Signaux et capteurs

- Rappels : Tension électrique et intensité
 - 1.1 Définitions

Définition 13.1: Intensité

Dans un conducteur électrique, les charges électriques (Par exemple, des électrons dans un fil de cuivre, ou des ions dans une solution ionique.) peuvent se déplacer. Lorsque ces charges se déplacent de façon ordonnée, elles génèrent un *courant électrique*.

L'intensité est la quantité qui permet de mesurer le courant électrique, elle se mesure en Ampères, notés *A*. L'intensité mesure le débit de charges dans le conducteur, c'est-à-dire la charge qui traverse une section donnée du conducteur chaque seconde.

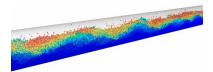


FIGURE 13.1: Quand des particules chargées se déplacent dans un fil électrique elles génèrent un courant électrique. On peut adopter l'analogie d'un fluide car les charges sont très nombreuses. Ici les charges électriques ont été agrandies pour être visibles, en réalité elles sont beaucoup plus petites. Les couleurs indiquent leur vitesse : ce ne sont pas de vraies couleurs.

Définition 13.2: Tension

La tension électrique est la différence de potentiel électrique entre deux points du circuit. On mesure la tension en volts, notés V.

Pour comprendre la différence entre intensité et tension, on peut s'aider d'une analogie hydraulique : on s'imagine que les fils sont des tuyaux, et que les charges constituent un fluide (en fait, les charges sont si denses dans un circuit qu'on ne les distingue pas les unes des autres à notre échelle, d'où l'analogie avec un fluide). L'intensité correspond alors à la masse de fluide qui traverse une section de tuyau chaque seconde. La tension correspond à une différence de pression entre deux points du tuyau. L'intensité est une quantité qui se mesure en un point du circuit, alors que la tension se mesure entre deux points distincts.

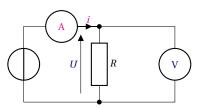


FIGURE 13.2: On branche un ampèremètre en série pour mesurer i, et un voltmètre en parallèle pour mesurer U.

1.2 Mesures de tension et d'intensité

La tension et l'intensité sont des grandeurs algébriques, c'est-à-dire qu'elles peuvent être positives ou négatives. Pour cette raison, il faut indiquer leur orientation sur les schémas électriques.

On indique l'orientation de l'intensité par une flèche, que l'on place sur les fils électriques.

On indique l'orientation de la tension entre deux points du circuit par une flèche à côté du circuit.

Pour mesurer une tension, on utilise un Voltmètre branché en *parallèle*. Pour mesurer une intensité, on utilise un ampèremètre branché en *série*. Voir le schéma figure 16.2.

Les lois fondamentales de l'électricité : lois de Kirchhoff

2.1 Intérêt de ces lois

Les lois de Kirchhoff sont des lois fondamentales dans l'étude des circuits électriques. Elles sont au nombre de deux : la loi des mailles et la loi des nœuds. On utilise la loi des nœuds pour relier les intensités entre les différentes branches d'un circuit électrique. De façon complémentaire, on utilise la loi des mailles pour relier les tensions au sein d'une branche d'un circuit. Nous verrons en section 3 comment relier les intensités aux tensions au moyen de la *caractéristique d'un dipôle*.

2.2 Loi des nœuds

Définition 13.3: Loi des nœuds

La loi des nœuds stipule qu'en tout point d'un circuit électrique, la somme des intensités entrantes est égale à la somme des intensités sortantes :

$$i_{e,1} + i_{e,2} + \ldots = i_{s,1} + i_{s,2} + \ldots$$

La loi des nœuds traduit la conservation de la charge électrique en termes d'intensités. En effet, l'intensité correspond au débit de charges qui traversent une section donnée de fil électrique. Ces charges sont constamment en mouvement et sont astreintes à se déplacer dans les fils du circuit. C'est pour cette raison que la somme des courants entrants est égale à la somme des courants sortants.

FIGURE 13.3: Gustav Robert Kirchhoff (1824-1887) un des physiciens marquants du XIX^e siècle. Il apporta des contributions essentielles à l'électrodynamique, la physique du rayonnement et la théorie mathématique de l'élasticité. Crédits Photo

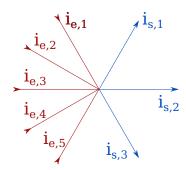


FIGURE 13.4: Un nœud d'un circuit électrique. Les intensités entrantes sont notées i_e . Les intensités sortantes i_s . La somme algébrique des courants rouges égale la somme des courants bleus.

FIGURE 13.5: L'intensité électrique aux nœuds d'un circuit se divise de façon conservative, à l'image de l'eau dans les cours d'eau. Crédits Photo: Peter Prokosch

C'est la même chose qui se produit dans des canalisations d'eau : le flux de liquide entrant à un nœud du réseau de canalisation est égal au flux du liquide sortant!

2.3 Loi des mailles

Définition 13.4: Loi des mailles

La loi des mailles stipule que la somme des tensions électriques dans toute boucle fermée (autrement dit, dans toute maille) d'un circuit électrique est nulle:

$$U_1 + U_2 + U_3 \dots = 0$$

Cependant attention à une chose : il faut orienter toutes ces tensions dans le même sens, ou les affubler d'un signe "-"!

La loi des mailles exprime une propriété mathématique des tensions électriques : les tensions vérifient une sorte de "relation de Chasles" (cf. cours de mathématiques). En effet on peut décomposer la tension entre deux points A et B le long de n'importe quel chemin qui relie A à B dans le circuit. Dans le cas où ce chemin est fermé le point de départ et le point d'arrivée sont les mêmes : A = B, or $U_{AA} = 0 = U_1 + U_2 + U_3 ...$; on retrouve alors la loi des mailles.

Caractéristique des dipôles électriques

3.1 **Préliminaires**

Expérimentalement, on remarque que l'on ne peut pas imposer simultanément une tension aux bornes d'un dipôle et l'intensité qui le traverse. En effet, dès que l'on choisit U, le dipôle effectue un appel de courant i déterminé. De même si l'on impose i, il s'établit une tension U aux bornes du dipôle.

Pour caractériser ce phénomène, on peut effectuer la série de mesures suivante : on soumet un dipôle à différentes valeurs de tension, et on mesure l'intensité qui en résulte. On porte alors les valeurs de tension en abcsisse sur un graphe, et les valeurs d'intensité en ordonnée, on obtient une courbe qui exprime graphiquement que i dépend de U, comme dans le cas de la diode figure 16.7.

On peut exprimer l'interdépendance entre i et U en disant que ces quantités sont des fonctions (au sens mathématique du terme) l'une de l'autre. Autrement dit il existe des fonctions g et f telles que i = g(U), et U = f(i). Si

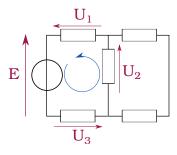


FIGURE 13.6: Dans une maille d'un circuit électrique. La somme des tensions est nulle. Il faut cependant considérer les tensions orientées selon le sens de la flèche bleue, attention aux signes : ici par exemple $U_1 + U_2 +$ $U_3 - E = 0$

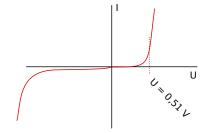


FIGURE 13.7: Caractéristique d'une diode : ce graphe caractérise le fonctionnement de la diode

l'expérimentateur contrôle U, on préfère exprimer i = g(U), sinon on préfère U = f(i).

Ces fonctions sont *caractéristiques* du dipôle considéré, le graphe associé est une véritable carte d'identité du dipôle considéré!

Définition 13.5: Caractéristique électrique

La caractéristique d'un dipôle électrique est la relation qui relie l'intensité i du courant qui traverse le dipôle et la tension U aux bornes de celui-ci. Cette relation peut se noter comme une fonction f, ce qui donne :

$$i = f(U)$$
, ou encore $u = g(i)$

La caractéristique peut donc être tracée sur un graphe, le graphe de g est symétrique de celui de f par rapport à la droite qui passe par l'origine et qui est orientée à 45 degrés par rapport à l'horizontale. En effet pour tracer i en fonction de U plutôt que U en fonction de i il suffit d'intervertir les abscisses et les ordonnées.

3.2 Caractéristique d'une résistance électrique : Loi d'Ohm

Un dipôle très fréquemment utilisé est la résistance électrique : il s'agit d'un dipôle qui dissipe de l'énergie électrique sous forme de chaleur, c'est tout! Sa caractéristique est très simple puisqu'il s'agit d'une droite qui passe par l'origine. Un tel graphe permet d'affirmer qu'il y a $proportionnalit\acute{e}$ entre U et i!

Propriété 13.1: Loi d'Ohm

La loi d'Ohm établit que (en convention récepteur) :

$$U = Ri$$

où U est la tension aux bornes de la résistance (en volts (V)), i est l'intensité qui la traverse (en ampères (A)), et R est la résistance (en ohms (Ω)).

La loi d'Ohm traduit que pour une tension donnée, une résistance fait un appel de courant d'autant plus important que *R* est petit! C'est pour cela qu'il ne faut jamais court-circuiter un générateur ou une pile : comme un fil a une résistance très faible, lui imposer la tension du générateur crée un fort appel de courant. Trop "tirer" sur le générateur peut le détruire!

FIGURE 13.8: Georg Simon Ohm (1789-1854) est un physicien allemand ayant étudié à l'université d'Erlangen. Ses résultats expérimentaux lui ont permis de déterminer les relations fondamentales entre courant, tension et résistance électrique, ce qui constitue le début de l'analyse des circuits électriques. Crédits Photo

Détermination du point de fonctionnement 3.3

La caractéristique d'un dipôle permet de construire le point de fonctionnement d'un circuit électrique. Prenons l'exemple du circuit figure ??. On cherche à connaître la tension U_R aux bornes de la résistance et l'intensité i dans le circuit. Pour cela on donne la caractéristique du générateur $U_G = E - ri$, où $r = 0.1\Omega$, où E = 5V est la valeur de la tension à vide du générateur. La résistance vérifie quand à elle la loi d'Ohm $U_R = Ri$, avec $R = 10\Omega$.

Comme les deux dipôles sont traversés par le même courant i, on trace les deux caractéristiques sur le même graphe avec i en abcsisse. On cherche alors l'intersection des deux courbes, qui fournit la seule valeur de tension qui vérifie la $U_G = U_R$: c'est la valeur adoptée spontanément par le circuit! Le point (i^*, U^*) est appelé point de fonctionnement du circuit : il fournit les valeurs d'intensité et de tension adoptées dans le circuit. On illustre la construction géométrique du point de fonctionnement dans la figure ??.

Capteurs électriques

Définition 13.6: Capteur électrique

Un capteur électrique permet de convertir une grandeur physique (température, pression, intensité lumineuse, hygrométrie ...) en signal électrique (intensité ou tension).

Les capteurs électriques jouent un rôle très important au sein des appareils électroniques qui nous entourent : ils permettent de renseigner leur programme informatique interne sur des données physiques et d'exécuter des instructions en conséquence. Par exemple on peut citer :

- Le thermostat des habitations : un programme informatique décide de chauffer le logement en fonction des données d'un capteur de température.
- · Les sondes lambda des véhicules récents renseignent le calculateur moteur sur le taux d'oxygène en sortie du moteur. Cela permet de réduire l'injection en cas de combustion incomplète du carburant. Ceci optimise la consommation, et permet de réduire les émissions de gaz nocifs.
- Les accéléromètres des smartphones permettent de détecter l'orientation de l'appareil et d'orienter l'affichage en conséquence.
- Les capteurs de température des brûleurs à gaz des gazinières assurent la sécurité des usagers : ils coupent l'arrivée de gaz en l'absence de flamme sur le capteur.

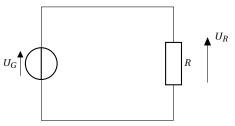


FIGURE 13.9: Détermination du point de fonctionnement d'un circuit.

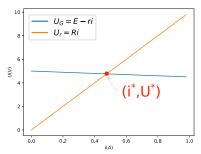


FIGURE 13.10: Détermination du point de fonctionnement d'un circuit : le générateur et la résistance partagent la même intensité et ont la même tension. Cela n'est possible qu'au point d'intersection de leurs caractéristiques : ce point (i^*, U^*) est appelé point de fonctionnement.

La relation entre la grandeur physique et la grandeur électrique n'est pas toujours une relation de proportionnalité, c'est pourquoi on réalise une courbe d'étalonnage, comme le montre la figure 16.11.

Définition 13.7: Courbe d'étalonnage

Une *courbe d'étalonnage* caractérise la réponse électrique d'un capteur à un stimulus physique. C'est un graphe qui porte en abcsisse les valeur de la grandeur physique mesurée (température, pression, intensité lumineuse etc ...) et en ordonnée les valeurs de la réponse électrique (intensité ou tension).

Une fois cette courbe réalisée, on peut s'y reporter pour les mesures ultérieures sur le capteur.

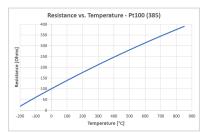


FIGURE 13.11: Courbe d'étalonnage d'une résistance de platine Pt100. Il n'y a pas proportionnalité entre température et résistance, car la courbe n'est pas une droite, et ne passe pas par l'origine.

À la fin de ce chapitre, je sais faire (extrait du B.O.) :

- Exploiter la loi des mailles et la loi des nœuds dans un circuit électrique comportant au plus deux mailles.
- Mesurer une tension et une intensité.
- Caractéristique tension-courant d'un dipôle.
- Exploiter la caractéristique d'un dipôle électrique : point de fonctionnement, modélisation par une relation U = f(I) ou I = g(U).
- Utiliser la loi d'Ohm.
- Représenter et exploiter la caractéristique d'un dipôle.
- CAPACITÉS NUMÉRIQUES : Représenter un nuage de points associé à la caractéristique d'un dipôle et modéliser la caractéristique de ce dipôle à l'aide d'un langage de programmation.
- CAPACITÉ MATHÉMATIQUE : Identifier une situation de proportionnalité.
- Citer des exemples de capteurs présents dans les objets de la vie quotidienne.
- (en TP) Mesurer une grandeur physique à l'aide d'un capteur électrique résistif. Produire et utiliser une courbe d'étalonnage reliant la résistance d'un système avec une grandeur d'intérêt (température, pression, intensité lumineuse, etc.).
- (en TP) Utiliser un dispositif avec microcontrôleur et capteur.