
Tutorial 3: Membrane-filament interactions

Physics of Complex Systems M2 – Biophysics

1 Membrane fluctuations

Here we consider a membrane whose average position is within the z = 0 plane. Let u(r) be the vertical
fluctuation of the membrane at a point with horizontal coordinates r = (x, y). The membrane does not
have a spontaneous curvature, but is endowed with a bending modulus κ and a tension γ.

1.1 Write the Helfrich Hamiltonian H describing the energy of the membrane as the sum of a curvature
energy and a tension energy. You may start by writing is as a surface integral involving the mem-
brane’s total curvature. Assuming a small membrane deformation, write H as an integral over the
coordinates x, y that only involves κ, γ and the spatial derivatives of u(r). Finally, express H in
Fourier space, that is as a function of ũ(q), la transformée de Fourier de u(r). We will define the
Fourier transform through:

u(r) =

∫
ũ(q)eiq.r

d2q

(2π)2
, ũ(q) =

∫
u(r)e−iq.rd2r. (1)

1.2 Compute the mean square displacement in Fourier space 〈ũ(q)ũ(q′)〉. Deduce that the real-space

mean-square displacement of the membrane fluctuations is δ2 = 〈u(r)2〉 = kT
4πγ ln

q2min+q
2
c

q2min
, where qmin

is a small-wavevector cutoff that you will specify as a function of the system size, and qc is to be
expressed as a function of the parameters of the problem.

1.3 How does the mean square displacement δ2 depend on the system size if the membrane tension
is large? How about the γ → 0 limit? Can you cite and experiment allowing to measure this
amplitude?

2 Membrane going through a fixed point

2.1 We impose a fixed displacement u(0) = a on the membrane at the origin of coordinates r = 0.
Thus the membrane always goes through the point (x = 0, y = 0, z = a). Explain why the partition
function reads

Zp =

∫
Du[.]δ(u(0)− a)e−H/kT

where δ is a Dirac distribution. The symbol Du[.] indicates a sum over all possible states of the
membrane, and thus over all possible fluctuations u(r). In practice, this boils down to summing
over all Fourier components ũ(q). By replacing the Dirac delta by its Fourier transform δ(x) =∫ +∞
−∞ eiλxdλ/(2π), write hte partition function as

Zp =

∫ +∞

−∞

dλ

2π

∫
Dũ[.] exp

[∫
d2q

(2π)2

(
−|ũ|2κq

4 + γq2

2kT
+ iλũ

)]
e−iλa

Compute the Gaussian integrals over ũ by going to discrete q modes and by pretending that ũ is
real. We recall that

∫ +∞
−∞ e−αx

2
dx =

√
π/α. Deduce that

Zp = Z0

∫ +∞

−∞

dλ

2π
e−

λ2δ2

2
−iλa

= Z ′0 exp

(
− a2

2δ2

)
where Z0 and Z ′0 are constants which we will not seek to determine.
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Figure 1: Illustration of the problem studied in Sec. 3.

2.2 Can you assign a physical meaning to Z ′0? What is the membrane’s free energy under the constraint
that we impose on it?

2.3 What force f(a) must we impose on the membrane to impose a deformation of magnitude a at the
location r = 0?

3 Interaction entre un filament et la membrane

We now study the interaction between the membrane and a filament—a microtubule for instance. The
experiment is schematized in Fig. 1. The filament has a fixed length and is maintained at a constant
position so that its tip is at an altitude b above the average plane of the membrane. The filament cannot
go through the membrane.

3.1 Explain why the filament exerts a force on the membrane.

3.2 Show that if the filament is fixed, the membrane’s partition function is Zf =
∫ +∞
b Zp(a) da. Compute

the free energy of the membrane and the force exerted on the filament. We will introduce the
function erfc(x) = 2√

π

∫ +∞
x e−y

2
dy which is such that erfc(0) = 1 and that for large x we have

erfc(x) ∼ 1√
πx
e−x

2
.

3.3 Compute an order of magnitude for the force at b = 0 if the tension is γ = 5.10−5 N.m−1 and the
bending modulus κ = 20kBT . We will assume that the membrane has a lateral size L = 5µm.

3.4 The filament is now a biological polymer regarded as fixed at its lower extremity. This filament
grows through monomer addition at its upper tip. What are the three possible outcomes of such
an experiment? Discuss the conditions under which each of them is observed. You are welcome
to draw inspiration from the treatment of Ref. [1]; see also Fig. 2. We recall that when a rigid
filament of length l is compressed, it buckles provided that the force is larger than the critical force
fc = kBT`pπ

2/l2, where `p is its persistence length.

Figure 2: (left) A phospholipid vesicle deformed by 1 to 3 vertical microtubules. (right) Spontaneous
buckling of microtubules inside a φ-shaped vesicle. In the final image, the microtubules are bent completely
and continue to grow with both ends sheathed in a single membrane sleeve. Scale bar: 5 µm [2].
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