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A planar array of identical charges at vanishing temperature forms a Wigner crystal with hexagonal symmetry. We take off
one (reference) charge in a perpendicular direction, hold it fixed, and search for the ground state of the whole system. The
planar projection of the reference charge should then evolve from a sixfold coordination (centre of a hexagon) for small
distances to a threefold arrangement (centre of a triangle), at large distances d from the plane. The aim of this paper is
to describe the corresponding non-trivial lattice transformation. For that purpose, two numerical methods (direct energy
minimisation and Monte Carlo simulations), together with an analytical treatment, are presented. Our results indicate that
the d = 0 and d → ∞ limiting cases extend for finite values of d from the respective starting points into two sequences of
stable states, with intersecting energies at some value dt; beyond this value the branches continue as metastable states.
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1. Introduction

In 1934, Wigner [1] pointed out a possible crystallisation of
a three-dimensional (3D) quantum jellium (one-component
plasma), consisting of charged particles immersed in a ho-
mogeneous neutralising background, at low densities. The
possibility of the formation of a two-dimensional (2D) crys-
tal of electrons on the surface of liquid helium and in inver-
sion layers of semiconductors at low temperatures was pre-
dicted theoretically in [2,3], respectively. The correspond-
ing experiments of an electron gas trapped at the surface of
liquid helium were realised by Grimes and Adams [4], in
the semiconductor structure GaAs/GaAlAs by Andrei et al.
[5], and of laser-cooled 9Be+ ions confined in Penning
traps by Mitchell et al. [6]. For reviews about classical and
quantum Coulomb crystals, see e.g. [7–9].

From a theoretical point of view, the ground-state en-
ergies of a classical 2D electron crystal and the phonon
spectra were studied for a variety of Bravais lattices in
[10,11], with the conclusion that a simple hexagonal struc-
ture (built up by equilateral triangles) provides the lowest
energy. To understand the thermodynamics and the dynam-
ical properties of electrons at low temperatures, deviations
from a perfect crystal have been studied in the seminal work
of Fisher et al. [12]. These investigations involve (1) lo-
calised low-energy defects (such as vacancies, interstitials,
etc.) which are expected to govern dynamical properties of
migrating electrons, and (2) extended defects with higher
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energies (such as dislocations, grain boundaries, etc.) which
are supposed to play an important role in the melting pro-
cess of the crystal. At the present stage of knowledge, grain
boundaries are responsible for melting 3D Wigner crystals,
while the Kosterlitz–Thouless theory of dislocations and
disclinations [13,14] describes the melting of 2D electron
crystals. Related models involve curved geometries [15,16],
large 2D Coulomb clusters confined by a harmonic poten-
tial [17,18], 2D colloidal crystals with pair interactions of
Yukawa [19,20] or 1/r3 [21,22] forms.

In the present paper, we study from a classical perspec-
tive the ground-state problem of taking off a charge from
a bidimensional crystal. Our starting point is a perfect, 2D
Wigner crystal which we assume to be embedded in the
(x, y)-plane. It is formed by particles (each with a neg-
ative elementary charge of −e) localised at the sites of a
hexagonal lattice (with lattice spacing a). The charges of the
particles are neutralised by a uniform background of charge
density σe. Then, we take one of the charges (carrying the
index 0, and coined the ‘reference’ or ‘tagged’ particle)
away from the crystal and fix it at a distance d in the verti-
cal z-direction. As we consider increasingly large values for
d, the remaining particles in the Wigner crystal will leave
their original, regular lattice positions and will intuitively
approach the vacancy left behind by the tagged particle.
This spatial deformation is realised in an effort to min-
imise the total interaction energy of the set-up (i.e. ‘Wigner
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Figure 1. Schematic representation of the two limiting configurations expected. Left panel: when the reference charge is close to the
plane, its perpendicular projection is endowed with sixfold coordination. Right panel: at large distances d, its coordination number becomes
three. In the remainder, the dimensionless counterpart of d will be denoted η.

crystal + tagged charge’). It stands to reason that the re-
moval of charge 0 has a stronger impact on the particle
positions of the lattice the closer these particles have been
to the tagged charge in the original Wigner crystal (i.e.
at d = 0). However, one should not forget that due to
the long-range nature of the Coulomb potential, the in-
teractions between all particles are important. Two limiting
cases can be envisioned. (1) When d = 0, and presum-
ably when d/a � 1, the reference particle has coordination
six, see Figure 1. (2) On the other hand, at asymptotically
large distances (i.e. for d/a � 1), the Wigner crystal is
interacting only weakly with the tagged particle and there-
fore the perfect hexagonal structure of the lattice should
be maintained. Under these conditions, the total optimal
configuration is realised when the projection of the ref-
erence particle coincides with the centre of any triangle
formed by three neighbouring particles of the Wigner crys-
tal (see right panel of Figure 1). The transformation of the
Wigner crystal from a sixfold coordination (valid at least
for d = 0) to a threefold coordination (valid at least for
d → ∞), induced by a change in the distance d of the tagged
particle, represents the central topic of this contribution.

To the best of our knowledge, the proposed problem
has not been addressed so far. It naturally appears when
studying the strong-coupling regime of counter-ions close
to a uniformly charged wall [23,24]. It also is of relevance
within the context of phenomena such as evaporation of par-
ticles from a surface at low temperatures or the creation of
lattice defects by manipulating individual particles [25,26].
Several fundamental questions arise:

(1) Does the sixfold coordination of the tagged charge
change to a threefold coordination (or even to some
other value) at a finite distance dt or already at an
infinitesimally small value?

(2) What is the nature of the transition as the sixfold co-
ordination is lost? In particular, is it continuous, i.e.
do the six nearest neighbours of the tagged particle
rearrange in a continuous fashion into some non-
equivalent subsets of particles, each specified by a
different shift away from their original crystal posi-
tions? Or is the transition discontinuous, accompa-
nied by a change in the slope of the energy at the
transition distance, dt?

(3) If the three- and sixfold coordinated limiting states
lead to metastable configurations at finite d, what is
the corresponding energy barrier? Does it take a finite
value, or does it scale with the number of particles,
N?

The last question is relevant in view of practical real-
isation of the ‘experiment’, and also pertinent for compu-
tational purposes. Our analysis will show that metastable
states can coexist for all distances, separated by an energy
barrier that seems high enough so that the system will stay
in a local energy minimum also after crossing the transition
distance dt. In that case, when increasing d, one observes a
hysteresis similar to that of ferromagnetic systems. In the
ferromagnetism of two macroscopic + and − magnetised
states, one needs a relatively large opposite magnetic field
to reverse the magnetisation of a macroscopic domain. In
our problem, the role of the magnetic field is taken over by
the distance d: if d � dt, the local minimum (a reminiscence
of the sixfold coordinated state at d = 0) might become un-
stable, or might start to transform into a precursor of the
state with threefold coordination.

The metastability feature will lead us to define two
branches (see Section 2): the ‘out’-branch (extrusion) where
d increases, starting from 0 where the coordination is six-
fold, and the ‘in’-branch (intrusion), starting from large d
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1338 M. Antlanger et al.

where the coordination number is three, and decreasing d
down to 0. It should be kept in mind that we shall consider
a sequence of equilibrium situations only, at vanishing tem-
perature (i.e. we let the system find the lowest total energy
configuration, for every d). In doing so, we will answer a
few of the questions addressed above. We have used three
theoretical tools: energy minimisation (EM), Monte Carlo
(MC) simulations (both methods being purely numerical),
and an analytic approach. They all bear their own limita-
tions, since simplifying assumptions were made to allow for
solutions: in both numerical approaches we have considered
a unit cell (containing a sufficient number of particles) that
contains a finite section of the Wigner crystal as well as the
tagged charge; for a fixed position of charge 0, all particles
of the remaining lattice are allowed to freely relax their
position [remaining in the same (x, y)-plane]. The entire
system is then a periodic replication of this unit cell. In the
analytic approach, the system is assumed to be of infinite
extent in the (x, y)-direction; however, spatial relaxations
were allowed only for the nearest neighbours of the tagged
charge, for simplicity.

The manuscript is organised as follows. The model is
specified in detail in Section 2, where the two branches are
introduced. We then present in Section 3 the basic features
of our two numerical approaches, EM and MC simulations.
Both methods rely on Ewald summation techniques, to take
due account of the long-range nature of the interaction po-
tential. The analytic approach is presented in Section 4, and
the results are subsequently discussed in Section 5. The pa-
per closes with our conclusions and outlook on future work
in Section 6. The Appendix collects cumbersome expres-
sions required for the analytic treatment.

2. The system and the two branches protocol

2.1. Definition of the model

We start from the hexagonal structure of the 2D Wigner
crystal: its unit cell is a rhombus defined via the primitive
lattice vectors

a1 = a(1, 0), a2 = a

2
(1,

√
3), (1)

where a is the lattice spacing (see Figure 2). The positions
in the 2D lattice,

Rj = (Rx
j , R

y
j ) = j1 a1 + j2 a2 (2)

are indexed by j = (j1, j2), where j1 and j2 are arbitrary
integers. Due to the single-occupancy of our crystal, we
can use j as the particle index. There exists another, equiv-
alent representation of the hexagonal structure. Let us label
the particles along rows alternately with white and black
colours. In doing so, we obtain two identical, rectangular
sub-lattices (‘white’ and ‘black’), each of them defined via

Figure 2. Hexagonal structure of the undistorted 2D Wigner
crystal, as obtained for d = 0 or d → ∞. The arrows show
a1 = b1 and a2, the primitive lattice vectors defined in Equa-
tion (2), while b2 is defined in Equation (3). Black and white
colours are for alternating rows.

orthogonal translational vectors

b1 ≡ a1 = a(1, 0), b2 = a(0,
√

3), (3)

see Figure 2. The two sub-lattices are shifted with respect
to each other by the vector a2 = (b1 + b2)/2. This repre-
sentation is useful when evaluating Coulomb lattice sums
(see Section 4).

Let S denote the surface of a finite section of the 2D
Wigner crystal formed by N particles. We shall take the limit
S (and thus N) → ∞, and the electro-neutrality condition
imposes that the charge density, σe, is given by

σ = N

S
. (4)

There is exactly one particle per rhombus of surface√
3a2/2; thus

S

N
=

√
3

2
a2, i.e.

√
3

2
a2σ = 1. (5)

The Coulomb interaction energy of two particles
separated by a distance r is given by e2/r. The ground-state
energy, E0, of an infinitely large system (consisting of
the hexagonally arranged particles and the neutralising
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Molecular Physics 1339

Figure 3. Typical configurations along the two branches, together with labelling of neighbours (from 1 to 6) and their displacements.
The tagged charge carries the label 0 and its projection is shown in grey. Left panel: schematic picture along the ‘out’-branch. Arrows
indicate possible displacements (δ1a–δ6a) of particles 1–6, induced by the removal of the tagged particle. Right panel: same, along the
‘in’-branch. Arrows indicate possible displacements (δa for the nearest neighbours and δ′a for the next nearest neighbours) of particles
1–6, induced by the presence of the tagged particle.

background) is found to be [11]

lim
N→∞

E0

N
= 1

2

∞∑
i,j=−∞

(i,j )�=(0,0)

e2√
(ai + 1

2aj )2 + (
√

3
2 aj )2

− background = ce2√σ , (6)

the prefactor c = −1.960515789319. . . being known as
the Madelung constant.

2.2. The ‘in’- and ‘out’-branches

As alluded to above, locally stable configurations may be
found for a given d, which in turn complicates the search
for the ground state of the system. These states seem to be
remnants of the coordination six structure valid at d = 0 on
the one hand, and of the coordination three structure valid
at large d on the other hand. To circumvent the ensuing
metastability problem, we have defined – and investigated
separately – two branches for computing the energies.
(1) Along the ‘out’-branch, we take our tagged particle
(extruder) from its hexagonally coordinated position in the
perfect Wigner crystal, and place it at a distance d, letting
then d range from 0 to ∞. (2) Along the ‘in’-branch, the
tagged particle (intruder), located at ‘d → ∞’ is placed
‘above’ the centre of an initially undistorted triangle
formed by particles in the ideal 2D Wigner crystal, i.e.
we gradually decrease the value of d from ∞ to 0. The
corresponding energies of the entire system (‘Wigner
crystal + tagged particle’) are denoted by Eout(d) and
Ein(d), respectively. Figure 3 displays typical configurations

for the two branches, and defines variables that will be
measured subsequently for quantitative analysis.

To obtain meaningful results for large system sizes, we
subtract from Eout(d) and Ein(d) the ground-state energy of
the perfect Wigner crystal, E0, [cf. Equation (6)] when the
tagged particle is still part of the Wigner crystal. We thereby
define

δEout(d) = Eout(d) − E0, δEin(d) = Ein(d) − E0. (7)

Our main interest focuses on how δEout(d) and δEin(d) vary
as functions of d. For a given value of d, the state with the
lower energy is considered as the ground state, while the
other one is metastable. It will be shown that a transition
takes place between the two branches at a distance dt �= 0
which is determined by the equality δEout(dt) = δEin(dt).

Before embarking on a detailed study, it is useful to
work out the limiting values of δEout(d) and δEin(d), i.e. for
d → 0 and d → ∞. We have δEout(0) = 0 by definition.
On the other hand, δEin(0) may differ from zero, if the sys-
tem, along the ‘in’-branch, remains trapped in a metastable
state, even at d = 0. In that case, we expect δEin(0) >

0 for consistency. Considering next the asymptotic value
limd → ∞δEin(d), we note that the interaction of the tagged
particle with the Wigner crystal vanishes as d tends towards
infinity. In this situation, the remaining (N − 1) particles
form a perfect Wigner crystal with a lattice spacing b given
by

S

N − 1
=

√
3

2
b2 i.e.

√
3

2
b2σ

N − 1

N
= 1. (8)
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1340 M. Antlanger et al.

The total energy of the (N − 1) charges forming a Wigner
crystal of spacing b is proportional to (N − 1)e2/b, such
that

Ein(∞) = ce2√σN

(
N − 1

N

)3/2

. (9)

Thus,

δEin(∞) = ce2√σN

[(
N − 1

N

)3/2

− 1

]
∼

N→∞

− 3

2
ce2√σ > 0. (10)

At first sight, the prefactor 3/2 in the above relation is
counter-intuitive: one would rather expect a factor of one,
since removing one particle from the Wigner crystal in-
creases the total energy by −ce2√σ [see Equation (6)].
However, the point is that an infinitesimal increase of the
lattice spacing (after having taken off one particle from the
system), when multiplied by an (infinite) N, contributes to
the energy change by a finite amount. Note that a simi-
lar phenomenon would hold for any inverse-power-law po-
tential. Finally, the value of δEout(∞) might differ from
the expression given in Equation (10), provided that the
‘out’-branch is frozen in a local minimum for d → ∞. We
should nevertheless observe that δEout(∞) > δEin(∞) =
−(3/2)ce2√σ .

Finally, instead of the distance d, we will use in the
following the dimensionless distance η defined by

η = d

√
σ

2
, so that

(
d

a

)2

=
√

3 η2. (11)

3. Numerical approaches

The problem, as specified in the Introduction section, in-
volves an infinite monolayer of charged particles on a neu-
tralising background, with a test particle held fixed at a
given vertical distance d from the monolayer. It is as such
not amenable to numerical treatment. For the sake of numer-
ical implementation, we shall consider a finite section of the
monolayer, and impose periodic boundary conditions in the
(x, y)-plane, a routine practice, thereby replicating the cell
that contains the section in question and the tagged charge.
Keeping in mind that we are dealing with long-range in-
teractions, finite size effects must be carefully studied, in
order to guarantee that the observations made are not a
consequence of the finiteness of the set-up. Due to periodic
replication, the system under scrutiny becomes a bilayer,
with inter-layer spacing d, number density ρ1 close to σ on
the ‘bottom’ layer (L1), and a finite although small number

density of particles on the ‘top’ layer (L2), ρ2:

−ρ1 + σ = σ

(
−N − 1

N
+ 1

)
= σ

1

N
, −ρ2 = −σ

1

N
.

(12)

This means that for large separation η, the system behaves
as a capacitor with surface charges ±σe/N, and an energy
δE(η) which consequently diverges like η/N, due to the
finite electric field between the two plates. This feature,
which sets in for d � a

√
N , however, is immaterial here,

since the phenomena we shall study take place for d on the
order of the lattice spacing a.

Two different numerical approaches were implemented:
one is based on a zero temperature EM technique, the other
one on MC simulations at low temperature. In both nu-
merical methods, the long-range nature of the Coulomb
interaction is taken into account with the Ewald summation
technique, along similar lines as for previous studies on
Wigner bilayers [27–29]. More precisely, we use the Ewald
method for quasi-2D systems with periodic boundary con-
ditions in the plane and no periodicity in the z-direction
(see Section 2.2 of [27]). For completeness, we give in the
following the formulas used in the numerical computations.

Particle positions are represented by 3D vectors, r =
s + zêz with s the in-plane position (perpendicular to z);
for the tagged particle s = 0 and z = d while for particles
in the monolayer, r = s and z = 0. The total energy of the
system is computed as

E = E1 + E10 + E0 (13)

with E1 the interaction energy of particles and background
in the ‘bottom’ layer. It is given by

E1 = e2

2

∑
i,j∈L1

∑
Sn

′ erfc(α | sij + Sn |)
| sij + Sn |

− e2(N − 1)α√
π

− e2(N − 1)2√π

αS

+ e2π

S

∑
G �=0

erfc(G/2α)

G

∣∣∣∣∣
∑
i∈L1

exp (j G.si)

∣∣∣∣∣
2

(14)

with the periodic images of the simulation box S0 repre-
sented by Sn, the wave vectors G belonging to the reciprocal
lattice of the periodic images, and α the Ewald summation
parameter. The prime in the first contribution indicates that
the terms i = j are not included in the sum for S0. For the
interaction energy of the tagged charge with its periodic
images, denoted by E0, one obtains

E0 = e2

2

∑
Sn �= S0

erfc(α | Sn |)
| Sn | − e2α√

π
− e2√π

αS

+ e2π

S

∑
G �=0

erfc(G/2α)

G
; (15)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
9:

22
 1

5 
M

ay
 2

01
4 



Molecular Physics 1341

the interaction energy E10 between the tagged particle and
particles and background in the ‘bottom’ layer is given by

E10 = e2
∑
i∈L1

∑
Sn

erfc
(
α
√

| si + Sn |2 + d2
)

√
| si + Sn |2 + d2

+ e2π

S

∑
G �=0

F(G,α; d)
∑
i∈L1

cos (G.si)

− e2(N − 1)
2π

S

[
e−α2d2

α
√

π
+ d erf(αd)

]
− 2π

e2N

S
d

(16)
with

F(G,α; d) = 1

G

[
exp(Gd) erfc

(
G

2α
+ αd

)

+ exp(−Gd) erfc

(
G

2α
− αd

)]
. (17)

3.1. Energy minimisation

To find the equilibrium configuration for a given dimension-
less distance η, we have to minimise the energies δEin(η)
and δEout(η) – cf. Equation (7). Under the assumption of
periodicity, we can calculate these quantities by employing
Ewald summation techniques [30], which guarantee, with
suitably chosen numerical parameters, a relative accuracy of
10−5 or less. We chose cut-off distances in real and recipro-
cal space to be Rc = 15/

√
σ and Gc = 10

√
σ , respectively,

and an Ewald summation parameter α = 0.3 [30].
We require an efficient gradient descent method to

minimise the total energy. For this purpose we have em-
ployed the bounded variant of the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm [31].
The derivatives of the energy with respect to the free param-
eters (i.e. the positions of the particles) can be calculated
explicitly from the analytical expressions of the Ewald sums
with high numerical accuracy. A possible shortcoming of
such a gradient descent method is that the system can be
trapped in local minima; this is the reason why the ‘out’-
and ‘in’-processes may lead to different results. In practice,
we have studied the ‘out’-branch with a system of N = 100
charges, and its ‘in’-counterpart with N = 101 (in the latter
case, it is convenient to take N as n2 + 1, a square integer
plus one, since at large d, we are dealing with a perfect
undistorted crystal (with n2 charges in the simulation cell),
to which the tagged particle should be added. The reason
for choosing ensembles of this size is justified by the fact
that for such a number of particles the interactions of a
charge with its periodic images have become negligible.

We have verified our results by employing an optimi-
sation tool based on evolutionary algorithms [32–35] and
have compared the results. This more general approach
does not require following a particular branch. Instead, the
algorithm starts from several random configurations. New

configurations are created from one or two existing ones
and optimised using the L-BFGS-B method. This process
is repeated many times, combining good traits of previous
configurations and exploring new arrangements, until the
excess energy no longer improves. In doing so, we recover
as the optimal state one of the configurations obtained fol-
lowing ‘in’- or ‘out’-branches, depending on which one is
more favourable. Therefore, this more sophisticated method
does not provide any energetic improvement over the results
that were obtained using the gradient-based approach with
suitable starting configurations, which furthermore yield an
insight on metastability.

3.2. Monte Carlo simulations

The MC simulations reported here have been carried out
in the canonical ensemble with fixed N, a constant sur-
face S, and a finite temperature T. The standard Metropolis
algorithm has been used throughout [36]. Periodic bound-
ary conditions were enforced (like in the EM route), and
changes in the shape of the simulation box were allowed.

The one-component plasma coupling constant for a 2D
system is defined as � = √

πσe2/kBT . Being interested in
ground-state properties, our goal is to know the � → ∞
behaviour of the system. In the MC simulations, a particu-
larly high value was thus chosen, � � 1550, about 10 times
larger than the melting temperature [9,37]. This guarantees
that the Wigner monolayer, although investigated in MC at a
non-vanishing temperature, is nevertheless in a crystalline
state, with charges very close to their ground-state posi-
tions. It should be kept in mind, though, that as d increases,
the coupling energy between the reference charge and the
polarised crystal becomes weaker, and that the effect of a
finite temperature consequently becomes more prevalent.
More specifically, there exists an upper distance (diverging
for small T as −log T), beyond which the field created by
the reference charge is insufficient to ‘pin’ the charges in
the monolayer. We have to ensure that we never go beyond
that cut-off. In order to gauge finite size effects (if any), two
system sizes have been considered: N = 2025 and N = 256.

One MC-cycle corresponds to a trial move of the (N −
1) mobile particles and a trial change in the shape of the
simulation box, keeping the surface S fixed. For ensembles
with N = 2025 particles, 2 × 105 MC-cycles have been
performed in order to relax the system from its initial con-
dition; all ensemble averages, denoted in the following by
〈.〉 have been taken during 2 − 4 × 105 additional MC-
cycles. For ensembles with N = 256, equilibration runs
were carried out over 8 × 105 MC-cycles and averages
were computed over 0.8 − 1.6 × 106 MC-cycles.

3.3. Localisation of particles and structural
properties

In the EM approach, the relative displacements of the par-
ticles with respect to their original positions can be easily

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
9:

22
 1

5 
M

ay
 2

01
4 



1342 M. Antlanger et al.

extracted, once the monolayer has relaxed and adapted to
the presence of the reference charge. Of particular interest
here are those particles that are closest to the tagged charge
(see schematic views in both panels of Figure 3). There are
therefore no fluctuations in the particle positions, unlike in
MC, where an accurate localisation of particles requires a
somewhat more elaborate analysis.

To describe on a quantitative level the structural prop-
erties of the system, we have evaluated the pair correlation
function between the fixed reference particle and the other
charges belonging to the monolayer (L). This function de-
pends on η and is defined as

g0(s) = 1

2πsσ

〈∑
i∈L

δ(s− | si |)
〉

, (18)

with s = |s|.
Since the coupling constant � was chosen at a rather

high value – � � 1550 – the use of the harmonic approx-
imation for the Wigner crystal is fully justified [38]. This
allows to approximate the Mp first peaks in the correlation
functions as a sum of Gaussian functions:

g0(s) =
Mp∑
n=1

G(0)
n exp

(
− (s − sn)2

2λ2
n(�)

)
, (19)

sn being the position of the nth peak, G
(0)
n its amplitude,

and λn(�) its width. Finally, the number of particles Nn that
populate the nth shell (which is defined by the nth peak) are
computed via

Nn = 2πσ G(0)
n

∫ ∞

0
s exp

(
− (s − sn)2

2λ2
n(�)

)
ds. (20)

Examples for the correlation function g0(s) along the
‘out’-branch are shown for three representative η-values in
Figure 4. After fitting by a sum of Gaussians – cf. Equa-
tion (19) – we can determine the (average) positions of the
particles within the monolayer via the peak positions of the
Gaussians; this information allows, finally, for an accurate
determination of the location (and then the displacements)
of the particles. The positions of the first three peaks, s1,
s2, and s3, of the correlation function g0(s), are shown in
Figure 5 as functions of η. As expected, for η → 0 where
the tagged particle is part of the ideal 2D Wigner crystal,
these three s-values tend to their ideal undistorted hexag-
onal lattice expressions. These results show that finite size
effects are negligible, with very similar results for small
(N = 256) as well as larger (N = 2025) systems.

4. Analytic treatment

In this section, we aim at calculating analytically the energy
differences, Eout(η) and Ein(η) as defined in Equation (7),

Figure 4. (colours online) Pair correlation function g0(s) (de-
fined in the text) as a function of the in-plane distance s (in units
of a) between particle 0 and the particles in the monolayer. Results
are shown for three different values of η, along the ‘out’-branch.
Symbols: MC data; coloured lines: fits to the MC results using
Equation (19) with Mp = 3.

along the ‘out’- and the ‘in’-branches. For tractability, we
assume that only the nearest neighbours of the reference
particle 0 can leave their positions in the Wigner crystal,
while the remaining particles are assumed to be fixed at
their original positions in the lattice. For the ‘out’-branch,
the rationale stems from Figure 5, showing that the second
and third layers of neighbours are only weakly displaced
by the polarisation effect of the reference particle. For the
‘out’-branch, this means that six particles are allowed to
move as η changes, while for the ‘in’-branch, there are

Figure 5. Positions of the first three peaks (s1, s2, s3) of g0(s)
(shown in Figure 4 for selected η-values) as functions of distance
η, along the ‘out’-branch. These MC results are shown for two
different system sizes. Lines are guides to the eye. The error bars
are the width of the Gaussians, λn, defined in Equation (19); they
are shown only for N = 2025 particles since they are of comparable
size for the 256 particle systems. For η = 0 the following values
of the ideal 2D Wigner crystal are quite well recovered: s1/a � 1,
s2/a � √

3 � 1.73 and s3/a � 2.
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Molecular Physics 1343

only three charges (see below). We use a recently proposed
analytic technique [39,40], which enables us to express
lattice Coulomb summations in terms of quickly convergent
series of the generalised Misra functions

zν(x, y) =
∫ 1/π

0

dt

tν
e−xte−y/t , y > 0. (21)

4.1. ‘Out’-branch

The left panel of Figure 6 defines those six particles allowed
to respond to the presence of the tagged particle (the pro-
jection of which yields the shaded disk). We have allowed –
by introducing parameters δ and δ′ – the possibility of
a symmetry breaking among neighbours. The hexagonal
Wigner crystal is represented by black and white parti-
cles, as discussed above. The positions of the fixed black
particles are given by vectors a(j,

√
3k), where j and k

are any two integers, except for the pairs (j, k) = (0, 0),
(1, 0), (−1, 0), the latter two combinations corresponding
to the black particles which are allowed to be displaced.
The positions of the fixed white particles are given by vec-
tors a

(
j + 1

2 ,
√

3(k + 1
2 )
)
, where the pairs (j, k) = (0, 0),

(−1, 0), (0, −1), (−1, −1) are excluded.
The energy of the given particle configuration,

Eout(η; δ, δ′), has the following four contributions:

(1) The interaction of particles labelled 1–6 with
the remaining fixed particles and neutralising
background:

E1(δ, δ′) = 3
e2

a

[
I (δ,

√
3) + J (δ,

√
3) + I (δ′,

√
3)

+ J (δ′,
√

3) − 1

1 − δ
− 1

2 − δ

− 2√
1 − δ + δ2

− 2√
3 − 3δ + δ2

− 1

1 − δ′ − 1

2 − δ′

− 2√
1 − δ′ + δ′2 − 2√

3 − 3δ′ + δ′2

]
,

(22)

where the definitions of the lattice sums I(δ, �),
J(δ, �), and their series representations are given in
Equations (A1) and (A2) of the Appendix, respec-
tively. In practice, these series must be truncated at
some finite value M, i.e. summed over the set 1, 2, . . . ,
M or −M, −M + 1, . . . , M. Since these series are
quickly convergent, we have chosen here and in what
follows a cut-off value of M = 5, which reproduces
the exact energy values to 17 decimal digits [40].

(2) The interaction of particles labelled 1–6 with each
other:

E2(δ, δ′) = e2

a

[
6√

1 − δ − δ′ + δ2 + δ′2 − δδ′

+
√

3

1 − δ
+

√
3

1 − δ′ + 3

2 − δ − δ′

]
.

(23)

(3) The interaction of the tagged particle 0 with the fixed
charges in the remaining Wigner crystal and with the
neutralising background

E3(η) = e2

a

⎡
⎣K(η) + L(η) − 6√

1 + √
3η2

⎤
⎦ ,

(24)

where the lattice sums K(η) and L(η) are defined in
Equations (A4) and (A5) of the Appendix, respec-
tively.

(4) The interaction of the tagged particle 0 with particles
labelled 1–6:

E4(η; δ, δ′) = 3
e2

a

⎡
⎣ 1√

(1 − δ)2 + √
3η2

+ 1√
(1 − δ′)2 + √

3η2

⎤
⎦ . (25)

The total energy shift is then given by

δEout(η; δ, δ′) = Eout(η; δ, δ′) − Eout(0; 0, 0), (26)

where Eout(η; δ, δ′) = E1(δ, δ′) + E2(δ, δ′) + E3(η) +
E4(η; δ, δ′). For a given value of η, the particle shifts δ and
δ′ are determined by minimising δEout(η; δ, δ′). Within the
present approximation, where we assume that only six near-
est neighbours are allowed to move, we obtain throughout
δ = δ′ irrespective of the value of η, i.e. symmetry breaking
does not take place.

4.2. ‘In’-branch

To study the ‘in’-branch, we allow for the displacement of
the three neighbours represented in the right panel of Fig-
ure 6. Assuming particle 3 to be located in the origin of the
coordinate system, the x- and y-coordinates of the tagged
particle are given by the vector s = a

(
1/2,

√
3/6
)
. For a

finite value of distance η, it is assumed that the positions
of particles 1–3 are shifted from their ideal positions by δa,
in directions pointing away from particle 0. The remaining
particles of the Wigner crystal are assumed to be fixed: black
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1344 M. Antlanger et al.

Figure 6. Approximations used for the analytic treatment. Left panel: along the ‘out’-branch, only the six labelled neighbours are allowed
to leave their perfect lattice positions. Arrows indicate two possible, alternating displacements (δa and δ′a). As compared to Figure 3, we
have δ1 = δ3 = δ5 = δ and δ2 = δ4 = δ6 = δ′. Left panel: along the ‘in’-branch, only the three particles carrying indices 1–3 can move,
along the arrows, when the tagged particle is approached. In both ‘in’- and ‘out’-cases, the displacements are radial.

particles at positions a(j,
√

3k), excluding integer pairs
(j, k) = (0, 0), (1, 0) and white particles at positions
a
(
j + 1

2 ,
√

3(k + 1
2 )
)
, with (j, k) �= (0, 0); the aforemen-

tioned excluded pairs of indices correspond to the positions
of the mobile particles.

The energy of the given particle configuration,
Ein(η; δ), bears the following four contributions:

(1) The interaction of particles labelled 1–3 with the re-
maining, fixed particles in the Wigner crystal and
with the neutralising background:

E′
1(δ) = 3

e2

a

{
1√
3

[
I

(
δ√
3
,

1√
3

)
+J

(
δ√
3
,

1√
3

)]

− 2√
1 + √

3δ + δ2

}
. (27)

(2) The interaction of particles labelled 1–3 with each
other:

E′
2(δ) = 3

e2

a

1

1 + √
3δ

. (28)

(3) The interaction of the tagged particle 0 with the fixed
charges in the remaining Wigner crystal and with the
neutralising background:

E′
3(η) = e2

a

{
1

2

[√
3K(

√
3η) − K(η)

+
√

3L(
√

3η) − L(η)

]
− 3√

1
3 + √

3η2

}
.

(29)

(4) The interaction of the tagged particle 0 with particles
labelled 1–6:

E′
4(η, δ) = 3

e2

a

1√(
1√
3

+ δ
)2

+ √
3η2

. (30)

Again, the lattice sums I(δ, �), J(δ, �), K(δ, �), and
L(δ, �) are given in the Appendix in Equations (A1), (A2),
(A4), and (A5).

The total shift in energy is then given by

δEin(η, δ) = E′
1(δ) + E′

2(δ) + E′
3(η) + E′

4(η, δ)

+ e2

a

(
3 − 15√

231/4
c

)
, (31)

where the last (constant) term is determined by the asymp-
totic condition (10). As before, the particle shift δ is deter-
mined by minimising δEin(η, δ).

5. Results

The central object in our study is the total Coulombic en-
ergy of the system (‘monolayer + tagged charge’), suitably
shifted by its value at d = 0 to obtain a well-behaved quan-
tity for large systems (with N � 1). Figure 7 therefore
conveys our main results, showing δEin(η) and δEout(η), as
defined in Equation (7), calculated via the two numerical
approaches as well as with the analytic method. First of
all, the three methods display very consistent results on
the ‘out’-branch. Only for large η do they start to depart,
with the analytical prediction providing expectedly higher
energy configurations. This clearly stems from the assump-
tion that only the six labelled charges in the left panel of
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Molecular Physics 1345

Figure 7. (colours online) Excess system energy δE with respect
to the undistorted Wigner crystal, in units of e2√σ . Red, blue,
and black lines are respectively for Monte Carlo (MC), energy
minimisation (EM), and analytic results. The full lines display
the ‘out’-branch data, while the broken ones are for the ‘in’-
branch. Horizontal dotted line: prediction of Equation (10) for the
asymptotic energy along the ‘in’-branch, δE(η → ∞)/(e2√σ ) =
−3c/2 � 2.94077. The inset shows the difference between ‘in’-
and ‘out’-energies, for both MC and EM.

Figure 6 are mobile. Turning to the ‘in’-branch, we observe
that restricting the mobile charges to now a set of three
(see Section 4), becomes more problematic. The analytical
‘in’-branch energy departs significantly from the results of

EM and MC, the latter two being again consistent (broken
lines). We note that the limiting cases discussed in Sec-
tion 2.2 are obeyed. The energy graph is indeed compatible
with the ‘in’-bound (10). In addition, we can extrapolate
from the data that δEout(∞) > δEin(∞), as a fingerprint of
metastability along the ‘out’-branch, even at large η. On the
other hand, at short distances, a related metastable block-
ing is observed for the ‘in’-branch, resulting in values of
δEin(0) that are slightly positive.

Within a good agreement between the two numerical
methods, the ‘in’- and ‘out’-curves cross at ηt ∼ 0.47,
see also the inset of Figure 7. Thus, below this value, the
stable state lies on the ‘out’-branch, while for η � 0.47,
the ‘in’-branch structure is energetically more favourable.
What are the configurations of the charges along these two
branches? In particular, is coordination six retained along
the ‘out’-protocol, and likewise is coordination three re-
tained all along the ‘in’-branch? To answer these questions,
we will focus on the particle displacements. Even though
the ‘out’- and the ‘in’-branches are metastable for η � 0.47
and for η � 0.47, respectively, we will discuss some of their
properties not only for stable, but also for metastable par-
ticle configurations, as we have observed some interesting
features.

The displacements of the six most central particles
(δ1–δ6), as calculated along the ‘out’-branch, are accumu-
lated in Figure 8 as functions of η. They are computed
from the particle positions at η = 0, indicated by the peaks
of the corresponding g0(s). For 0 ≤ η � 0.63, δi-values

Figure 8. (colours online) Deformations δ1–δ6 (in units of a) of the six nearest neighbours of the tagged particle along the ‘out’-branch
as defined in the left panel of Figure 3 as functions of η. Blue dots: results from the energy minimisation approach, black line: results from
the analytic approach. Red symbols: deformations calculated from the positions of the first peak in g0(s); broken red line is drawn as a
guide to the eye. Error bars indicate the σ -values of the Gaussian fit – cf. Equation (19). The three schematic views provide a qualitative
impression of the displacement of the six, most central particles.
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1346 M. Antlanger et al.

Figure 9. MC simulations along the ‘out’-branch. Bottom panel: number of neighbours, Nn, in the first three shells (n = 1, 2, 3) as
functions of η. Top panel: sum over the neighbours located within the first, the second, and the third shell, as functions of η. Results are
shown for two different system sizes, lines are drawn as guide to the eye.

(i = 1, . . . , 6) are all positive and equal: upon increasing η,
the ring of inner particles contracts uniformly towards the
vacancy, while fully maintaining the sixfold rotational sym-
metry of the particle arrangement (see leftmost schematic
inset in Figure 8). However, when passing this η-threshold
value, symmetry breaking takes place: for 0.63 � η �
0.85, the particle configuration has now only threefold ro-
tational symmetry. The six most central particles split up
into two sets of three: (1) particles of the first set (say 1,
3, 5), with their δi-values being throughout positive, have
shifted towards positions that are closer to the vacancy than
the positions of the second set; (2) the displacements of
the particles of the latter set (say 2, 4, 6) decrease in this
η-range monotonously; they even become negative at η �
0.7, indicating that for η � 0.70 particles of the second set
are more distant from the vacancy than in the ideal Wigner
crystal. At this point it should be noted that the best and
the second-best configurations as determined via EM often
differ by minute differences in their energy (i.e. by a few
tenth or less of a per cent).

On the other hand, the analytical treatment does not
predict this very scenario, even if it a priori allows for a
symmetry breakdown of the type ‘3 + 3’ (see Figure 6).
This points to the subtle effect of charge displacement be-
yond the first ring of neighbours, which although small, can
influence the structure in a non-trivial way. We emphasise

at this point the excellent agreement between data obtained
from the EM approach and results extracted from MC sim-
ulations, which extends for distances of the tagged particle
up to η � 0.85. Finally, as we pass this η-value, another
transition takes place to a configuration with only twofold
symmetry (see the rightmost particle sketch of Figure 8):
two sets of particles form with two particles (say, indices
1 and 4), the other one with four particles (say, indices
2, 3, 5, and 6). According to the minimisation approach,
this transition is discontinuous, while there are indications
that in MC simulations, this transition is continuous; due
to the large error bars (see discussion below) an unambigu-
ous conclusion about the nature of this transition is diffi-
cult to reach. For the former set of particles (where the two
charges are located on opposite positions with respect to the
vacancy), the δ-values are positive. The charges thus have
approached the hole left by the tagged particle. The other
four charges (forming the second set) are characterised by
small, negative δ-values (which, with increasing η, tend to
zero), indicating that these particles have moved away from
the central position of the vacancy.

At this point it is worthwhile to note that – while the av-
erage values for the displacement as computed via MC sim-
ulations are in close agreement with the data obtained with
the EM approach (and with the analytical results for η �
0.65) – the fluctuations of the MC-data are non-negligible.
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Molecular Physics 1347

To be more specific, for η � 0.6, the agreement between
the two sets of numerical data is better than 1% and at most
3%–5% for higher η-values (see data shown in Figure 8).
However, the error bars, given by the respective λn-values
and displayed in this figure are quite large, and do increase
when η increases. This is due to the fact that particles in the
layer are pinned by the external potential of the reference
charge, which becomes softer as η grows. The resulting
fluctuations ensure that the MC algorithm explores thor-
oughly the phase space ‘around’ the equilibrium positions;
it is the excellent accuracy of the harmonic approximation
that is able to identify well the equilibrium positions of the
particles as compared with the positions obtained via the
EM approach and via the analytic method. A similar anal-
ysis can be applied to the energy curves shown in Figure 7.

We now proceed with a more quantitative analysis of
the aforementioned splitting of the six most central parti-
cles in two subsets of charges. This fact is visible in the
s1-branch shown in Figure 5, and also appears in the bot-
tom panel of Figure 9. The other two branches of Figure 5
(displaying data for s2 and s3) show a weak, monotonous de-
crease with increasing η, indicating that not only the nearest
neighbours are affected by the displacement of the tagged
particle, but also second and third nearest neighbours (even
though their displacements are much weaker). Finally, the
top panel of Figure 9 provides evidence that the number
of particles in each shell assumes an essentially constant
and η-independent value of six (deviations for η � 0.7 can
be attributed to the statistical noise in MC simulations). We
conclude that the perturbation induced by the tagged charge
progresses shell-by-shell throughout the crystal.

To complete our discussion on the displacement of the
particles, we turn to the ‘in’-branch: here the scenario is
simpler since threefold symmetry is maintained along the
entire branch, with the δ-values decreasing continuously,
to vanish at large η. Since the analytical prediction is less

Figure 10. Same as Figure 8, along the ‘in’-branch. The dis-
placements (defined in the right panel of Figure 3) are computed
from the positions occupied at large η. The energy minimisation
(EM) was performed on a system with N = 101 particles, while
N = 2026 in MC.

reliable here, as explained earlier, less effort was devoted to
studying that branch. Only nearest neighbour results from
MC simulations are shown, since the localisation of charges
is less accurate for the next nearest neighbours (i.e. δ′ data).
It can be seen in Figure 10 that the trend found in MC, EM,
and analytically is consistent, and that the small differences
between the two numerical data-sets do not alter the good
agreement found at the level of the energy, see Figure 7.
The EM route allows for an accurate determination of the
individual displacements δ and δ′ of each of the labelled
particles in the right panel of Figure 3; we find that par-
ticles carrying labels 1–3 are displaced (within numerical
accuracy) by the same displacement δa, while the other
three particles (with indices 4–6) are shifted by the same
δ′a-value. Thus we can conclude that throughout the entire
‘in’-branch threefold coordination is preserved.

Figure 11. Particle arrangements induced by the tagged charge (the projection of which is shown in grey, as in previous graphs), at the
transition point ηt � 0.47 (‘out’- and ‘in’-branches).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
9:

22
 1

5 
M

ay
 2

01
4 



1348 M. Antlanger et al.

Finally, in an effort to provide a quantitative impression
about the influence of the tagged particle on the displace-
ment of the charges in the monolayer, we have shown in
Figure 11 views of particle arrangements for the transition
η. In addition, we have concatenated sequences of equi-
librium configurations for increasing (‘out’-branch) and
decreasing (‘in’-branch) η-values into short animations,
which are presented in the supplementary material. It can
be seen in Figure 11 that at the transition point ηt, the
like-energy configurations associated to the two branches
are quite distinct, and in addition do not exhibit significant
displacements from their respective reference state (d = 0
perfect hexagonal structure in the ‘out’-case, and d → ∞
perfect structure in the ‘in’-case, see Section 2.2). The po-
larisation effect of the reference particle is thus quite weak
here, an information already conveyed in Figures 8 and 10.

6. Conclusion

We have investigated how a 2D Wigner crystal formed by
charges can be polarised, at T = 0, by a single tagged
charge. Starting from a perfect crystal on a planar neutral-
ising background, we take off one reference charge from its
equilibrium position, and fix it at a given distance d. This
creates a vacancy in the plane, towards which some of the
other charges move. For all d values, we have determined the
ground-state properties and structure of the system. Start-
ing from the expected ground states at d = 0 and d → ∞,
respectively, we followed the particle rearrangements along
the corresponding ‘out’- and ‘in’-branches, evidencing the
metastability of the system. Two numerical techniques were
used, namely direct EM and MC simulations at a sufficiently
small temperature. A third, independent procedure, of the
evolutionary type, was also employed to check some of the
results. In addition, an analytic treatment was performed,
under the assumption that only those neighbours that are
closest to the tagged particle (in either the d = 0 or the
d → ∞ case) are allowed to move: thus six along the ‘out’-
branch, and three along the ‘in’-one. All point charges in-
teract through the usual 1/r potential, which requires careful
numerical treatment, and use of recently derived results for
handling lattice summations with extremely high precision.
Since all particles bear the same charge and our interest is
focused on ground-state features, the results obtained are
independent of the value of the charge.

We proved the existence of a transition distance dt �
0.47

√
2/σ , σ being the background density, so that for d

< dt, the reference charge is sixfold coordinated, while for
d > dt, the coordination is three. In terms of lattice spac-
ing a, the transition distance reads dt � 31/4 0.47a �
0.62 a. The transition between both states is discontinu-
ous, and involves an energy barrier that has not been in-
vestigated in this contribution. The actual evaluation of the
height of this barrier would require different tools than the
ones used in this paper; we have therefore postponed this

undoubtedly interesting question to a future contribution.
One can assume (or anticipate) that this barrier is suffi-
ciently high so that once the system lies on a given branch
(‘in’ or ‘out’), it stays trapped in the corresponding energy
valley: the ‘out’-branch was observed to be metastable for
d > dt, and conversely, the ‘in’-branch is metastable for d
< dt. While the ‘out’-branch state is of coordination six
in its range of stability, a symmetry breaking takes place
around d � 0.63

√
2/σ , beyond which the ‘out’-branch is

threefold, and ultimately, twofold coordinated.
As far as the ‘out’-branch is concerned, good agree-

ment between the numerical and analytical results was re-
ported. The situation complicates for the ‘in’-branch. First
of all, the exact treatment assumed a priori in that case
only three mobile neighbours, a number which turned out
to be insufficient. Allowing for more mobile neighbours
(say six, as for the ‘out’-analysis), would certainly im-
prove the predictions. In addition, the ‘in’-case is also more
elusive within the MC scheme. The reference state is in-
deed the large-d case, where the coupling energy between
the fixed reference charge and the monolayer becomes
small, and is washed out by the fluctuations induced by
temperature. A more refined study of the ‘in’-branch is left
for the future.

An interesting question, coupled to that of the energy
barrier alluded to above, pertains to the structure of the
transition state (the one at the saddle point between the two
states at dt). It is left for future investigations.
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87, 022306 (2013).
[23] R.R. Netz, Eur. Phys. J. E 5, 557 (2001).
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Appendix 1. Series representations of lattice sums

The lattice sums for the energies (22), (27), and their series repre-
sentations in terms of the generalised Misra functions (21), read
as

I (δ,�) =
∑

(j,k)�=(0,0)

1√
(j + δ)2 + �2k2

− backgr = − 4√
�

+ 1√
π�

×
⎧⎨
⎩2

∞∑
j=1

cos(2πjδ)z3/2(0, j2�) + 2
∞∑

j=1

z3/2(0, j2/�)

+ 4
∞∑

j,k=1

cos(2πjδ)z3/2(0, j2� + k2/�)

+
∞∑

j=−∞
z3/2(0, (j + δ)2/�) −

√
π�

δ

+ 2
√

π + 2
∞∑

j=1

∞∑
k=−∞

z3/2(0, j2� + (k + δ)2/�)

⎫⎬
⎭ (A1)

J (δ, �) =
∑

(j,k)�=(0,0)

1√
(j + 1

2 + δ)2 + �2(k + 1
2 )2

− backgr

= − 2√
�

+ 1√
π�

×
⎧⎨
⎩2

∞∑
j=1

(−1)j cos(2πjδ)z3/2(0, j2�)

+ 2
∞∑

j=1

(−1)j z3/2(0, j2/�)

+ 4
∞∑

j,k=1

(−1)j+k cos(2πjδ)z3/2(0, j2� + k2/�)

+ 2
∞∑

j=1

∞∑
k=−∞

z3/2

(
0,

(
j − 1

2

)2

� +
(

k − 1

2
+ δ

)2

/�

)⎫⎬
⎭.

(A2)

The expression in Equation (A1) is finite also in the limit δ → 0,
due to the fact that

z3/2(0, δ2/�) ∼
δ→0

√
π�

δ
− 2

√
π + O(δ). (A3)

The lattice sums for the energies (24) and (29) are given by

K(η) =
∑

(j,k)�=(0,0)

1√
j 2 + 3k2 + √

3η2

− backgr

= 1√
π31/4

[
I3((πη)2, 0) + I3(0, η2)

]
, (A4)

L(η) =
∑
(j,k)

1√
(j + 1

2 )2 + 3(k + 1
2 )2 + √

3η2
− backgr

= 1√
π31/4

[
I2((πη)2, 0) + I4(0, η2)

]
. (A5)

The definitions of the integrals over the Jacobi theta functions I2,
I3, and I4 are presented respectively in Equations (61), (62), and
(63) of [40].
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