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Stress-dependent amplification of active forces in
nonlinear elastic media

Pierre Ronceray, a Chase P. Broedersz b and Martin Lenz *cd

The production of mechanical stresses in living organisms largely relies on localized, force-generating

active units embedded in filamentous matrices. Numerical simulations of discrete fiber networks with

fixed boundaries have shown that buckling in the matrix dramatically amplifies the resulting active

stresses. Here we extend this result to a continuum elastic medium prone to buckling subjected to an

arbitrary external stress, and derive analytical expressions for the active, nonlinear constitutive relations

characterizing the full active medium. Inserting these relations into popular ‘‘active gel’’ descriptions of

living tissues and the cytoskeleton will enable investigations into nonlinear regimes previously

inaccessible due to the phenomenological nature of these theories.

I. Introduction

Cells move and deform in response to stresses. These stresses
originate both from the deformation of their environment, and
from the active forces they generate internally. Within the cell,
these forces are largely generated by molecular motors acting at
the nanometer scale that are embedded in a matrix of semi-
flexible filaments known as the actin cytoskeleton. The cyto-
skeleton then transmits these forces to larger length scales,
allowing them to control shape and generate stresses over the
whole cell. At even larger length scales, the resulting cell-wide
forces can be further transmitted by another type of fibrous
network, the extracellular matrix, and this transmission results
in stress production over several millimeters in connective
tissues.1 Much progress has been made recently in understanding
how these active forces are transmitted by fiber networks from the
microscopic to macroscopic scales, thus enabling cell motion and
division, wound healing or embryonic development.2,3 Further-
more, it is now well understood how passive biopolymer networks,
both inside and outside cells, respond to external strain.4 However,
little is known about the interplay between internal stress
generation and external stresses due to environment strain.

The key to a theory of stress generation in fiber networks is
understanding how they transmit forces from small to large
scales. While the quantitative relationship between microscopic

forces and the resulting macroscopic stresses is remarkably simple
in linear elastic media,5,6 this force transmission is drastically
modified by the nonlinear response conferred to fibrous media by
the buckling of their filaments.7–12 Quantitatively, there the tensile
stress sactive actively generated by a density r of active units each
exerting a force dipole D can exceed the linear prediction

s(lin)
active = �rD (1)

by several orders of magnitude. Qualitatively, strong active units
locally deform the networks and thus surround themselves with
a potentially large buckled region, where the network is
mechanically equivalent to a collection of tense radial ropes.
Such stress propagation patterns are described by the general
mathematical formalism of tension field theory,13,14 and are
also encountered in thin, easily buckled elastic sheets.15 As the
ropes transmit the forces produced by the active unit to the
boundary of that buckled region, the system comprised of the
active unit plus the ropes acts like an enlarged, effective force
dipole. This effective dipole has an enhanced span compared to
the original one, and thus a larger magnitude |Deff| 4 |D|
(Fig. 1). However, how external strain affects stress generation
and modifies these scaling laws is not known. Moreover, a
detailed analytical understanding of buckling-induced stress
amplification is missing, although other types of nonlinearities
have been investigated in two dimensions.7,11

In this paper, we demonstrate that the effect of external
stress on active stress generation can be simply understood as
an enhancement of the buckling threshold. To this aim, we
derive a full analytical description of active stress amplification
in a simple model of bucklable medium subjected to an arbitrary
external isotropic stress in any dimension. We restrict our study
to isotropic, contractile active units, motivated by the observation
that they represent the generic far-field response of a fiber
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network to any large local force dipole, be it locally contractile or
extensile, isotropic or anisotropic.12 We present the ingredients
of our model in Section II, and compute the characteristics of the
forces transmitted by our active medium in Section III. We then
deduce the resulting macroscopic stresses in Section IV, and use
these expressions to derive constitutive stress–strain relations for
the active medium in Section V. Finally, we discuss our results in
Section VI.

The analytical expressions derived here are key to incorporating
the wealth of available biological and mechanical information about
individual active units in so-called active gel theories, which are
widely used theoretical descriptions of living tissues and the
cytoskeleton.16–18 Indeed, such theories typically adopt a purely
macroscopic point of view, and while active stresses are the
fundamental drivers of the new physics they explore, active gel
descriptions typically assume them to be constant for lack of a
better description.19

II. Model

Our aim is to model a fiber network subject to stresses that are
both externally applied and induced internally by active units.
To this end, we consider a homogeneous nonlinear medium in
spatial dimension d (with d = 2 or 3 in practice) subjected to an
isotropic external stress s, and within which a density r of
active units are embedded. Assuming for simplicity that the
active units are positioned on a regular lattice (e.g., a triangular
lattice in 2D), we focus on the Voronoi cell surrounding one of

the active units (e.g., a hexagon in a triangular lattice). We
further approximate this cell by a spherical domain with the
same volume as the Voronoi cell, allowing us to consider only
spherically symmetric configurations in the following. The
radius R of this sphere as a function of the motor density
is set by rSd�1Rd = 1, with Sn the volume of the unit n-sphere
(S1 = p, S2 = 4p/3).

To account for fiber buckling, the continuum elastic medium
can locally buckle when compressed beyond a critical stress sb.
To implement this feature in the simplest fashion, we assume
that the medium responds linearly with Lamé coefficients l and
m, but that compressive stresses saturate beyond the threshold
value �sb. To express this relation formally, we denote the
strain and stress tensors by u and r respectively, and note that
the spherical symmetry of the system imposes that both tensors
take a diagonal form in spherical coordinates, resulting in the
following block structure:

u ¼
urr 0

0 uyyI

 !
and r ¼

srr 0

0 syyI

 !
; (2)

where I is the (d � 1)-dimensional unit matrix. In this simple
geometry, the radial and orthoradial stresses in the linear
regime read

slin
rr = (l + 2m)urr + (d � 1)luyy (3a)

slin
yy = lurr + [(d � 1)l + 2m]uyy, (3b)

and our buckling condition can be formulated as

if slinrr 4 � sb and slinyy 4 � sb; then
srr ¼ slinrr

syy ¼ slinyy

(

if slinrr o � sb; then srr ¼ �sb

if slinyy o � sb; then syy ¼ �sb;

(4)

where sb Z 0. Note that we do not need to make specific
assumptions about the strain dependence of srr when slin

yy o �sb

(or that of syy when slin
rr o �sb) for the purpose of this study, since

these components of the stress are then fully determined by force
balance. In particular, eqn (4) neither assumes nor discounts the
possibility that the medium stiffens under uniaxial stretching once
driven into the nonlinear regime.

The elastic medium is centred around an active unit, consisting
of a sphere of radius R0 o R imposing a contractile stress s0 4 0
[Fig. 2(a)]. This geometry yields a stress discontinuity at the surface
of the active unit

lim
e!0

srr R0 þ eð Þ � srr R0 � eð Þ½ � ¼ s0: (5)

Defining the force dipole exerted by a spatial distributions fi(r) of
body forces as Dij ¼

Ð
ri fjðrÞdr, our spherically symmetric dipole

reads Dij = Ddij with D = �Sd�1s0Rd
0. The presence of the elastic

medium within our active unit is theoretically convenient in two
respects. It guarantees that the s0 - 0 limit corresponds to a
passive, homogeneous active medium, and ensures that dipole
conservation in the linear regime is expressed as the compact

Fig. 1 A medium populated by strong enough contractile active units
(dark blue) buckles and amplifies their active stresses. The phase diagram
on the left delimits three buckling regimes, whose physical structures are
illustrated by panels on the right. White regime: weak active units do not
induce buckling, yielding a far-field stress given by eqn (1). Blue regime:
stronger active units locally buckle the network by exerting compressive
stresses in excess of the buckling threshold sb. This endows each active
unit with a larger effective dipole Deff E (R*/R0)D, where R* is the radius of
the light blue buckled region and R0 that of an active unit. Grey regime: for
a medium with fixed boundary, the buckling radius asymptotically goes to
the distance R between active units as the strength of the active units
becomes very large, implying that Deff E (R/R0)D. In this work we show
that imposing an external stress s at the boundary of the medium modifies
the values of Deff and R* in the same way as a shift of the buckling
threshold from sb to sb + s.
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condition of eqn (1).6 This feature is additionally relevant to an
experimental situation where, e.g., a long thin myosin thick
filament embedded in an actin network binds two actin fibers at
its end points and compresses the network between these two
points. Similarly, a flattened contractile cell deposited onto an
elastic sheet imposes an in-plane compression on the piece of
the sheet that it covers. Removing this inner piece of medium
slightly modifies our results, as it implies a softening of the overall
medium and a slight reinforcement of the apparent contractile
stress without any qualitative change in our conclusions.

We further assume that the elastic medium is held under
constant stress sij = sdij at its outer boundary, implying the
boundary condition

srr(R) = s, (6)

where this external stress s may be positive or negative.
To compute the stress and displacements associated with

our active unit, we must solve the mechanical equilibrium equations
rjsij = 0 for our elastic medium, which in our spherical
geometry reads

1

rd�1
d rd�1srr
� �

dr
� ðd � 1Þsyy

r
¼ 0; (7)

where srr and syy are related to the strain by eqn (4). We can
furthermore express the strain as a function of the radial
displacement u(r) of the elastic medium through

urr(r) = du/dr (8a)

uyy(r) = u/r. (8b)

Finally, u(0) = 0 due to spherical symmetry.

III. Buckling transitions

Depending on the values of s and s0, our elastic medium
undergoes a sequence of buckling transitions, as illustrated in
Fig. 2. In the following we completely characterize this sequence
for non-auxetic materials, i.e. materials with a positive Poisson
ratio, or equivalently a positive l.

For low active unit stresses s0, the material responds linearly
[Fig. 2(a)], and we supplement eqn (3)–(8) with the requirement
that u(r) be continuous in R0. This yields

u roR0ð Þ ¼ s
dlþ 2m

� s0
dðlþ 2mÞ

�

� 1þ 2mðd � 1Þ
dlþ 2m

R0

R

� �d
" #)

r

(9a)

u r4R0ð Þ ¼ s
dlþ 2m

� 2mðd � 1Þs0
dðlþ 2mÞðdlþ 2mÞ

R0

R

� �d
" #

r

� s0
dðlþ 2mÞ

Rd
0

rd�1
:

(9b)

Increasing the active unit strength s0 from this linear regime
puts the r o R0 region under an increasing isotropic compressive
stress. As this compressive stress reaches the �sb threshold for
s0 = sbuckling1

0 , with

sbuckling10 ¼ dðlþ 2mÞ sþ sbð Þ
dlþ 2mþ 2mðd � 1Þ R0=Rð Þd

; (10)

the buckling regime of Fig. 2(b) sets in. In the central buckled
region, eqn (4) then implies srr(r o r0) = syy(r o r0) = �sb.
Further solving eqn (3)–(8) in the region R0 o r o R where the
medium responds linearly, we find

u r4R0ð Þ ¼ s

1� R0=Rð Þd
þ sb � s0

R=R0ð Þd�1

" #
r

dlþ 2m

þ sþ sb � s0
2mðd � 1Þ R�d0 � R�d

� � 1

rd�1
:

(11)

Upon a further increase of the active unit strength, the com-
pressive orthoradial stress syy(R

+
0) at the outer surface of the active

unit reaches the buckling threshold for s0 = sbuckling2
0 , with

sbuckling20 ¼ d sþ sbð Þ
1þ ðd � 1Þ R0=Rð Þd

: (12)

Beyond this threshold, the elastic medium buckles in the
orthoradial direction in the region outside the active unit, as
pictured in Fig. 2(c). We denote by R* the outer limit of this
buckling zone. In this regime, srr(r o R0) = syy(r o R*) = �sb.
Radial force balance additionally imposes that srr be a continuous
function in R*, and the value of the buckling radius R* is set by the
buckling condition syy(R*) = �sb. Solving eqn (3)–(8) while taking
into account these new boundary conditions yields

srr R0 o roR�ð Þ ¼ s0
R0

r

� �d�1
�sb (13a)

u r4R�ð Þ ¼ s R=R�ð Þdþsb � s0 R0=R
�ð Þd�1

ðdlþ 2mÞ R=R�ð Þd�1
h i r

þ sþ sb � s0 R0=R
�ð Þd�1

2mðd � 1Þ R�ð Þ�d�R�d
h i 1

rd�1
;

(13b)

Fig. 2 Successive buckling states of the elastic medium. Red arrowheads
on the first panel picture the active internal compression applied across
the r = R0 circle, as well as the tensile boundary stress s. White regions are
in the linear regime in both the radial and orthoradial directions in
the sense of eqn (4). Light blue regions are buckled in the orthoradial
directions only, and dark blue regions are buckled in both directions.
Qualitatively, as the active unit generates a strong local compressive stress
at the center of the medium, buckling is initiated there, then progresses
outwards as the active unit stress s0 is increased. A large value of the
tensile prestress s antagonizes this compression, delays buckling and
hinders the amplification of active stresses.
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where R* is the solution of the following equation:

R�

R

� �d

� d

d � 1

sþ sb
s0

R�

R0

� �d�1
þ 1

d � 1
¼ 0: (14)

Eqn (14) implies that as long as the buckling zone is much
smaller than the size of the entire system (R* { R) its radius is
given by

R� ¼ R0
s0

d sþ sbð Þ

� �1=ðd�1Þ
; (15)

which confirms the scaling postulated in ref. 12. More broadly,
in d = 2 the buckling radius is given by

R�=R ¼ sþ sbð ÞR
s0R0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ sbð ÞR
s0R0

� �2
�1

s
; (16a)

while in d = 3

2s0R0
2R�

sþ sbð ÞR3
¼ 1� 2 cos

1

3
arccos

2s03R0
6

sþ sbð Þ3R6
� 1

" #
� 2p

3

( )
:

(16b)

We plot both of these solutions in Fig. 3. Eqn (13a) confirms the
observation made in ref. 12 that radial stresses decay slowly
with a r1�d power law within the R0 o r o R* buckling region,
thus accounting for long-range stress transmission in buckled
systems, in contrast with the r�d decay characteristic of linear
materials. Throughout the regime described here, the buckling
zone is under strong radial tensile stress, while it is essentially
crumpled in the orthoradial direction, implying that syy provides
little help in stabilizing the system against the radial tension.
As a result, the buckling zone is prevented from collapsing
primarily by the unbuckled shell surrounding it, which we
picture in white in Fig. 2(c).

As the active unit stress s0 is increased yet again, the buckling
radius R* reaches the boundary of the system for s0 = scollapse

0 , with

scollapse0 ¼ sþ sbð Þ R

R0

� �d�1
: (17)

Beyond this value, the stabilizing unbuckled outer shell vanishes
and the system collapses. Formally, this collapse is manifested by
the mechanical equilibrium equation eqn (7) having no solution
that satisfies both boundary conditions eqn (5) and (6).

We illustrate the parameter ranges associated with the
four buckling regimes discussed in this section in the phase
diagram of Fig. 4.

IV. Stress amplification

The external stress s applied at the boundary of the elastic
medium is balanced by two contributions: a passive elastic
response of the network, and an active stress specifically due to
the presence of these active units

s = selastic + sactive, (18)

This decomposition of total stress into a passive and an active
contribution is a central ingredient of active gel theories,6,16

where the contribution of sactive drives nonequilibrium flows
and pattern formation.17,18,20–22 To determine sactive, we deter-
mine selastic as the stress that would be required to impose the
same boundary displacement observed in our system onto a
purely passive, s0 = 0 medium. Thus,

selastic ¼ ðdlþ 2mÞuðRÞ
R

(19)

Note that the previously studied special case of a fixed boundary
corresponds to selastic = 0.12 Here we combine the displacements
computed in Section III with eqn (18) and (19) to compute the
dependence of the two stress contributions on the parameters of
our model.

Fig. 3 Buckling radii characterizing the buckling regime of Fig. 2(c) in
(a) d = 2 and (b) d = 3 as given by eqn (14) (solid black line) along with the
asymptotic expression of eqn (15) (dashed gray line). The region of
the curve corresponding to R* o R0 (gray box) is not relevant, as it
corresponds to an active unit stress s0 o sbuckling2

0 , and thus to another
buckling regime. Changes in the value of R0/R result in a displacement of
the boundary of the gray box, while the black curve is unaffected.

Fig. 4 Parameter values characterizing the four possible buckling regimes
in dimensions (a) d = 2 and (b) d = 3. The lines on the diagrams are the
boundaries of the different regimes. The position of the lower line (in grey)
depends on the Poisson ratio n = (d � 1 + 2m/l)�1 of the material, and its
position is indicated for three values of n on each panel. In particular, for
n = 0 this line is identical to the central black line and the second buckling
regime of Fig. 2 is thus nonexistent. Note that thermodynamic stability
requires n r 1 in d = 2 and n r 0.5 in d = 3.
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For a completely homogeneous linear (but possibly aniso-
tropic) network, general linear elastic considerations5,6 impose
that the active stress is proportional to the force dipole and
density of active units through s(lin)

active = �rD. Indeed, combining
eqn (9) with eqn (18) and (19) yields

sðlinÞactive ¼ s0
R0

R

� �d

¼ �rD: (20)

When active units are strong enough to buckle the network,
the reference active stress of eqn (20) is amplified, which we
quantify through the amplification factor

A ¼ sactive

sðlinÞactive

: (21)

Combining the displacements of eqn (11) and (13b) with
eqn (18) and (19) thus yields

A ¼ ðlþ 2mÞd
2mðd � 1Þ

1

1� R0=Rð Þd
1� sþ sb

s0

� �
(22)

for the inner buckling regime illustrated in Fig. 2(b) and

A ¼ 1þ l
2m

� �
R�

R0
(23)

for the regime of Fig. 2(c). This last relationship validates the
A / R�=R0 scaling postulated for the ‘‘force-controlled’’ regime
of ref. 12 on the basis of the amplified force dipole picture
described in the introduction. Finally, no amplification factor
can be computed for the collapsing regime of Fig. 2(d) as it does
not give rise to a well-defined boundary displacement u(R).
Fully buckled systems can, however, be realized in systems with
fixed boundaries preventing this collapse; in such systems, the
fixed boundary imposes a stress s satisfying eqn (12) that
maintains the system at the threshold between the regimes of
Fig. 2(c) and (d). This sets the amplification at the R* - R limit
of eqn (23):

A ¼ 1þ l
2m

� �
R

R0
; (24)

and corresponds to the ‘‘density-controlled’’ regime of ref. 12.
Eqn (20)–(24) constitute a complete description of the active

stress produced by the system as a function of the linear moduli
and buckling stresses of the elastic medium, as well as the
density and strength of the active units. These active stresses
depend on the externally applied stress s in the buckled
regimes, as tensing the medium antagonizes buckling and
amplification, which in turn decreases the active stress.

V. Constitutive relations

Constitutive stress–strain relations for the active material can
be derived from eqn (20)–(24). Denoting the isotropic strain by
g = u(R)/R, we find that in the linear regime eqn (18) can be
rewritten as

s ¼ ðdlþ 2mÞgþ s0
R0

R

� �d

(25a)

i.e., an affine stress–strain relation involving the same elastic
modulus as for the passive system, consistent with the most
common formulations of active gels theories. This linear regime
is valid for large enough strains, namely

gþ gb 4
1� R0=Rð Þd

lþ 2m
s0
d
; (25b)

where gb = sb/(ld + 2m) is the absolute value of the critical strain
at which the elastic medium buckles in the absence of active
units. At lower strains, the buckling regime of Fig. 2(b) takes
over and yields a different stress–strain relation, albeit still an
affine one:

s ¼
2mðd � 1Þðdlþ 2mÞ 1� R0=Rð Þd

h i
2mðd � 1Þ þ ðdlþ 2mÞ R0=Rð Þd

g

þ dðlþ 2mÞ R0=Rð Þd

2mðd � 1Þ þ ðdlþ 2mÞ R0=Rð Þd
s0 � sbð Þ

(26a)

valid for strains

1

ld þ 2m
� R0=Rð Þd

2m

" #
s0
d
o gþ gb o

1� R0=Rð Þd

lþ 2m
s0
d

(26b)

Finally, for even lower (or more compressive) strains the buckling
zone regime of Fig. 2(c) takes over, and the stress is nonlinearly
related to the strain through

s ¼ ðdlþ 2mÞgþ 1þ l
2m

� �
s0

Rd�1
0 R�

Rd
; (27)

where R* itself is a function of s through eqn (14). Inserting
eqn (27) into eqn (14) and defining

~s ¼ sþ sb
s0

(28a)

~g ¼ 2m gþ gbð Þ
s0

; (28b)

we get the following relation between stress and strain

~s� 1þ dl
2m

� �
~g

� �d�1
½~sþ ðd � 1Þ~g� ¼ ð1þ l=2mÞd

1þ dl=2m
R0

R

� �dðd�1Þ

(29)

which is a polynomial equation of order d in s and can be solved
for s in both d = 2 and d = 3. Here we present the more compact
d = 2 result:

~s ¼ l~g
m
þ 1þ l

2m

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0=Rð Þ2

1þ l=m
þ ~g2

s
; (30a)

and we give the bounds of this buckling zone regime in arbitrary
dimension:

�l R0=Rð Þd�1

2mðdlþ 2mÞs0 o gþ gb o
1

ld þ 2m
� R0=Rð Þd

2m

" #
s0
d
; (30b)

where the lower bound of eqn (30b) represents the critical strain
for the transition to the collapsed state of Fig. 2(d).
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Eqn (25)–(30) form a complete nonlinear constitutive relation
relating the stress s to the strain g = u(R)/R in elastic systems
with embedded active units. We illustrate this relation in
Fig. (5), which shows that the resulting active material always
softens under compression before losing stability as the collapsing
threshold is reached at low enough g. In addition, the influence of
the material’s buckling threshold sb = (dl + 2m)gb and active unit
stress s0 on this relation is remarkably simple, as they respectively
result in a shift and a rescaling in the values of the stress
and strain.

VI. Discussion

Active units embedded in fibrous media, such as molecular
motors or whole contractile cells, exert strong forces on their
surroundings. These active forces deform and buckle the fibers,
thus affecting the way in which these forces are transmitted.
Here we present a detailed analysis of this process and provide
constitutive relations describing the material properties emerging
from interactions between active unit and fiber networks. Such
relations can readily be incorporated into macroscopic descriptions
of active gels over short time scales (t100 s23), where these gels are
typically assumed to respond elastically.19 Over longer times, fibers
disentangle and detach, resulting in fluid-like network behavior.
Nevertheless, if the time scale over which the active units detach
from and reattach to the fibers (E a few 100 ms24) is much shorter

than that viscoelastic time scale, we expect active units to constantly
pinch the network in alternating locations before it has time to
flow, resulting in a state of constant tension well described by our
predicted active stress. Now considering the microscopic length
scale, our description could be supplemented with more detailed
dynamical descriptions of the way in which the active unit stress
s0 is produced25,26 to elucidate the coupled dynamics of an
active unit and its elastic environment.

Our present results show that buckling in fiber networks
results in an amplification of active stress, consistent with the
experimental measurements discussed in ref. 12. The buckling
transitions underlying the force transmission described here
proceed in several steps. The first step involves the buckling of
the system’s core shown in Fig. 2(b). This regime is clearly tied
to our specific description of the active unit as a sphere of
radius R0, and may be substantially modified when using active
units with different geometries. In the second buckling regime,
a potentially large region surrounding of the active unit under-
goes orthoradial buckling [Fig. 2(c)]. Contrary to the previous
one, we expect this regime to be largely insensitive to the details
of the active units, as the nonlinear response of fiber networks
gives rise to an emergent isotropic force dipole away from the
active units.12 In the case of sparse active units R0 { R, this
regime occupies a much larger fraction of parameter space than
the previous one (see Fig. 4), implying that its universal physics
dominates nonlinear force transmission in systems with a low
volume fraction of active units. Finally, the last transition
considered here [Fig. 2(d)] corresponds to the limit of stability
of the system, which cannot be described in a fixed stress
ensemble. Indeed, the network does not have an intrinsic shape
anymore, and collapses if its boundaries are released. However,
at fixed boundary strain (e.g. for fixed or periodic boundary
conditions), the system is characterized by a well-defined active
stress, with an amplification factor proportional to R/R0, as
predicted numerically in our previous work.12

Our findings confirm and extend several heuristic conclusions
formulated in our previous scaling arguments and numerical
simulations of explicit filamentous networks.12 While the model
used in this previous work involves several realistic features not
included in our current model, including a finite stiffness of the
buckled network, fibers of varied lengths and the possibility of
fiber alignment under force, our highly simplified continuum
formalism captures the most important features of their behavior.
We thus find that active stress amplification is rigorously
proportional to the buckling radius R*. We further provide a
continuum counterpart to the ‘‘rope network’’ picture previously
used to justify the r1�d decay of stresses in the buckling zone, thus
extending its relevance to non-fibrous materials. This anomalous
stress decay has been observed experimentally27 Finally, we find
that the external stress s influences stress amplification in an
extremely simple way, as it enters the expressions characterizing
the buckling thresholds, buckling radius and amplification factors
only through the combination s + sb, as illustrated in Fig. 1. More
generally, the stress–strain relationship of the medium can be
expressed as a relationship between s + sb and g + sb/(dl + 2m) that
does not explicitly depend on sb. In practice, this means that in the

Fig. 5 Stress–strain relations for a d = 2 medium with embedded active
units as a function of the Poisson ratio of the material (indicated in the top
left corner of each panel) and the size of the active unit (see labeling of the
lines in the top left panel). The colored regions denote the buckling
regimes of Fig. 2. The slope of the stress–strain curves always vanishes
as the system becomes unstable at the boundary of the collapsed (dark
grey) regime.
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fixed-stress ensemble the effect of prestressing the network is
identical to that of shifting its buckling threshold sb by a quantity
s. In the fixed-strain ensemble, this implies that prestraining the
network by g is equivalent to shifting sb by selastic = (dl + 2m)g.

The results derived in this paper are largely independent on
the detailed characteristics of the elastic material considered,
and are derived without the need of fully specifying a nonlinear
stress–strain relation [see eqn (4)]. Indeed, our only nonlinear
assumption is the plateauing of compressive stresses. Our
study however leaves out elastic media with an auxetic linear
response, i.e., exotic materials whose lateral dimension shrinks
when they are compressed vertically. Such materials undergo a
different sequence of buckling transitions, which we discuss
further in Appendix A. The characterization of these new
regimes requires additional assumptions about the material’s
nonlinear properties, and generally do not yield closed-form
expressions such as the ones presented here. Finally, our above
discussion focuses on the case where sb 4 0, i.e., on materials
that dramatically soften under compression. Our results are
nonetheless formally applicable to materials with the opposite
tendency, e.g. granular materials that lose all rigidity if their
grains are pulled apart far enough to break the contacts
between them. Indeed, simultaneously reversing the signs of
all stresses, strains and displacements in our study converts the
tense radial ropes underlying the force transmission in the
R0 o r o R* buckling zone of Fig. 2(c) into compressed
granular columns with a similar propensity for long-range
stress propagation. Whether such a state can be stable against
the lateral buckling of such columns however remains to be
determined.
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Appendix A: buckling transitions in
auxetic materials

Here we outline the differences between the buckling scenarios
associated with regular and auxetic (n o 0, or equivalently
l o 0) materials. First considering the linear regime, we
compare the buckling thresholds associated with the inner
and outer vicinity of the active unit by using eqn (9) to write

srr roR0ð Þ ¼ s� s0
dlþ 2mþ 2mðd � 1Þ R0=Rð Þd

dðlþ 2mÞ

¼ syy roR0ð Þ;

syy Rþ0
� �

¼ s� s0
2mþ 2mðd � 1Þ R0=Rð Þd

dðlþ 2mÞ

(A1)

Clearly, for auxetic materials we have syy(R
+
0) o srr(r o R0) and

buckling occurs in the light blue annulus of Fig. 2(c) before it
does in the dark blue circle of Fig. 2(b). Giving a detailed
description of stress transmission in the medium beyond this
threshold is a much more involved exercise than that presented

in the main text of this article, as it requires giving a detailed
description of the nonlinear stress–strain relation of the medium
beyond eqn (4). Indeed, as the central region of the medium is
still unbuckled, its stress can only be characterized by specifying
the displacement of the medium at the inner rim of the light blue
annulus, which thus requires a full characterization of displace-
ments in the buckled region that the main text is able to avoid.
Whether R* reaches R before or after the central region starts to
buckle strongly depends on that nonlinear stress–strain relation,
yielding a less universal buckling scenario than the one observed
for non-auxetic materials. We are not aware of the existence of
any auxetic biological fiber network, nor do we feel confident
enough to prescribe a detailed stress–strain relation for such a
hypothetical material. We thus do not present a detailed inves-
tigation of auxetic materials here.
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