
Elastic modulus of an entangled solution of semiflexible polymers

2020-2021 Biophysics exam – Physics of Complex Systems M2

No documents, calculators or phones allowed.

The exam is composed of short questions collectively worth 25% of the total grade, followed by a problem
within which all individual questions are worth the same number of points. The problem is long, and it is
possible to obtain a perfect grade without completing all questions: focus on quality, not quantity. Bold
characters denote vectors, and hats denote unit vectors.

Short questions

• Briefly explain the central dogma of molecular biology (about half a page or one large schematic).

• Let us write the master equation for the probability to have n monomers in the filament in the Brownian
ratchet model as ∂tp(n, t) = k̄onp(n − 1, t) + koffp(n + 1, t) − (k̄on + koff)p(n, t). In the most general
case, the transition rates k̄on and koff may both depend on the applied force F . Nevertheless these
expression are constrained by the detailed balance condition. Briefly sketch the brownian ratchet model
and express this constraint.

• Consider a two-dimensional active matter model with anisotropic particles making an angle θ with the
horizontal axis and moving with a velocity v. A general form for the evolution of the angular order
parameter is ∂tθ = Aij∇i∇jθ + Bij∇ivj , where A and B are matrices of unknown phenomenological
coefficients. Using the invariance of the system under mirror symmetry, show that four out of the eight
entries of these matrices must be equal to zero.

Problem

Over long time scales, a collection of semiflexible polymers (e.g., actin filaments) in solution without crosslinks
behaves as a liquid. If the filaments are long, such behavior might however only manifest over exceedingly
long time scales as each filament is trapped in a tube-like cage formed by its neighbors. To escape the tube
and change neighbors as required for liquid-like behavior, the filament must diffuse longitudinally over a
distance of the order of its own length, a very slow process known as reptation. On shorter time scales, each
semiflexible polymer is effectively trapped within its own tube, and the system as a whole responds as an
elastic medium. In this problem, we set out to determine the shear modulus of this medium as a function of
the properties of the filaments through an effective medium approach inspired by Refs. [1, 2, 3].

The tube-induced confinement squeezes the polymer and prevents it from straying far from its original
conformation. In Sec. 1, we discuss the extent to which this hinders the transverse fluctuations of the
polymer and assess how often it “bumps” the walls of the tube. In Sec. 2, we show that this restriction of
the filament’s fluctuations affects its entropic elasticity and thus modifies the elastic response of the network
as a whole. Finally, Sec. 3 constitutes the key step of our approach: having showed in the previous sections
that the strength of the confinement affects the network’s elasticity, we show that the confinement of an
individual filament reciprocally stems from the elasticity of the elastic medium formed by its peers. This
reciprocal relation allows us to determine the network’s modulus self-consistently.

1 Entanglement length and tube radius

We consider an infinitely long single polymer confined in a tube of fixed radius R. We assume that the
polymer lies along the z axis on average with small transverse deviations described by U = (x(z), y(z)). To
lowest order in U the filament’s energy functional reads
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where σ is the tension of the filament. Rather than implementing an impenetrable wall around the polymer,
this expression represents the confinement of the polymer of interest by its neighbors through a more easily
tractable harmonic potential with stiffness λ. In this section we relate the value of λ to the physical radius
R associated with the confinement. We also determine the “entanglement length” Le, which is the typical
distance between two points where the polymer bumps the wall of the tube.

1.1 What is the physical meaning of the κ term in Eq. (1)?

1.2 Give the name and explain the physical meaning of `p = κ/kBT .

1.3 Defining the one-dimensional Fourier transform through

U(z) =

∫
Ũ(q)eiqz

dq

2π
, Ũ(q) =

∫
U(z)e−iqz dz, (2)

which implies

δ(z) =

∫
eiqz

dq

2π
, 2πδ(q) =

∫
e−iqz dz, (3)

write down the energy E as a sum over Fourier components.

1.4 Show that 〈
Ũi(q)Ũj(q

′)
〉

=
2πkBT

H(q) + σq2
δijδ(q + q′), (4)

where 〈·〉 denotes the thermal average and where H(q) is a function to be specified (you can use the
same quick and dirty proof previously used in the tutorials).

1.5 In the absence of an external stress on the polymer solution, each polymer has the time to relax its
tension, implying σ = 0. In that case, show that we have〈

U2
x(0)

〉
= A

kBT

λ3/4κ1/4
(5)

where A is a dimensionless coefficient to be specified. You may use
∫∞
−∞(1 + a4)−1da = π/

√
2.

1.6 To determine the value of λ, we must impose that the typical lateral displacement of the polymer inside
the tube is equal to the confinement radius R. In the case σ = 0, give the scaling of λ as a function of
R and other parameters of the problem.

1.7 In the case σ = 0, argue for the existence of a characteristic wavevector qe at which the energy crosses
over between two different physical regimes. Explain the nature of these regimes.

1.8 Infer the scaling of the entanglement length Le as a function of R and `p from your result.

2 Linear elastic response

Here we study of the response of the polymer solution to an external stress at the single-polymer level, then
at the continuum level. We first consider a single polymer under a tension σ 6= 0. We denote by ε the
extensional strain of our infinite polymer. To clarify its physical meaning, we may temporarily consider a
polymer with a finite length L0 in the absence of stress and with final length L0 + ∆L in its presence; then
ε = ∆L/L0. As shown in the tutorials, the extensional strain is given by

ε =
φ(σ)− φ(0)

2
where φ(σ) =

∫∫
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〉 dq
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2π
. (6)

Equation (6) does not make a reference to polymer length and is directly applicable to our infinite polymer.

2.1 Using Eq. (4), show that to lowest order in σ we can write

σ = kε, where kBT/k ∝
∫ ∞
−∞

[
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kBTq3

]n
dq
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. (7)

You will specify the exponent n and the proportionality coefficient in Eq. (7). This result implies that
for small deformations, the energy per unit length of a single polymer can be expressed as a function
of its extensional strain as

e =
kε2

2
(8)



2.2 Our isotropic solution is a mixture of filaments with all possible orientations. We first consider a
straight (apart from thermal fluctuations) filament with an end-to-end vector R, and subject it to an
affine deformation which takes it to a new end-to-end vector R+δR. Write down the new length of the
filament as a function of R and δR to first order in δR. We now assume that the affine deformation
takes any point of the system with position r to r + u, where the displacement vector is given by
ui = Γijrj . Denoting R̂ = R/|R|, write the extensional strain ε(R̂) of the polymer as a function of Γ

and R̂ to first order in Γ.

2.3 We define the polymer density ρ as the length of polymer in a unit volume of the solution (ρ thus has
units of m−2). Assuming that the filaments in the solution are oriented isotropically, the energy per
unit volume of the solution under our affine deformation reads

E = ρ
〈
e(R̂)

〉
R̂

=
ρk

2

〈
ε(R̂)2

〉
R̂
, (9)

where 〈·〉R̂ =
∫∫
· sin θ dθ dφ/4π is the average over all possible orientations of R̂ on the unit sphere.

For a simple shear deformation characterized by

Γ =

0 0 η
0 0 0
0 0 0

 (10)

show that

E = Bρkη2 ∝ ρ(kBT )n+1η2∫
H(q)nq−(3n+2) dq

(11)

and give the value of the dimensionless coefficient B. Note that the simplified approach used here does
not take into account the curvature stresses induced by Γ.

2.4 From a continuum medium perspective, the energy per unit volume of an elastic medium is

E = 2µ
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3
γkk
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3
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)
+
K

2
(γkk)2, (12)

where γij = (∂iuj + ∂jui)/2 is the linearized strain tensor. Under what name is the elastic modulus K
known? What type of deformations of the medium is it associated with?

2.5 Write E for the deformation of Eq. (10), then use Eq. (11) to express the shear modulus as a function
of the filaments’ microscopic parameters.

3 Self-consistent determination of the shear modulus

Here we consider the collection of polymers surrounding the polymer of interest not as a harmonic confining
potential with rigidity λ, but as a deformable, continuum elastic medium. Any deformation of the central
polymer induces a deformation in this medium, implying an elastic energy cost. We compute this cost, then
assimilate it to the confinement energy introduced in Sec. 1. This then enables our self-consistent conclusion.

The mechanical equilibrium of the medium is described by

∂jσij = −fi, (13)

where fi is the density of body forces exerted by the polymer on the medium. The stress tensor reads

σij = 2µ

(
γij −

δij
3
γkk

)
. (14)

Indeed the deformations described by K in Eq. (12) turn out to be irrelevant in the following, and so we set
K = 0 in Eq. (14) to simplify the notation.

3.1 Write down the mechanical equilibrium equation as a set of three scalar linear differential equations
expressing the three components of f as functions of the components of the displacement field u
introduced in Sec. 2. You may find it convenient to write the divergence with the compact notation
∇ · u where applicable.



3.2 Fourier transform these equations and invert them to show that

ũ(k) =
f̃(k)

k2
− C [k · f̃(k)]

k4
k, (15)

where C is a numerical coefficient to be specified and k is the three-dimensional wavevector. Here
tildes denote three-dimensional Fourier transforms.

3.3 We consider a central polymer whose center line lies along the z axis, as in the previous sections. The
polymer is constrained to follow the motion of the surrounding elastic medium, and so

ux(0, 0, z) = Ux(z) uy(0, 0, z) = Uy(z) uz(0, 0, z) = 0. (16)

We assume a simple sinusoidal deformation profile in the x direction only, namely U(z) ∝ x̂ cos(qz).
Note that this is not a serious restriction, as a superposition of such sinusoids allows to reconstruct
any polymer deformation profile in the usual Fourier transform way. Since we are faced with a linear
problem, the force field exerted by the polymer onto the elastic medium must also be a sinusoid. We
use

f(r) = f0
cos(qz)

2πL2
e

exp

(
−x

2 + y2

2L2
e

)
x̂, (17)

where f0 has dimensions of force per unit length. The dependence of this force on x and y manifests
the discrete nature of the network. As a result of this discreteness, the continuum description holds
only down to length scales of the order of the entanglement length Le defined in Sec. 1. Thus Le acts
as an ultraviolet cutoff for our description and the force f is effectively “smudged” over that length
scale. Write down the Fourier transform f̃(k)

3.4 Remembering the back Fourier transform formula

u(r) =

∫∫
ũ(k)eik·r

d3k

(2π)3
, (18)

show that the Fourier transform of the polymer displacement field satisfies

U(z) =
f0 cos(qz)x̂

µg(qLe)
, (19)

where you show that the dimensionless function g(ξ) is a function only of the variable ξ. You will
express it as a two-dimensional integral (do not attempt to perform the integration).

3.5 Why does the product µg(qLe) play the same role as trap stiffness λ introduced in Sec. 1? In the
following we assume that the results of Secs. 1 and 2 still hold for such a q-dependent confining
potential λ(q).

3.6 The expression of µ derived in Sec. 2 was derived under an assumption of affine deformation. A different
calculation allowing non-affine deformations and the bending of the filaments under strain yields

µ =
7ρkBT

5

∫ ∞
−∞

λ(q)

κq4 + λ(q)

dq

2π
. (20)

A simple scaling reasoning regarding the average distance between two neighboring filaments yields
ρ = DR−2 where D is a numerical coefficient of order one. Using this result, compare the scaling of µ
according to Eq. (20) as a function of kBT , R and `p to the one extracted from Eq. (11).

3.7 In the regime R� `p implicitely considered throughout this problem, which of the two is the largest?
As a result, which of the two should we consider and why?

3.8 Combine this result with the results from the previous section into a nonlinear algebraic equation for
the quantity µ̃ = µL4

e/κ. Conclude as to the scaling of µ with kBT , ρ and `p.
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