going beyond previous special-case derivations, we show that
this relation applies in both continuum (Sec. 2) and discrete
(Sec. 3) homogeneous, linear elastic media irrespective of their
shape and of the spatial distribution of the active forces. To
understand the biologically relevant inuence of heterogene-
ities, we investigate the case of random spring networks in Sec.
4, and show that although dipole conservation is violated in
individual realizations of the network it still holds in an average
sense provided the disorder is the same everywhere. Finally, in
Soft Matter, 2015, 11, 1597–1605 | 1597
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Sec. 5 we study a toy model nonlinear elastic medium and show
that nonlinear elasticity can skew force transmission towards
either contraction or extension. Sec. 6 then discusses the
applicability of this result to existing models of force trans-
mission in tissues and the cytoskeleton.

2 Dipole conservation in continuum
elastic media

The transmission of localized active forces to the outer
boundary of a continuum elastic body is a geometrically
complex problem, and the distribution of transmitted forces
strongly depend on the body's shape and material properties
(Fig. 1). Nevertheless, here we show that strong nonlocal
constraints exist between body and boundary forces. In Sec. 2.1
we introduce the boundary dipole tensor, a quantity charac-
terizing the boundary forces that is directly related to the stress
tensor. Using general conditions of mechanical equilibrium, we
relate this boundary dipole to the spatial distribution of body
forces in Sec. 2.2. Specializing our result to homogeneous linear
media, we then show in Sec. 2.3 that the boundary dipole is
exactly equal to the dipolar moment of the body force distri-
bution, a relation which we refer to as “dipole conservation”.

2.1 Boundary dipole tensor

Let us consider a general d-dimensional piece of elastic material
at mechanical equilibrium, lling a domain U of space with
boundary vU and volume V. We model the active elements
embedded in the elastic body as a distribution of body forces
Fm(R). To quantify the macroscopic consequences of these active
forces, we consider the response of the total system composed
of the elastic medium and the embedded elements to an
innitesimal, affine deformation characterized by a strain
tensor gmn. Under this transformation, a point belonging to the
boundary vU of the elastic body with position R in the resting
state is displaced by a quantity dRm(R) ¼ gmnRn (summation over
repeated Greek indices is implied).† Denoting the elastic stress
tensor by slm(R) and considering a surface element dsl lying on
the boundary vU, the force exerted by the outside world on the
surface element reads �slm(R)dsl. As the surface element gets
displaced by an innitesimal dRm, the work performed by this
force is [�slm(R)dsl] � dRm. The change in energy of the total
system is given by the work performed over the whole boundary:

dE ¼
þ
vU

½ � slmðRÞdsl� � dRm

¼ �gmn �
þ
vU

slmðRÞRn dsl:
(1)

Noting that the integral in the right-hand side of eqn (1) is
the dipolar moment of the boundary forces, we refer to this
quantity as the “boundary dipole tensor” and denote it as
† Throughout this article, the positions R can be chosen to refer to either the
undeformed or deformed state, provided that the correct form of the stress
(nominal vs. Cauchy) is used. The mean-stress theorem holds for arbitrary
deformations in both cases.
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Dmn ¼
þ
vU

slmðRÞRn dsl: (2)

The meaning of this new quantity becomes clear if we note
that according to eqn (1), Dmn is the derivative of the energy of
the total system with respect to the boundary strain gmn. This is
reminiscent of the denition of the stress tensor smn as the
derivative of the energy density e with respect to the local strain
tensor gmn(R). Considering a coarse-grained approximation of
the total system with a uniform bulk deformation gmn and
uniform stress ~smn, we have E ¼ Ve with e a uniform elastic
energy density and the boundary dipole tensor is directly related
to the coarse-grained stress tensor:

Dmn ¼ vðVeÞ
vgmn

¼ �V~smn: (3)

Thus �Dmn/V is the medium's coarse-grained stress tensor
and D/(Vd) ¼ Dmm/(Vd) is the analog of a hydrostatic pressure. In
an active medium language, D < 0 thus characterizes a
contractile medium while D > 0 is associated with extensility.

Note that in a system with periodic boundary condition, the
boundary dipole tensor can be dened through the relation Dmn

¼ �vE/v(gmn), where the affine deformation can be imposed
through Lees–Edwards boundary conditions. Unless explicitly
stated, all the continuum and discrete results presented in this
manuscript can be rederived under periodic boundary condi-
tions with only minimal modications to their proofs.
2.2 Mean-stress theorem

As a rst step towards establishing dipole conservation, here we
rederive a result known as the mean-stress theorem.19,24 We
introduce the dipolar moment of the active forces Fm(R) as

Dmn ¼
ð
U

FmðRÞRn dV : (4)

Note that Dmn is independent of the origin of the coordinates
if the body forces sum to zero as expected for active elements
embedded in an elastic medium, and that the total force dipole
exerted by several active elements is equal to the sum of the
individual force dipoles.

Inserting the force balance equation vnsmn ¼ �Fm into eqn (4)
and integrating by part yields the mean stress theorem

Dmn ¼
þ
vU

slmðRÞRn dsl þ
ð
U

smnðRÞ dV : (5)

Dening the integrated stress tensor Smn ¼
ð
U

smn dV and

using the denition of the boundary dipole eqn (2), eqn (5) can
be cast into a compact form:

Dmv ¼ Dmv � Smv. (6)

This result holds irrespective of the medium's material
properties, including homogeneity and linearity.
This journal is © The Royal Society of Chemistry 2015



Fig. 1 Boundary forces (purple arrows) transmitted by a two-dimensional homogeneous linear elastic medium under the influence of a localized
force dipole (black arrowheads) computed using finite elements. The boundary force distribution is strongly influenced by both the medium's
material properties (n denotes the Poisson ratio) and the geometry of the problem. Nevertheless, in all cases the boundary dipole tensor is equal
to the body forces' dipolar moment.
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2.3 Dipole conservation

Despite its universality, in the general case the result of eqn (6)
involves a complicated unknown object Smv and is thus of
limited practical use. Here we show that this limitation is lied
when considering a linear homogeneous elastic medium with
xed boundaries.

In a linear homogeneous elastic medium, stress is related to
strain through a position-independent stiffness tensor: smv(R)¼
Cmvab gab(R). Integrating this relation over space, we get

Smn ¼ CmnabGab with Gab ¼
ð
U

gabðRÞ dV ; (7)

where Gab denotes the integrated strain. Assuming small
displacements, we use the linear strain gab(R) ¼ [vaub(R) +
vbua(R)]/2 with ua(R) the medium's displacement vector. Inte-
gration of eqn (7) then yields a boundary integral

Gab ¼
þ
vU

�
ubðRÞ
2

dsa þ uaðRÞ
2

dsb

�
: (8)

Eqn (6) thus provides a decomposition of the boundary
stress as a sum of a bulk term Dmn involving active forces and a
boundary term Smn ¼ CmnabGab related to the system deforma-
tion. Note that the latter depends on the system's elastic prop-
erties through the stiffness tensor Cabmn, while the former does
not. Now introducing the assumption of xed boundary
conditions, the boundary displacements in the right-hand side
of eqn (8) vanish, implying that the whole integral vanishes.
Using eqn (7), we thus nd that Smn ¼ 0, and thus eqn (6) can be
rewritten as the dipole conservation relation:

Dmn ¼ Dmn (9)

which relates bulk and boundary forces. To understand the
meaning of this equation, we decompose it into the equality of
the traces, symmetric traceless parts and antisymmetric parts of
the two tensors. The equality of the traces, D ¼ Dmm ¼ D, is of
particular interest for biological systems as it relates the
“hydrostatic pressure”D of the medium to the local force dipole
D, a quantity routinely interpreted as the amount of contractility
of the active elements.12,19,20,22,25 Next, the symmetric traceless
part of each of the two dipole tensors [(Dmn + Dnm)/2 and (Dmn +
Dnm)/2] is analogous to a nematic order parameter
This journal is © The Royal Society of Chemistry 2015
characterizing the anisotropy of the corresponding forces, and
thus their equality means that the anisotropy of the contractile
forces is also conserved across scales. Finally, the equality Dmn �
Dnm ¼ Dmn � Dnm of the antisymmetric parts is equivalent to
torque balance in the elastic medium; since embedded active
elements exert a vanishing total torque on the elastic medium,
it simply reduces to Dmn � Dnm ¼ 0, and thus expresses torque
balance on the total system.

For systems without xed boundaries, eqn (9) takes the more
general form

Dmn ¼ Dmn � CmnabGab, (10)

meaning that the total coarse-grained stress �Dmn/V is the sum
of an active contribution and of the elastic stress CmnabGab. This
relation has previously been derived in an isotropic geometry.24

Note that eqn (9), as well as the other dipole conservation
relations presented in this paper assume a homogeneous (or
statistically homogeneous in Sec. 4) elastic medium. Like these
other results, it can however be generalized to cases where a
piece of elastic material is removed to make space for the
embedded active element by introducing a correction to the
local dipole accounting for the missing piece.
3 Dipole conservation in discrete
elastic media

We now prove dipole conservation in discrete media, with
similar implications as in the continuum case of Sec. 2.
Although more technically involved, this new derivation paral-
lels the one of the previous section and its results have a similar
physical interpretation. We introduce the active force dipole
tensor and the boundary dipole tensor in Sec. 3.1 and show that
it satises a discrete mean-stress theorem in Sec. 3.2. Dipole
conservation is then derived in Sec. 3.3 under the assumptions
of linearity and local point reection symmetry, a variant of the
homogeneity assumption used above.
3.1 Active force and boundary dipole tensors

We consider a d-dimensional systemU comprised of interacting
vertices i located at positions R(i) in the reference conguration,
and at R(i) + u(i) in the deformed conguration characterized by
Soft Matter, 2015, 11, 1597–1605 | 1599
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the displacements u(i). The system's boundary vU consists in a
set of additional vertices whose displacements are set to zero
[see Fig. 2(a)]. The active force dipole tensor and the boundary
dipole tensor are thus respectively dened as

Dmn ¼
X
i˛U

F ðiÞ
m RðiÞ

n ; (11a)

Dmn ¼
X
l˛vU

f ðiÞm RðiÞ
n (11b)

where F(i)m is the body force applied on the elastic network at
vertex i and f(i)m is the force exerted by the system on boundary
vertex i.
3.2 Mean-stress theorem

Here we generalize the known continuum mean-stress theorem
to discrete elasticity, again relying on force balance. We
consider only forces between pairs of vertices, as many-body
interactions can always be decomposed into sums of pair
interactions. We assume these interactions to have nite range.
Denoting by f(ij)m the force exerted by vertex i on vertex j, the force
balance condition reads

F ðiÞ
m ¼

X
j�i

f ðijÞm (12a)

f ðiÞm ¼
X
j�i

f ðijÞm (12b)

for bulk and boundary vertices, respectively. Here
X
j�i

denotes a

sum over the vertices j that interact with i.

Inserting eqn (12a) into eqn (11a), we obtain a double sum

over vertices of the form
X
i˛U

X
j�i

. Reorganizing it into a sum over

pairs of neighboring vertices and splitting the resulting
expression into two sums, one over bulk pairs and the other
over pairs straddling the boundary, we use Newton's third law
f(ij)m ¼ �f(ji)m to nd

Dmn ¼ Dmn þ
X
ðijÞ

f ðijÞm

�
RðjÞ

n � RðiÞ
n

�
(13)
Fig. 2 Parametrization and point reflection invariance in a discrete
elastic system (a) mobile bulk vertices (solid circles) comprised in the
bulk U of the network are connected to each other and to zero-
displacement boundary vertices belonging to the boundary vU (open
circles). Blue arrows represent their displacements. (b) The partial
network Uj is obtained by setting all displacements to zero except that
of vertex j. (c) The partial network Uj is invariant under point reflection
about vertex j even though the total network U (in grey) is not. The
displacement of vertex j is reversed under this transformation.
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where the sum runs over all pairs of interacting vertices,
including boundary vertices. Dening the stress associated with
a pair of interacting vertices as‡

s(ij)mn ¼ �f(ij)m [R(j)
n � R(i)

n ] (14)

we obtain

Dmn ¼ Dmn � Smn with Smn ¼
X
ðijÞ

sðijÞ
mn ; (15)

which constitutes the discrete mean-stress theorem.
3.3 Dipole conservation

As in the continuum case, here we assume linear elasticity to
demonstrate Smn ¼ 0, implying dipole conservation. Linearity
implies that Smn is a linear function of the set {u(i)l }i˛U of equi-
librium vertex displacements, which are themselves unspecied
functions of the active forces. Therefore, the integrated stress in
the network can be decomposed into a sum over ctitious
partial networks Uj where all displacements but that of vertex j
are set to zero [Fig. 2(a and b)]:

Smn

�n
u
ðiÞ
l

o
i˛U

�
¼

X
j˛U

SUj
mn

�
u
ðjÞ
l

�
; (16)

where S
Uj
mn is the integrated stress in partial network Uj.

To demonstrate dipole conservation, we show that the
partial integrated stress S

Uj
mn vanishes for all j in networks

invariant under local point reection. Considering a specic
partial network Uj, we rst note that reversing the vertex
displacement also reverses the integrated stress by linearity:

SUj
mn

�
�u

ðjÞ
l

�
¼ �SUj

mn

�
u
ðjÞ
l

�
: (17)

We next introduce the assumption that each partial network
Uj is invariant under local point reection about vertex j. The
result of this transformation is illustrated in Fig. 2(c), and we
denote the symmetric of vertex i by I j(i). Since stresses are
proper tensors, the integrated stress is unchanged under this
transformation:

Smn
I jðUjÞ�I j

�
ul

I j ðjÞ
��

¼ Smn
Uj

�
u
ðjÞ
l

�
; (18)

meaning that the point-reversed image of a system under, e.g.,
overall compression is a system under the same amount of
overall compression. Since vertex j is its own image under this
transformation, its displacement is reversed:

I j
�
ul

I jðjÞ
�
¼ I j

�
u
ðjÞ
l

�
¼ �u

ðjÞ
l : (19)

Noting that local point reection means that the partial
network Uj is invariant under I j, i.e., I j(Uj) ¼ Uj, eqn (18)
becomes
‡ Several different conventions can be chosen to generalize the stress tensor to
discrete systems.26–28 Here we chose to localize the stress on the bonds of the
network, yielding a mean-stress theorem with a concise expression.

This journal is © The Royal Society of Chemistry 2015



Fig. 3 Force transmission in a linear spring network is strongly
affected by elastic inhomogeneities. Here the opacity of a bond is
proportional to its stiffness, and black arrowheads (purple arrows)
represent body (boundary) forces. (a) In a homogeneous network,
dipole conservation D ¼ D is satisfied to the numerical precision. (b) In
a random spring network, dipole conservation is typically violated; in
this specific example, D/D z 0.60. Here the spring constants are
drawn from a lognormal law with standard deviation da ¼ 0.8.
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SUj
mn

�
�u

ðjÞ
l

�
¼ �SUj

mn

�
u
ðjÞ
l

�
: (20)

Combining eqn (17) and (20), we nd that SUj
mn ¼ 0 for any j,

which we insert into eqn (15) and (16) to prove dipole conser-
vation in the original, full network U:

Dmn ¼ Dmn (21)

Although supercially different from the translational invari-
ance used in Sec. 2, our local point reection symmetry has a
similar physical meaning. Indeed, it states that from any point of
observation, the elastic medium looks the same to two observers
looking in opposite directions. It is however more restrictive than
translational symmetry, as it does not apply to, e.g., the honey-
comb and diamond lattices—we do however believe that dipole
conservation could be established in these lattices by considering
discrete rotational symmetries. Local point reection symmetry is
nevertheless fullled by most usual lattices, including the trian-
gular, square, simple-, face-centered- and body-centered-cubic
lattices, and thus the discrete dipole conservation relation eqn
(21) remains of wide practical interest. Furthermore, in a regular
lattice with periodic boundary conditions translational invariance
is sufficient to prove dipole conservation (with a proof similar to
that presented in Sec. 4.1).

4 Average dipole conservation in
random elastic media

In this and the next section, we investigate how relaxing the
assumptions of homogeneity and linearity respectively affect
dipole conservation. As shown in Fig. 3, inhomogeneous elastic
properties signicantly affect dipole transmission in a spring
network. Nevertheless, we show in Sec. 4.1 that in a random
spring network with periodic boundary conditions dipole
conservation is preserved in an average sense. Sec. 4.2 then shows
numerically that xed boundary conditions spoil this result,
although deviations from it are small and go to zero for large-size
systems. Finally, in Sec. 4.3 we use an effective medium (i.e.,
mean-eld) approach to quantify the sample-to-sample variations
in the amount of transmitted force dipole, and nd that it is
proportional to the amplitude of the local spring disorder.

4.1 Average dipole conservation in periodic geometry

Consider the linear response of a regular lattice of independent,
identically distributed random springs with periodic boundary
conditions subjected to a distribution of body forces F(i)m of zero

sum (i.e.,
X
i

FðiÞ
m ¼ 0 as expected for active elements embedded in

an elastic medium). Let G(i)
mna be the sample-dependent linear

response function relating the body force at site i to the integrated
stress:

Smn ¼
X
i

GðiÞ
mnaF

ðiÞ
a : (22)

Denoting averages over lattice disorder by a bar, this equa-
tion implies
This journal is © The Royal Society of Chemistry 2015
Smn ¼
X
i

G
ðiÞ
mnaF

ðiÞ
a ¼ Gmna

X
i

F ðiÞ
a ; (23)

where the second equality stems from the statistical equiva-
lence of all sites in the network, implying that the average

response function GðiÞ
mna is independent of i. Finally, inserting

our assumption of vanishing sum of the body forces into eqn
(23) yields �Smn ¼ 0, and thus through eqn (15) the force dipole is
conserved on average:

�Dmn ¼ Dmn. (24)

This result is valid in any system where all vertices are
equivalent, and thus also holds in innite lattices.

4.2 Violations of average dipole conservation in the presence
of xed boundaries

To investigate the inuence of nite domain size on the average
dipole conservation eqn (24), we numerically study the linear
response to a force dipole of a nite hexagonal system with xed
boundary conditions, as pictured in Fig. 3(b). The network is a
two-dimensional triangular lattice of independent identically
distributed random Hookean springs of unit rest length. The
spring constant of the bond joining two neighboring sites i and j
is denoted a(ij) and drawn from a distribution dP(a) with average
�a ¼ 1 and variance Var(a) ¼ da2.

Assuming a lognormal form for dP(a), we minimize the
elastic energy of systems of different sizes using a conjugate
gradient algorithm. Our procedure uses displacements of order
10�100 times the lattice constant, for which we checked that
nonlinear effects are absent. Fig. 4(a) shows that average dipole
conservation is violated for small systems, but that these
violations vanish for larger system sizes.

4.3 Inuence of network disorder on the reliability of force
transmission

While in large enough systems the boundary dipole becomes
equal to the local force dipole on average, Fig. 4(a) suggests that
Soft Matter, 2015, 11, 1597–1605 | 1601
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signicant uctuations around this average subsist even in
innite systems. Physically, this stems from the fact that the
conguration of the immediate surroundings of the force-
exerting active element can strongly amplify or attenuate the
local force dipole. These near-eld distortions are then faith-
fully propagated to long distances by the more distant regions
of the network, which tend to transmit forces in a more dipole-
conserving way. Therefore, due to their local origin these
distortions are not cured by increasing the system size. The
resulting boundary dipole uctuations have a clear practical
signicance, as they represent an intrinsic limitation on the
reliability of force transmission through disordered elastic
networks and thus represent a challenge for biological systems.

To better understand the magnitude of this effect in relation
to the amount of network disorder, we compute a mean-eld-
type approximation of the boundary dipole uctuations
through an effective medium theory.29 As detailed in Appendix
A, effective medium theories assimilate the effect of bond
disorder in a fully random network to that of a single random
bond with spring constant a immersed in an effective regular
network. The spring constant am associated with this effective
network is chosen so that the average of the displacement v of
the random bond in the regular network is equal to the elon-
gation nm of the non-random bonds, i.e., �n¼ nm. This formalism
allows us to calculate an approximation of the tension of each
random bond, allowing us to compute the integrated stress S.
We nd that the tension of the random bond is equal to the
bond tension in a fully regular medium plus a quantity
proportional to n � nm. Since the integrated stress in the
ordered medium vanishes [eqn (21)], our approximate system
has Sf n � nm. Now averaging this relation and using �n � nm ¼
0, we nd

�S ¼ D � �D ¼ 0, (25)
Fig. 4 Deviations from average dipole conservation and sample-to-
sample fluctuations in random spring networks. (a) The average dipole
conservation condition �D/D ¼ 1 (grey line) is well respected for
systems with large enough number of mobile vertices N. Bars repre-
sent the standard deviation of this ratio, thus indicating the magnitude
of sample-to-sample fluctuations. Each point in this figure represents
data averaged over O (105) samples, ensuring that the plotted devia-
tions in the average �D are statistically significant. (b) Standard deviation
of the boundary force dipole, D [proportional to the length of the bars
in panel (a)] normalized by the second moment of the effective
medium stress S0 (see Appendix A) as a function of disorder. We find
good agreement with the small-disorder effective medium theory
prediction eqn (26) (dashed line) up to da x 1.
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i.e., the effective medium theory predicts average dipole
conservation irrespective of boundary conditions. Going
beyond this vanishing average stress, we further compute the
variance S2 of the integrated stress, which is proportional to
ðv� vmÞ2. For small disorder, the typical mismatch n � nm

between the random bond and its deterministic neighbors is
moreover proportional to the mismatch a � am of their spring
constants, and thus to the amplitude da of the disorder. This
nally yields

Std(S) ¼ Std(D) ¼ S0da, (26)

where the geometry-dependent prefactor S0 in the right-hand
side is given in Appendix A. Comparing this effective medium
prediction with the numerical data of Sec. 4.2, we nd an
excellent agreement up to a bond disorder da x 1, following
which our small-disorder expansion breaks down [Fig. 4(b)].

This proportionality of dipole uctuations dS to the network
disorder da suggests that reliable dipole transmission is only
possible in well-ordered media. However, due to the linearity of
the elastic medium, the uctuations stemming from many
small contractile elements scattered through space average out
to zero. This scattered geometry is reminiscent of the structure
of force-generating cytoskeletal networks.
5 Breakdown of dipole conservation
in nonlinear elastic media

Unlike the elastic disorder discussed above, nonlinear elastic
behavior introduces systematic violations of force dipole
conservation, as illustrated here on a simple example. We
consider a spherical, three-dimensional cavity of radius R1 lled
with a continuum homogeneous elastic medium with elastic
energy density

e ¼ l

2
ðTr gÞ2 þ m Tr

�
g2
	þ b

3
ðTr gÞ3; (27)

where g is the strain tensor, l and m are Lamé parameters that
characterize the linear response of the material, and b is a
nonlinear compressibility, with b > 0 describing soening upon
compression. We impose a radial displacement u0 at radius R0,
resulting in a radial displacement

uRðRÞ ¼ ARþ B

R2
(28)

with

A ¼


u0=R0 R\R0

�u0R
2
0

��
R3

1 � R3
0

	
R0\R\R1

(29a)

B ¼


0 R\R0

u0R0R
3
1

��
R3

1 � R3
0

	
R0\R\R1

: (29b)

Although eqn (28) matches the linearized solution of the
elastic problem, it is actually valid to arbitrary nonlinear order
for the specic form of the strain energy of eqn (27).30,31
This journal is © The Royal Society of Chemistry 2015
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Restricting ourselves to small displacements, we can use the

usual Cauchy strain tensor gmn ¼
1
2
ðvmun þ vnumÞ and derive the

resulting radial stress

sRRðRÞ ¼ 3lAþ 2m

�
A� 2B

R3



þ 9bA2; (30)

which we use to compute the local and boundary force dipoles

D ¼ 4pR0
3
�
sRR

�
R0

þ	� sRR

�
R0

�	�

¼ u0ðlþ 2mÞ 12pR1
3R0

2

R1
3 � R0

3
þ bu0

2
36pR1

3R0

�
R1

3 � 2R0
3
	

�
R1

3 � R0
3
	2

D ¼ 4pR1
3sRRðR1Þ

¼ u0ðlþ 2mÞ 12pR1
3R0

2

R1
3 � R0

3
� bu0

2 36pR1
3R0

4

�
R1

3 � R0
3
	2

�
R0�R1

D�36pbu0
2R0 : (31)

Thus the nonlinear elasticity of the material renormalizes
the local force dipole by a quantity �36pbu0

2R0 which becomes
negligible in the linear limit bu0 � l, m. This violation of dipole
conservation favors contraction (D < 0) for a material that
soens under compression (b > 0) as further discussed below.
6 Discussion

Stress-generating, active materials are essential constituents of
the cell, and their biological design is strongly constrained by
the physical laws governing force transmission in elastic media.
As shown here, these laws take a simple, geometry-independent
form in homogeneous linear elastic media, whereby the force
dipole is an invariant of linear elasticity. More specically, the
macroscopic force dipole tensor exerted by the medium on its
boundaries is equal to the sum of the microscopic force dipoles
exerted on it by embedded active elements. This dipole
conservation relation is valid both for continuummedia and for
discrete media with unspecied nite range interactions,
making it relevant for popular biological ber network models
with stretching and bending energies.17 It also holds true in
anisotropic media. Due to its generality, dipole conservation is a
powerful tool to relate widely used macroscopic descriptions of
the cytoskeleton, sometimes termed active gels theories, to the
underlying microscopic phenomena. For instance, in a homo-
geneous linear elastic medium with a density r of embedded
elements each exerting a force dipole dmv, the active stress ~smn—
the central object of active gel theories—is simply given by ~smn¼
�rdmn [see eqn (3) and (9)].

This relation has interesting experimental implications, as it
allows to relate measurements of the macroscopic stress ~smn in
cells and tissues to the forces dmn exerted by their components in
their physiological environment, provided that their concen-
tration r is known. Such macroscopic characterizations are
routinely performed on reconstituted actomyosin networks,5

live cells32 and whole active tissues.4 The inferred in situ dmn may
differ from microscopic measurements on individual active
This journal is © The Royal Society of Chemistry 2015
elements, thus revealing new behaviors resulting from the
embedding of these elements in the medium.

Considering biologically relevant, disordered elastic media,
we show that in a discrete linear system where the disorder
probability distribution is position-independent, dipole
conservation is satised on average. This result again applies to
ber network models, but can be violated in small systems
where the inuence of the boundary conditions is not negli-
gible. Dipole conservation is moreover not generally respected
in every statistical realization of the system, and uctuations are
proportional to the amplitude of the disorder. However, in a
system with many active elements the violation associated with
each one only depends on its immediate elastic environment. In
large enough systems, such individual violations are thus
essentially uncorrelated and self-averaging thus leads to reli-
able, deterministic stress generation.

Unlike disorder, nonlinearities have a systematic effect on
force transmission. Indeed, we show that a material that soens
under compression tends to favor contraction, reminiscent of
the enhanced contractility observed in bundles and networks of
laments prone to buckling under compressive stresses.33–35 A
similar effect has been been predicted in shear stiffening
materials.11 Nonlinear behavior may also stem from geometrical
effects in the absence of a constitutive nonlinearity of the
material, as when parts of the elastic body undergo large
displacements at small strains.36 Such situations also lead to
violations of the force dipole conservation.

As biological media reorganize and ow under force, we
expect their long-time behavior to depart from the elastic
framework considered here and behave viscoelastically. Inter-
estingly, for small enough deformation our results still apply in
these cases. Indeed, both force balance and the linear rela-
tionship between stress and strain are still satised in visco-
elastic systems, the only difference being that the elastic
modulus relating these two quantities is now frequency-
dependent. However, if the material is liquid-like on long time
scales we expect the resulting ows to induce large deforma-
tions, resulting in geometrical nonlinearities and violations of
the dipole conservation. Finally, we note that geometrical
nonlinearities are also more prevalent in disordered than
homogeneous networks,37 implying that disorder might signif-
icantly affect contractility by lowering the threshold to
nonlinear behavior. As a result, a reliable understanding of
contraction in active biological materials requires a good
characterization of the viscoelastic and nonlinear properties of
the underlying matrix. Given impressive recent experimental
advances in this area, we believe that model-independent,
rigorous theoretical studies such as this one will be valuable in
analyzing new data and thus understanding the relation
between molecular motors and cell-wide force generation.

Appendix
A Effective medium theory for disordered spring networks

Here we derive the results of Sec. 4.3 by developing an effective
medium theory, following ref. 29. In this approach the disor-
dered network described in Sec. 4 is approximated by an
Soft Matter, 2015, 11, 1597–1605 | 1603
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effective homogeneous network where every bond has a spring
constant am. When subjected to the same body forces and
boundary conditions as the original network, the effective
network deforms so that the bond joining adjacent vertices i
and j has elongation v(ij)m with respect to its rest length. To
determine the value of am, we introduce a third system obtained
by replacing bond (ij) by a random spring with constant a drawn
with probability law dP(a). This induces a change in the defor-
mation eld, and the elongation of the considered bond in the
single-random-bond system is denoted v(ij) ¼ v(ij)m + dv(ij).
Mechanical equilibrium then imposes

dvðijÞ ¼ vðijÞm

am � a

ðz=2d � 1Þam þ a
(32)

with z the network connectivity and d the spatial dimension.
The effective spring constant am is xed by imposing

dvðijÞ ¼ vðijÞm

ð
am � a

ðz=2d � 1Þam þ a
dPðaÞ ¼ 0; (33)

where the average is taken over the distribution of a.
To compute the integrated stress S, we note that displace-

ments in our single random bond system are the same as in a
homogeneous lattice of am springs with an active force dipole of
amplitude (a � am)v

(ij) applied along bond (ij). We further note
that the integrated stress in this homogeneous, linear system
vanishes according to eqn (21). Since stresses in this system are
identical to those in our single-random-bond system except at
bond (ij), the integrated stress in the latter is equal to the
integrated stress in the former (i.e., zero) plus the contribution
of bond (ij):

S ¼ 0þ ða� amÞvðijÞ ¼ zam

2d
dvðijÞ (34)

where eqn (32) was used. Inserting eqn (33) into eqn (34), we obtain
�S ¼ 0, i.e., the average dipole conservation equation eqn (25).

Denoting s(ij)m ¼ amv
(ij)
m and ds(ij) ¼ s(ij)m + ds(ij), we plug eqn

(32) into eqn (34) and compute ½dsðijÞ�2 ¼ C
h
s
ðijÞ
m

i2
, where

C ¼
ð �

am � a

ð1� 2d=zÞam þ 2da=z

�2
dPðaÞ: (35)

In the spirit of the effective medium theory, we approximate
the fully random lattice as a superposition of single random
bond lattices and sum the bond stresses s(ij) as independent
variables:

S2 ¼
X
ðijÞ

½dsðijÞ�2 ¼ CS0
2; (36)

where S0
2 ¼

X
ðijÞ

½sðijÞm �2 can be computed from the stress eld in

the homogeneous system with appropriate boundary condi-
tions and active body forces. This procedure is used to obtain
the normalization factor of Fig. 4(b). Note that C takes a simple
form in the weak disorder limit Var(a) ¼ da2 � �a2. Indeed,
setting �a ¼ 1 eqn (33) yields

am ¼ 1� 2d

z
ðdaÞ2 þ O

h
ðdaÞ3

i
; (37)
1604 | Soft Matter, 2015, 11, 1597–1605
and the numerical factor becomes C ¼ da2 + O [(da)3], yielding
eqn (26).
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