
TD4 : The Langevin equation, in and out of equilibrium

Statistical Mechanics – iCFP M2

The Langevin equation will be our tool of choice to describe stochastic systems in the rest of this
course. Here we train in its use, and familiarize ourselves with the notion that it can describe equilibrium
as well as nonequilibrium systems.

1 The Ornstein-Uhlenbeck process

We consider a particle diffusing in a harmonic potential, described by the Langevin equation:

∂tx(t) = −µ∂xU [x(t)] + µf(t) + ξ(t), (1)

where µ is known as the mobility of the particle, U = kx2/2 is the confining potential, f(t) is a determin-
istic, externally imposed force, and ξ is a Gaussian white noise with

〈ξ(t)〉 = 0 (2a)

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (2b)

Here D denotes the diffusion constant.

1.1 What famous relation relates µ and D at equilibrium?

1.2 Formally solve Eq. (1), expressing x(t) as a function of x(t = 0) = x0, ξ(t) and f(t).

1.3 Express 〈x(t)〉 for f(t) 6= 0.

1.4 Express 〈x(t1)x(t2)〉 for f(t) = 0.

1.5 Write the propagator P (x, t|x0, 0) in the case f(t) = 0.

1.6 The response function χ(τ) is defined as

〈x(t)〉 =

∫ +∞

−∞
[χ(τ)f(t− τ)] dτ. (3)

In the next few lectures we will dedicate a substantial amount of attention to the fluctuation-
dissipation theorem, which states a relationship between χ(τ) and the equilibrium autocorrelation
function C(τ) = 〈x(t0 + τ)x(t0)〉c, namely

χ(τ) = −H(τ)

kBT

dC

dτ
, (4)

where H is the Heaviside step function. Refrain from computing χ(τ) explicitely for now; just
combine Eqs. (3) and (4) to describe the response of our system to a constant force f(t) = f . Using
your considerable knowledge of Hookean springs, which familiar equilibrium relation do you recover
from the fluctuation-dissipation theorem in this simple case?

1.7 Consider a system at steady-state, meaning a system has had sufficient time to go to thermal
equilibrium since it was initiated at t = 0. Compute χ(τ) explicitly for in this case, and check that
Eq. (4) is indeed correct.

1.8 Now consider a system that hasn’t yet relaxed to its steady state. Is the fluctuation-dissipation
relation satisfied?



2 Nonequilibrium Langevin dynamics: the Hopf bifurcation

Consider the following two-dimensional relaxation equation:

∂tx1 = −rx1 + ω1x2 + ξ1(t) + f1(t) (5a)

∂tx2 = −ω2x1 − rx2 + ξ2(t), (5b)

with r > 0, and where 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2kBTδijδ(t − t′) (note that we set the mobility to
one in this exercise). A similar equation is commonly used to describe the relaxational dynamics of the
hair bundle, the rod-shaped sensory organ of our inner ear anchored at its base [1]. In this context, x1

represents the displacement of the tip of the bundle relative to the base (which can be directly observed
experimentally), while x2 is an internal active force (which cannot).

2.1 Setting the noise and force to zero for now, trace a typical relaxation trajectory for the system for
ω1 = ω2 = 1 and r � 1.

2.2 Fourier transforming with respect to time, we define the response function in the frequency domain
χ̃(ω) =

∫ +∞
−∞ χ(t)eiωt dt = 〈x̃1(ω)〉/f̃(ω). What physical interpretation do you give to its real and

imaginary part, respectively?

2.3 The measured values of its real part χ̃′(ω) and its imaginary part χ̃′′(ω) are plotted in the left-hand
side of Fig. 1. Why is this data surprising? Is it sufficient to conclude that the system is out of
equilibrium?

2.4 Derive the expression of χ̃(ω) in our system, and write χ̃′′(ω) separately.

2.5 Translate the fluctuation-dissipation theorem Eq. (4) into the frequency domain by writing χ̃′′(ω)
as a function of C̃(ω). Do not to worry about χ̃′(ω); there is a good reason why you shouldn’t (see
Appendix A).

2.6 Compute C̃(ω), the Fourier transform of the autocorrelation of x1.

2.7 we now define the fluctuation-dissipation ratio

Teff(ω)

T
=

ωC̃(ω)

2kBT χ̃′′(ω)
. (6)

What is its expected value for an equilibrium system? What do you predict it to be for our system?

2.8 Could you have predicted that Eqs. (5) wouldn’t give rise to an equilibrium dynamics from the
onset?

2.9 Show that for some special choices of ω1, ω2 the system admits a thermal equilibrium. Now consider
one such case, but assume that the noises ξ1 and ξ2 are associated with different temperatures. Is
this sufficient to break the fluctuation-dissipation relation again?

2.10 Now consider the data on the right-hand side of Fig. 1. Is the hair bundle at equilibrium?

The fluctuation-dissipation theorem is the tool of choice to unambiguously characterize the non-
equilibrium character of the dynamics of biological [2, 3] and glassy systems, among others. Some like to
refer to Teff as the system’s “effective temperature”. Be aware that this use of terminology is controversial,
partly because it hardly makes any sense outside of the linear response regime.

3 Drawing lessons

Recapitulate the three distinct sources of nonequilibrium-ness that we have encountered in this exercise
sheet.



Figure 1: (left) Linear response functions as a function of stimulus frequency for an oscillatory hair bundle.
(right) The “effective temperature” of spontaneous hair bundle motion. All open symbols represent data
for a hair bundle whose displacement does not display large spontaneous fluctuations (i.e., presumably a
beat-up hair bundle).
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A Kramers-Kronig relations

Physical causality implies that χ(τ) = 0 for τ < 0. From this statement, it can be shown that the real
and imaginary parts of χ̃(ω) are not independent of one another, and that one can always be computed
from the other as

P
∫ +∞

−∞

χ̃′(z)

z − ω
dz = πχ̃′′(ω), P

∫ +∞

−∞

χ̃′′(z)

z − ω
dz = −πχ̃′(ω), (7)

where P
∫

denotes the principal value of the integral. These relations are known as the Kramers-Kronig
relations. They imply that the fluctuation dissipation theorem is valid for χ̃(ω) as a whole iff the right-hand
side of Eq. (6) is equal to one.


