
TD5 : Nonequilibrium phase separation

Statistical Mechanics – iCFP M2

Particles driven out of equilibrium can display rather counter-intuitive behaviors. Here we study one
such example, where particles cluster (phase separate) despite having purely repulsive interactions. This
phenomenon was first observed in two-dimensional numerical simulations of self-propelled hard spheres [1],
then observed experimentally in colloidal swimmers with a light-activated self-propulsion [2] (Fig. 1).

Here we study a simpler, analytically tractable model of two populations of particles subjected to two
different temperatures (you may think of the self-propelled particles as the “hot” ones while the solvent
is represented by the “cold” ones) [3]. We consider the evolution of a collection of particle positions
{xi}i=1..N governed by the Langevin equation:

∂txi = −µi∂iU + (2µiTi)
1/2ξi(t), (1)

where µi and Ti are the mobility and temperature of particle i, ∂i is the derivative with respect to
coordinate xi, U =

∑
i<j u(|xj − xi|) is a repulsive pair interaction energy and ξi(t) is a Gaussian noise

with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t
′ − t).

Figure 1: Examples of active (nonequilibrium) phase separation in collections of self-propelled particles [1,
2]. (left) Clustering of numerically simulated swimmers with equations of motion ∂tr = v0ν̂i+µ

∑
j 6=iFij+

ξtransli (t); ∂tθi = ξroti (t), where ri is the position of the particle, ν̂i is a unitary vector making an angle
θi with the x-axis, Fij is a repulsive force between particles i and j and the ξs are usual Gaussian white
noises. (top right) Experimental realization in a collection of self-propelled colloidal swimmers moving
on a surface (picture of an individual colloid in panel A). (bottom right) The aggregates quickly dissolve
when the light-activated self-propulsion is turned off (which sets v0 = 0). When turned on, the magnetic
field B0 dictates the direction of particle swimming (i.e., the angle θi).



1 Interactions between two particles

The interaction between N = 2 particles subjected to two different temperatures already display surprising
behaviors.

1.1 Following the discussion of Einstein’s equation given in the main lecture, show that an equilibrium
state (i.e., a state without probability current) can only exist if T1 = T2.

1.2 Now considering T1 6= T2, write an effective Langevin equation for the relative position r = x2− x1.
What is the associated effective mobility? Compute the variance of the noise acting on r and show
that it corresponds to an effective temperature T12 = (µ1T1 + µ2T2)/(µ1 + µ2).

1.3 Write the corresponding Fokker-Planck equation for r, and show that at steady-state r is distributed
according to the pseudo-Boltzmann distribution

P (r) = e−u(r)/T12/z, (2)

with z a normalization factor.

1.4 Going back to the position variables (x1, x2), write the Fokker-Planck equation associated to the
joint probability distribution P (x1, x2; t) as

∂tP (x1, x2; t) = −
2∑

i=1

∂iJi, (3)

what are the expressions of the Jis? How do you interpret them physically? Use Eq. (2) to prove
that J1 and J2 do not vanish at steady state.

1.5 What does that mean for the particles in concrete terms? Qualitatively trace the flow lines for
the probability current in the (x1, x2) plane. Discuss how work can be extracted out this system,
implying that it is definitely not at equilibrium (unless you believe in perpetual motion engines).

1.6 As the particles move, energy is transferred everywhere from the hot heat bath to the cold heat
bath. Assuming T1 > T2, the power transferred is given by the work performed by 1 onto 2, namely
w = 〈−v2∂2u〉, where the velocity of particle 2 is given by v2 = J2/P (r). Show that

w =
µ1µ2(T1 − T2)
µ1T1 + µ2T2

∫
[∂ru(r)]2 z−1e−u(r)/T12 dr. (4)

2 Nonequilibrium evolution equations for a many-particle system

While we cannot solve the Fokker-Planck equation for an arbitrarily large number of particles, here we
derive an approximate equation for the one-particle probability density (i.e., the local concentration of
particles) valid in the low density limit.

We consider a collection of NA particles of type A (with mobility µA, temperature TA) and NB particles
of type B. All particle pairs still interact through the pair potential u(r). As in the previous section we
perform our derivations in one spatial dimension to simplify our notation; nevertheless you can easily
check that all our steps as well as our final results are also valid in higher dimension.

2.1 Following the model of Eq. (3), write the Fokker-Planck equation for the probability density of all
particles P (x; t) = P (xA1 , x

A
2 , ..., x

A
NA

;xB1 , x
B
2 , ..., x

B
NB

; t).

2.2 Defining the one-particle and two-particle marginal distributions by

pA1 (x; t) =

∫
δ(xAi − x)P (x; t) dx (5a)

pAA
2 (x, x′; t) =

∫
δ(xAi − x)δ(xAj − x′)P (x; t) dx (5b)



and using similar definitions for pB1 (x; t), pAB
2 (x, x′; t) and pBB

2 (x, x′; t), multiply the Fokker-Planck
equation by, e.g., δ(xA1 − x) and integrate over all coordinates to find

∂tp
A
1 (x; t) =µA(NA − 1)∂x

[∫
∂xu(x− x′)pAA

2 (x, x′; t) dx′
]

+ µANB∂x

[∫
∂xu(x− x′)pAB

2 (x, x′; t) dx′
]

+ µATA∂
2
xp

A
1 (x; t). (6)

A similar equation obviously holds for pB1 (x; t).

2.3 Equation (6) expresses pA1 as a function of pAX
2 . It is similarly possible to derive an equation

giving pAX
2 as a function pAXX′

3 , etc.. Such hierarchies of equations are very common in statistical
mechanics1, and solving them exactly is clearly as difficult as solving for the whole probability
distribution P (x; t). This is not however the standard approach to these problems; instead, one
typically looks for an approximation scheme which allows to truncate the hierarchy. This is indeed
the way to go here, and writing the equations for pXX′

2 reveals that the pXX′X′′
3 terms can be

neglected at low particle densities. This results in a closed set of equations for pXX′
2 , which can be

used to show
pXX′
2 (x, x′; t) = pX1 (x, t)pX

′
1 (x′, t) exp[−u(x− x′)/TXX′ ]. (7)

Give a simple interpretation of this equation.

2.4 Inserting Eq. (7) into Eq. (6), show that in the thermodynamic limit the particle concentrations
cA(x; t) = NAp

A
1 (x; t) satisfy a closed system of equations

∂tc
A(x; t) = µA∂x

(
cA∂xζA

)
, (8)

where the nonequilibrium analog ζA of the chemical potential for species A is given by

ζA = TA ln cA + TA

∫ {[
1− e−u(x−x′)/TA

]
cA(x′)

}
dx′ + TAB

∫ {[
1− e−u(x−x′)/TAB

]
cB(x′)

}
dx′.

(9)
Similar equations hold for particles of type B.

3 Virial expansion, phase transition and phase coexistence

3.1 For short-range interactions acting on smooth enough concentration fields, we assume that u varies
on much shorter length scales than cA. Show that in that case

ζA = TA ln cA + TABAAc
A + TABBABc

B (10)

and that a similar expression holds for ζB. Give the expression of the virial coefficients BXX′ and
compare your results with the equilibrium virial coefficients encountered in the appendix of our
earlier exercise on nematic liquid crystals (don’t worry about the numerical prefactor).

3.2 How are the chemical potentials of two species with concentration cA and cB related to the free
energy density f in an equilibrium system? Show that a miracle happens in this specific model in
that you can find a nonequilibrium f from which your ζs both derive. Ponder the fact that there
was no a priori reason for this to happen.

3.3 Spinodal decomposition in our system can be assessed by considering a homogeneous state cA(x) =
cA0 , cB(x) = cB0 and introducing small perturbations cA(x; t) = cA0 + δcA(x; t), cB(x; t) = cB0 +
δcB(x; t). Expand Eq. (8) and its B-counterpart to linear order in δ, then translate them into
coupled evolution equations for the spatial Fourier modes δc̃A(q; t), δc̃B(q; t) of the perturbations.
The system is linearly stable when any initial perturbation decays to zero for long times. Show that
this is equivalent to

φA
1 + φA

φB
1 + φB

<
TATB
T 2
AB

BAABBB

B2
AB

, (11)

where φA = BAAc
A
0 and similarly for φB.

1For those interested in researching the subject further, the best known of these is the so-called BBGKY hierarchy.



Figure 2: Triangular phase diagram, for a three-component system of A+B + solvent (from Ref. [3]. See
original paper from specific parameter values). For every point in the triangle (exemplified by a star), the
volume fractions of A and B particles are given by the distances to the triangle sides, while the volume
fraction of the solvent 1 − φA − φB is the distance to the bottom of the triangle. The symmetric line
is the spinodal Eq. (11). Below this line, the uniformly mixed state is unstable. The asymmetric curve
represents a line of constant osmotic pressure p. This line crosses the instability region thus indicating
the possibility of two coexisting phases. Left inset : Lines of constant pressure. Right inset : Level lines of
the left-hand side of formula Eq. (11).

3.4 An unstable system phase separates in a way similar to that observed in the equilibrium systems
encountered earlier in this course. In characterizing phase equilibrium in a binary system (i.e,
with two independent volume fractions φA and φB), list the unknowns to be solved for as well
as the equations to be solved. You may assume that the two phases equilibrate their pressures
p = cAζA + cBζB − f , which can be shown to act as a mechanical pressure on a wall.

3.5 Can you generalize the bitangent construction to this three-component (A, B and solvent) system?
An example of the resulting phase diagram is shown in Fig. 2.

3.6 The expression of the dissipation Eq. (4) generalizes to a dissipation per unit volume

w = cAcB
µAµB(TA − TB)

µATA + µBTB

∫
[∂ru(r)]2 z−1e−u(r)/T12 dr. (12)

Where does the dissipation happen in a strongly phase separated system?
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