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1.  Introduction

Polydispersity refers to non-uniformity in some property. For 
soft matter, it can pertain to size, surface features, charges, 
electrolytic content etc, and lead to baffling complexity in 
structural or dynamical properties [1, 2]. Not only can some 
structures be destabilised [3], nucleation [4] or compressibility 
[5] be suppressed, but also fractionation may ensue [6, 7] or 
super-lattices appear [8, 9]. In the limit of a continuous mix-
ture of hard sphere, it was shown that optimal packing yields 
the formation of macroscopic aggregates, in a scenario that 
bears similarities with Bose–Einstein condensation [10, 11].

The present paper is devoted to charged fluids, and to the 
physics of screening by a polydisperse ensemble of counter
ions, having different valences. There is a number of reasons 
for investigating such problems. First of all, multivalent ions 

of distinct charges are routinely found in a wealth of situa-
tions. One may think here of spermine and spermidine ions 
in biological systems [12]. Also, the upsurge of interest for 
nanocolloidal systems provides a motivation for our work, 
where the presence of distinct species with specific charges 
should be accounted for [13, 14]. A specific feature of a linear 
description, à la Debye and Hückel [15], of the kind of poly-
dispersity we are interested in, is entirely subsumed into the 
so-called Debye length, which is a very coarse measure of 
the dispersion in ionic valences. Yet, non-linear effects, over-
looked at the Debye–Hückel level, deeply affect the structure 
of the electric double-layer in the vicinity of charged macro-
molecules [16–18]: the sole Debye length is not sufficient to 
characterise screening, and thus interactions between charged 
bodies. Our analysis is worked out at the level of the non-
linear Poisson–Boltzmann theory, where it is interesting to 
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note that the problem of mixed valences has been investigated 
in the pioneering paper of Gouy [19]4. Yet, exact results are 
scarce, even in the planar geometry to which we restrict our 
study. To complement the analytical derivation, Monte Carlo 
simulation results will also be reported.

To magnify non-linear effects, we will be interested in a 
counterion only system (the limit of a completely deionised 
solution [21]), and analyse screening of planar charged bodies. 
A number of new analytical results can then be derived. In this 
very geometry, parallel like-charged plates interact at long-
distances in a universal fashion, provided only one type of 
counterion is present in the solution (mono-disperse case). 
It can indeed be readily shown that the corresponding pres
sure behaves like P ∼ πkT/(2�Bd2) where d is the inter-plate 
distance, and �B is the Bjerrum length defined below, scaling 
like the elementary charge squared [22]. Thus, the previous 
large-d result is universal, independent of the charge on the 
plates. This result can be generalised to any polydisperse 
counterionic mixture, under the proviso that there is a lower 
bound qmin > 0 in the valence distribution. Here, the ions 
with smaller valence are less attracted to the charged plates, 
and are those mediating the interaction force. Those ions 
with valence larger than qmin screen the plates’ bare charge, 
reducing its effective value, which however does not enter the 
large-d behaviour. We thus expect the universal asymptotic 
P ∝ q−2

mind−2 to be valid as well for a mixture, be it discrete or 
continuous, as long as qmin > 0. We will see in particular that 
whenever qmin = 0, the situation changes completely, and that 
new power-law regimes emerge, with a d-exponent smaller 
than 2 that can be tuned continuously. This is a consequence 
of less efficient screening, resulting in a severe enhancement 
of effective interactions. In a sense to be specified though, 
these interactions keep some level of universality.

The paper is organized as follows. We present in sections 2 
and 3 the results for the one-plate and two-plates geometries. 
These are tested against numerical simulations, of two distinct 
types: numerical resolution of Poisson–Boltzmann theory on 
the one hand, and Monte Carlo simulations on the other hand. 
The numerical techniques used are sketched in appendix B.  
Finally, our main results are recovered and extended in a 
heuristic and rather direct way in section  4. A significant 
part of the analytical treatment (with the notable exception 
of the statements that do not pertain to asymptotic results) is 
devoted not only to continuous distributions n(q), but further-
more, to distributions having a vanishing minimum charge 
qmin. The reason is that the behaviour of n(q) for q → 0 is at 
the root of new scaling laws for the long-distance ionic pro-
files, or interplate pressures. Indeed, those counterions with 
a large valency will be more attracted to the charged plates, 
while the others are less localised, and play a more impor-
tant role in large scale features. Yet, the corresponding ‘con-
tinuous models’ might be viewed as somewhat artificial, since 

any physical system exhibiting polydispersity in counterion 
charge will have qmin > 0. In section 4, we shall address that 
legitimate concern, and show that the newly found power-
laws can be observed over an intermediate range if qmin > 0 
or in discrete systems. In addition, we will present numerical 
data illustrating the fact that in some cases, a small number 
of species is sufficient for a system to exhibit the continuous 
polydispersity asymptotics. Some attention will also be paid 
to universal features that may characterize density profiles and 
equations of state.

2.  One-wall geometry

We consider a hard wall of dielectric constant ε′ localised 
in the half-space x < 0. The Cartesian (y, z) coordinates are 
unbounded5. The surface of the wall at x = 0 carries a con-
stant surface charge density σe (e is a unit charge and say 
σ > 0). Mobile particles, confined in the half-space x > 0, 
are immersed in a medium of dielectric constant ε. We assume 
for simplicity that ε′ = ε, i.e. there are no electrostatic image 
charges. Particles can have various charges, with sign opposite 
to that of the plate: they are counterions. Let ρ(x) be the par-
ticle charge density (per unit surface of the wall) at distance x 
from the wall. The condition of overall electroneutrality reads

σe +
∫ ∞

0
dx ρ(x) = 0.� (1)

The mean electrostatic potential ψ(x) fulfils the Poisson 
equation

d2ψ(x)
dx2 = −4π

ε
ρ(x).� (2)

Integrating this equation  over x from 0 to ∞, the require-
ment of electroneutrality (1) is consistent with the couple of 
boundary conditions (BCs)

ψ′(0) = −4πσe
ε

, ψ′(∞) = 0.� (3)

2.1.  Monodisperse case

We first recapitulate briefly the monodisperse results [22] 
where all mobile ions possess the same charge, say −e < 0 (i.e. 
their valence is q = 1). Denoting by n(x) the particle number 
density at x, the charge density is simply ρ(x) = −en(x).

The statistical mechanics of the system is described by 
the mean-field Poisson–Boltzmann (PB) theory [19, 23], pro-
vided Coulombic coupling is small enough [24–25]6. In the 
PB approach, the density of particles at a given point is pro-
portional to the corresponding Boltzmann weight of the mean 
electrostatic potential,

4 Gouy remarked that for a uniformly charged plate in an otherwise un-
bounded electrolyte, not only 1:1 salt situations, but also 2:1 and 1:2 were 
solvable analytically at Poisson–Boltzmann level [19]. Curiously enough, so 
is the case in cylindrical geometry [18], where the key to resolution lies in a 
mapping to Painlevé III equations [20]. For other electrolyte asymmetries, 
no closed-form solutions can be found.

5 When performing a mean-field type of analysis, space dimension does not 
play a particular role and up to irrelevant constants, the same Poisson equa-
tion is solved irrespective of dimensionality.
6 It should be kept in mind that the accuracy of PB theory deteriorates upon 
increasing the electrostatic coupling strength Ξ and that Ξ increases with 
counterion valence.
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n(x) = f0 eβeψ(x),� (4)

where f0 is a normalisation constant and β denotes the inverse 
temperature. Introducing the reduced potential

φ(x) = βeψ(x), n(x) = f0 eφ(x),� (5)

this mean-field assumption applied to (2) leads to the PB 
equation

d2φ(x)
dx2 = 4π�Bf0 eφ(x),� (6)

where �B ≡ βe2/ε is the Bjerrum length. Note that the shift 
of φ by a constant only renormalizes f0. We fix the potential 
gauge by setting

φ(0) = 0� (7)

at the wall. Once a gauge has been chosen, f0 is directly related 
to the contact density of counterions, n(0). The BCs (3) read 
for the reduced potential as follows

φ′(0) = −4π�Bσ, φ′(∞) = 0.� (8)

Since φ′(x) � 0 and with regard to the gauge (7), it holds that 
φ(x) � 0. Due to the absence of the neutralising bulk back-
ground (like in jellium models), the bulk particle density van-
ishes and so φ(x) goes to −∞ at asymptotically large x. This 
is the reason why an approach à la Debye–Hückel necessarily 
fails here, since it relies on linearising the problem around a 
point of reference, taken usually for a one macroion problem 
as the bulk surrounding electrolyte. Here, we have no electro-
lyte, only counterions.

Multiplying the PB equation (6) by φ′(x), it can be rewritten 
as [22]

1
2

d
dx

[φ′(x)]2 = 4π�Bf0
d
dx

eφ(x),
1
2
[φ′(x)]2 = 4π�Bf0 eφ(x),

� (9)
where the integration constant equals to 0 due to the BCs 
φ′(x) → 0 and eφ(x) → 0 in the limit x → ∞. The gauge (7) 
and the first BC in (8), when considered in (9), fix the nor-
malization constant to f0 = 2π�Bσ

2. The resulting first-order 
differential equation

φ′(x) = −4π�Bσeφ(x)/2� (10)

with the BC φ(0) = 0 is solvable by the method of the separa-
tion of variables:

φ(x) = −2 ln (1 + x̃) ,� (11)

where x̃ is the dimensionless distance given by

x̃ ≡ x
µ

, µ =
1

2π�Bσ
,� (12)

μ being the Gouy-Chapman length. The electric potential 
goes to −∞ at asymptotically large distances from the wall 
logarithmically. The particle number density behaves as

n(x) = f0 eφ(x) = 2π�Bσ
2 1
(1 + x̃)2 ∼

x→∞

1
2π�B

1
x2 .� (13)

The value of the number density at x = 0, n(0) = 2π�Bσ
2, is 

in agreement with the contact theorem [26–32]. We further 

see that the large-distance decay of the particle number 
density is universal, independent of the surface charge den-
sity σe: the only restriction is that σ �= 0. This well known 
but remarkable result illustrates in a particular strong form 
a phenomenon of saturation, considered as a hallmark of 
Poisson–Boltzmann theory: upon increasing the charge of 
a field-creating macroion, one eventually reaches a regime 
where the electrostatic signature becomes independent of 
the macroion charge [33, 34]7. Here, not only is saturation 
observed at finite x increasing σ (and thus letting µ → 0), 
but it is also met—and this is specific to one dimensional 
geometry—at any finite σ for x → ∞. In both cases, this is a 
signature of efficient screening. We will see below that these 
properties are lost for certain classes of polydisperse counter-
ionic systems, where screening is impeded by counterions of 
a too small valence.

2.2.  Polydisperse case

We now consider counterions with charges −qe, where q is 
constrained to the interval [0, 1]. The upper bound is arbitrary 
and rather than some qmax, we take it to be unity for the sake 
of convenience. We stress here that when results are rescaled 
with the mean value 〈q〉, they become independent of the 
choice of qmax. The model is defined by a density distribu-
tion (per unit surface) n(q) of particles with the charge −qe. 
The distribution n(q) might be discrete, i.e. it is a sum of δ-
functions, or continuous; for the next treatment, we consider 
that n(q) is continuous at least close to q = 0. We define the 
(normalised) moments of the n(q)-distribution as follows

〈q j〉 ≡
∫ 1

0 dq q jn(q)∫ 1
0 dq n(q)

, j = 1, 2, . . . .� (14)

Within the PB theory, the density of particles with charge q 
at distance x from the wall, n(q, x), is expressed as

n(q, x) = f (q) eqφ(x),� (15)

where f (q) is a positive normalisation function; it was equal 
to f0 δ(q − 1) in the monodisperse system. From this relation, 
the total particle number density at x is given by

n(x) =
∫ 1

0
dq n(q, x) =

∫ 1

0
dq f (q)eqφ(x).� (16)

The charge density at x is expressible as

ρ(x) =
∫ 1

0
dq (−eq)n(q, x) = −e

∫ 1

0
dq qf (q)eqφ(x) = −e

n′(x)
φ′(x)

.

�
(17)

The number density distribution n(q) is given by

n(q) =
∫ ∞

0
dx n(q, x) = f (q)

∫ ∞

0
dx eqφ(x).� (18)

7 Interestingly, we note that this level of universality still holds, at large 
distances, for arbitrary Coulombic couplings, including thus those that do 
violate the mean-field/Poisson–Boltzmann assumption. We expect physics at 
large scales to locally fall in the mean-field category, see point 5.3 in [35].
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This equation relates the density distribution n(q) and the nor-
malisation function f (q), provided that the reduced potential 
φ(x) is known. The overall electroneutrality of the system 
leads to a constraint for n(q):

σ =

∫ ∞

0
dx

ρ(x)
−e

=

∫ 1

0
dq q n(q).� (19)

Here, it is worth pointing to a subtlety, that lies in the dif-
ference between f (q) and n(q). In a ‘particle’ based model, 
such as a Monte Carlo simulation, one chooses the identity 
of the counterion, thereby fixing the function n(q). Then, 
f (q) follows in a non-trivial way, from measuring the equi-
librium density profiles of q-species. On the other hand, in 
a ‘field’ based formulation such as PB theory, one needs to 
know f (q) to be able to write the differential equation to be 
solved. Starting from n(q), this requires the knowledge of the 
potential φ(x), which is precisely the object we are looking 
for. This difficulty is essentially absent in the monodisperse 
case; it is the main complication to be addressed when consid-
ering polydisperse mixtures.

Inserting ρ(x) (17) into the Poisson equation, we get the 
polydisperse PB equation

d2φ(x)
dx2 = 4π�B

∫ 1

0
dq q f (q) eqφ(x).� (20)

The gauge (7) and the BCs (8) remain unchanged, i.e.

φ(0) = 0, φ′(0) = −4π�Bσ, φ′(∞) = 0.� (21)

As before, φ(x) goes to −∞ at asymptotically large x. The 
problem of the polydisperse PB formulation, alluded to above, 
is that the available information about the charge mixture is 
encoded in the density distribution of the charged particle n(q), 
and not in the normalisation function f (q). But the natural (or 
at least analytically convenient) formulation is in fact inverse: 
with a prescribed normalisation function f (q), one should 
solve the PB equation (respecting the corresponding BCs) for 
the reduced potential and then obtain the density distribution 
n(q) of the charged particles by using the n − f  relation (18). 
We explain in appendix B how this complication was circum-
vented for numerical purposes. As far as analytical results are 
concerned, the ‘implicit’ formulation of equation (20) is not 
an issue.

As in the monodisperse case, the PB equation (20) can be 
integrated into

[φ′(x)]2 = 8π�B

∫ 1

0
dq f (q)eqφ(x).� (22)

The integration constant is again equal to 0 due to the BCs 
φ′(x) → 0 and eφ(x) → 0 in the limit x → ∞. The gauge and 
the BC at x = 0 imply the constraint

∫ 1

0
dq f (q) = 2π�Bσ

2,� (23)

which is equivalent to the fact that, according to the con-
tact theorem [26–32], the contact density n(0) = 2π�Bσ

2. 
Equation (22) can be rewritten as follows

[φ′(x)]2 = 8π�B

∫ 1

0
dq f (q)e−q[−φ(x)]

= 8π�B

∫ −φ(x)

0

dp
[−φ(x)]

f
(

p
−φ(x)

)
e−p.

�

(24)
In the polydisperse case, we define the dimensionless distance 
as

x̃ ≡ x
µ

, µ =
1

2π�Bσ〈q〉
.� (25)

Note that this definition is consistent with that used in the 
monodisperse case (12) for which 〈q〉 = 1. We know that in 
the limit x → ∞ the function −φ(x) → ∞. This means that 
at asymptotically large distances only the leading small-q 
term of the positive distribution function f (q) matters in equa-
tion (24). It is also clear that f (q) → 0 for q → 0. From equa-
tion (18) indeed, this is the only way to ensure a non-divergent 
surface density n(q) for q → 0. Let us then suppose that

f (q) ∼
q→0

2π�Bσ
2a qα,� (26)

where a > 0 and α � 0 are some dimensionless parameters; 
the presence of the prefactor 2π�Bσ

2 is motivated by the con-
straint (23). Considering this small-q behaviour, we show in 
appendix A that it is possible to work out the long-distance 
asymptotic for all quantities of interest (charge density, ionic 
density, electrostatic potential), where novel scaling laws—
explicitly dependent on exponent α—do emerge.

A meaningful way to present the results is to introduce 
γ = (α− 3)/2, which turns out to characterise the small-q 
behaviour of the charge distribution:

n(q)
σ

∼
q→0

cqγ ,� (27)

which defines the parameters c > 0 and γ > −1. The results 
derived in appendix A then translate into

φ(x̃) ∼
x̃→∞

−
[

c
22γ+5
√
π

γ + 3
γ + 2

Γ

(
γ +

5
2

)] 1
γ+3

(x̃/〈q〉)
1

γ+3 ,

� (28)

n(x̃) ∼
x̃→∞

2π�Bσ
2
[

c
2γ+2
√
π

1
(γ + 2)(γ + 3)γ+2 Γ

(
γ +

5
2

)] 2
γ+3 1

(x̃/〈q〉)2( γ+2
γ+3 )

,

� (29)

ρ(x̃)
(−e)

∼
x̃→∞

2π�Bσ
2
[

c
2γ+2
√
π

(γ + 2)γ+2

(γ + 3)2γ+5 Γ

(
γ +

5
2

)] 1
γ+3 1

(x̃/〈q〉)
2γ+5
γ+3

.

� (30)
In particular, when n(q) goes to a nonzero constant c in the 
limit q → 0, which corresponds to γ = 0, we have

φ(x̃) ∼
x̃→∞

−62/3c1/3(x̃/〈q〉)1/3, n(x̃) ∼
x̃→∞

2π�Bσ
2 1

62/3 c2/3 1
(x̃/〈q〉)4/3 ,

ρ(x̃)
(−e)

∼
x̃→∞

2π�Bσ
2
(

2
9

)2/3

c1/3 1
(x̃/〈q〉)5/3 .

�

(31)
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As we have seen, the non-universal large-distance behav-
iour of the quantities like the reduced potential and particle/
charge densities for the charge mixtures within the PB theory 
can be related to the small-q behaviour of the density distribu-
tion n(q). If there is e.g. a gap in q and the function f (q), or 
equivalently n(q), is zero up to some positive threshold qmin, 
the integral in (22) is dominated by exp[qminφ(x)] at large dis-
tances from the wall, and we basically recover the monodis-
perse relation of type (9). It is always the population with 
smallest valence which sets the large distance asymptotic, 
and non-trivial effects emerge when this population has a 
vanishing charge (qmin = 0). A similar remark holds for the 
two-plate problem to be discussed below. Yet, even a discrete 
charge distribution may exhibit, transiently, the power-laws 
brought to the fore here, see section 4.3 below.

2.3.  Numerical PB results for a simple polydisperse model

As emphasised above, a physical problem is posed specifying 
the distribution n(q), rather than the normalisation function 
f (q), which is unknown without having solved the PB equa-
tion, the formulation of which requires the knowledge of 
f (q). This question will be addressed in the remainder (see 
appendix B), but to circumvent this complication and test the 
premises of our analytical approach, we have chosen the spe-
cific form

f (q) = 2π�Bσ
2aqα q ∈ [0, 1],� (32)

with integer α = 2, 3, 4, . . .. This function represents an exten-
sion of the small-q asymptotic (26) to the whole q-interval. 
The constraint (23) fixes the prefactor a to

a = α+ 1.� (33)

The PB equation reads as

φ′(x̃)〈q〉 = −2
√
α+ 1

[∫ 1

0
dq qαeqφ(x̃)

]1/2

.� (34)

The advantage of the chosen model is that the function inside 
the integral on the rhs is explicitly integrable:
∫ 1

0
dq qαeqφ =

eφ(φ2 − 2φ+ 2)− 2
φ3 for α = 2,

=
eφ(φ3 − 3φ2 + 6φ− 6) + 6

φ4 for α = 3,

=
eφ(φ4 − 4φ3 + 12φ2 − 24φ+ 24)− 24

φ5 for α = 4,

� (35)

etc. This allows us to solve numerically the PB equation in a 
particularly straightforward manner.

For α = 2, 3, 4, the numerical results for the electric poten-
tial φ versus distance are presented by the solid curve in 
figure 1. For comparison, the analytically obtained asymptotic 
formula for the potential (A.4) are represented by the dashed 
lines. We see that the asymptotic regime is already reached at 
x̃/〈q〉 ∼ 100.

Having at our disposal the function φ(x̃), we calculate the 
particle density distribution n(q)/σ, which corresponds to our 
model (32), by using the formula (A.7). For α = 2, 3, 4, the 
numerical solution of the PB equation  is represented by the 
solid curve in figure 28. The dashed curves appearing in this 
figure correspond to the asymptotic q → 0 formula (A.10). As 
q → 0, the density distribution diverges for α = 2, attains a 
finite value for α = 3 and goes to 0 for α = 4. We see that the 
agreement of the numerical and analytical calculations in the 
small-q region is good. This confirms our previous assump-
tion that the small-q asymptotics of the functions n(q) and 
f (q) are related by equation (A.8) with the asymptotic large- x̃ 
potential (A.4) inserted.

0.1 1 10 100 1000
x
~

 / <q>

0.1

1

10

- 
φ

0 200 400 600 800 1000
0

10

20

30

40

50

α = 2

α = 3

α = 4

α = 3

Figure 1.  Log–log plot of the (minus) potential −φ versus the 
reduced distance x̃/〈q〉 for α = 3. The solid curve corresponds to 
the numerical treatment of the PB equation with the normalisation 
function f (q) defined by equation (32), the dashed line corresponds 
to the asymptotic formula (A.4). Inset: same results on a linear 
scale, for α = 2, 3 and 4. The dashed and continuous lines are 
essentially superimposed.

0 0.2 0.4 0.6 0.8 1
q

0

2

4

6

8

n(
q)

 / 
σ

0 0.25 0.5
0

1

2

α = 2

α = 4

α = 3

Figure 2.  Plot of the particle density distribution n(q)/σ versus 
valence q for α = 2, 3, 4. For each α, the solid curve corresponds 
to the numerical solution of the PB equation with the normalisation 
function f (q) defined by equation (32), while the dashed curve is 
for the asymptotic formula (A.10).

8 In order to obtain adequate results in the small q region, the integral over x̃ 
in (A.7) has to be computed on a very large interval, ranging from 10 to 100 
millions of length units.
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3.  Symmetric two-wall geometry

Now we consider a symmetric pair of parallel hard walls of 
dielectric constant ε at distance d. Each of the surfaces at 
x = −d/2 and x = d/2 carries a constant surface charge 
density σe with σ > 0. The charged particles, confined to the 
slit −d/2 < x < d/2, are immersed in a medium of the same 
dielectric constant as the walls, i.e. ε. The electroneutrality 
condition reads as

2σe +
∫ d/2

−d/2
dx ρ(x) = 0.� (36)

Integrating the Poisson equation  (2) from −d/2 to d/2, the 
condition (36) is consistent with the couple of BCs

ψ′
(
−d

2

)
= −4πσe

ε
, ψ′

(
d
2

)
=

4πσe
ε

.� (37)

The problem is symmetric with respect to the sign  
reversal of the x-coordinate, i.e. ψ(x) = ψ(−x), n(x) = n(−x),  
ρ(x) = ρ(−x). Consequently, ψ′(x) = −ψ′(−x), n′(x) = −n′(−x),  
ρ′(x) = −ρ′(−x), so the derivatives of these quantities vanish 
at x = 0. In particular,

ψ′(0) = 0.� (38)

This BC formally corresponds to having an uncharged hard 
wall at x = 0.

For the subsequent analysis, it turns out that two equiva-
lent formulations are of particular interest. They correspond 
to each other through a x → d/2 − x transformation, with an 
additional shift of potential to enforce the chosen gauge.

	 (i)	In analogy with the one-plate problem, we shift the refer-
ence to the surface of one of the walls, say the one at 
x = −d/2, and consider the asymmetric configuration 
of one charged hard wall at x = 0 with uniform surface 
charge density σe, and one uncharged (σ′ = 0) plain 
hard wall at x = d/2. The gauge condition and the corre
sponding BCs for the reduced potential read as

φ(0) = 0, φ′(0) = −4π�Bσ, φ′(d/2) = 0.�
(39)

		 Both φ(x) and φ′(x) are negative (or 0) in the whole 
interval [0, d/2]. In the monodisperse case, we set 
n(x) = f0 eφ(x) for the particle density and the resulting 
PB equation can be integrated into

[φ′(x)]2 = 8π�Bf0
[
eφ(x) − 1

]
+ (4π�Bσ)

2.� (40)

		 Since the confining surfaces are planar, the particle densi-
ties at contact with the surfaces obey the contact theorem 
[26–32]

n(0) = 2π�Bσ
2 + βP, n

(
d
2

)
= βP,

� (41)

		 where P is the pressure. Equivalently,

βP = f0 − 2π�Bσ
2, βP = f0 eφ(d/2).� (42)

		 In the polydisperse case with n(x) =
∫ 1

0 dq f (q)eqφ(x), the 

PB equation can be integrated into

[φ′(x)]2 = 8π�B

∫ 1

0
dq f (q)

[
eqφ(x) − 1

]
+ (4π�Bσ)

2.�

(43)
		 The pressure can be written

βP =

∫ 1

0
dq f (q)− 2π�Bσ

2 =

∫ 1

0
dq f (q)eqφ(d/2).� (44)

	(ii)	Next, we shift the reference to the midpoint between the 
walls and consider the configuration of one uncharged 
(σ′ = 0) hard wall at x = 0 and the charged wall at 
x = d/2 with the (surface charge density σe). The gauge 
condition and the corresponding BCs read as

φ(0) = 0, φ′(0) = 0, φ′(d/2) = 4π�Bσ.� (45)

		 Both φ(x) and φ′(x) are positive (or 0) in the interval 
[0, d/2]. In the monodisperse case, the PB equation  is 
integrated into

[φ′(x)]2 = 8π�Bf0
[
eφ(x) − 1

]
.� (46)

		 The pressure is expressible as

βP = f0 = f0 eφ(d/2) − 2π�Bσ
2.� (47)

		 On the other hand, the polydisperse PB equation can be 
integrated into

[φ′(x)]2 = 8π�B

∫ 1

0
dq f (q)

[
eqφ(x) − 1

]
,� (48)

		 and the pressure is given by

βP =

∫ 1

0
dq f (q) =

∫ 1

0
dq f (q)eqφ(d/2) − 2π�Bσ

2.� (49)

Note that the explicit form of the normalisation function 
f (q) depends on the formulation, while βP does not.

3.1.  Monodisperse case

In the monodisperse case with particles of charge −e, the 
solution is well known. For completeness, it is reminded here. 
We use formulation (ii) with the gauge and BCs of type (45). 
The PB equation (46), written as

φ′(x) = 2K
√

eφ(x) − 1, K =
√

2π�Bf0,� (50)

has the explicit solution

φ(x) = −2 ln cos(Kx).� (51)

The BC at x = d/2 implies the transcendental equation for the 
screening parameter K:

Kd tan

(
K

d
2

)
= 2π�Bσd ≡ d̃.� (52)

In the limit d̃ → 0, Kd is small and one can expand equa-
tion (52) in powers of Kd to obtain the small-distance behav-
iour of the pressure βP = f0,
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P̃ ≡ βP
2π�Bσ2 =

2

d̃
− 1

3
+

2
45

d̃ + · · · .� (53)

In the large-distance limit d̃ → ∞, we have Kd → π . The 
pressure

βP ∼
d→∞

π

2�B

1
d2� (54)

is then independent of the surface charge density σe. It is 
interesting to compare this result to the one-plate density, as 
given by equation (13). In the present salt-free problem, the 
superposition of the two 1-plate densities n1(x) + n1(d − x) 
is never a good approximation to the complete two-plates 
profiles. Yet, following that incorrect route to compute the 
pressure, we get the correct scaling in 1/d2 for the pressure, 
with a prefactor 4/(π�B) instead of π/(2�B) as given by equa-
tion (54). The ratio of both is thus R = π2/8 � 1.23, and can 
be seen as a quantitative measure of (pressure enhancing) 
non-linear effects. It will be seen that this ratio is significantly 
larger in the polydisperse case.

Both short- and large-distance expansions can be derived 
systematically in alternative ways, without solving explicitly 
the model. Since these alternative techniques are important for 
the polydisperse case, we shall review them in the following.

3.1.1.  Short-distance expansion.  We still use formulation (ii) 
with the gauge and BCs of type (45) and the PB equation (46). 
Since the electric potential measured from the midpoint x = 0 
has the symmetry φ(x) = φ(−x), its small-x expansion reads 
as

φ(x) = a1x2 + a2x4 + · · · .� (55)

Inserting this expansion into the PB equation (46), the expan-
sion coefficients are given by

a1 = 2(π�Bf0), a2 =
2
3
(π�Bf0)2,� (56)

etc. The normalisation condition

2σ =

∫ d/2

−d/2
dx n(x) = 2f0

∫ d/2

0
dx eφ(x)� (57)

together with the small-d expansion of the integral
∫ d/2

0
dx ea1x2+a2x4+··· =

d
2
+

1
12

(π�Bf0)d3 +
1

60
(π�Bf0)2d5 + · · ·

� (58)
can be used to derive a small-d expansion for f0:

f0 =
2σ
d

− 2
3
π�Bσ

2 +
8

45
(π�B)

2σ3d + · · · .� (59)

With regard to the relation βP = f0, we end up with the short-
distance expansion (53).

3.1.2.  Large-distance expansion.  With the same gauge and 
BCs as in the previous part, the PB equation (46) can be re-
expressed via the separation of variables as

dφ√
eφ − 1

=
√

8π�Bf0 dx,� (60)

which implies
∫ φ(d/2)

0

dφ√
eφ − 1

=
√

8π�Bf0
d
2

.� (61)

In the limit d → ∞ we have φ(d/2) → ∞ and the integral 
on the lhs equals to π. This leads to f0 = π/(2�Bd2) which 
is equivalent to the anticipated result (54). Note that this 
approach does not need the explicit PB solution, which is an 
interesting feature.

3.2.  Polydisperse case

With the valence density distribution n(q), the definition 
of the moments (14) and of the dimensionless distance 
x̃ = 2π�Bσ〈q〉x remain unchanged. Electro-neutrality reads

∫ 1

0
dq q n(q) = 2σ.� (62)

The normalisation function f (q) in the PB equation is related 
to the number density distribution of charges n(q) via

n(q) = f (q)
∫ d/2

−d/2
dx eqφ(x) = 2f (q)

∫ d/2

0
dx eqφ(x),� (63)

where we took into account the reflection symmetry of the 
potential with respect to the midpoint between the walls, 
φ(x) = φ(−x).

3.2.1.  Short-distance expansion.  As before, we consider 
the formulation (ii) with the gauge and BCs of type (45), the 
PB equation  (48) and the pressure (49). Around x = 0, the 
reduced potential is searched in the form

φ(x) = a1x2 + a2x4 + · · · .� (64)

Inserting this expansion into the PB equation (48) and com-
paring the x-powers on both sides, the expansion coefficients 
are given by

a1 = 2π�B

∫ 1

0
dq qf (q),� (65)

a2 =
2
3
(π�B)

2

[∫ 1

0
dq qf (q)

][∫ 1

0
dq q2f (q)

]
,� (66)

and so on. The relation (63) implies

n(q) = f (q)
[

d +
1
12

a1qd3 +
1
80

(
a2q +

1
2

a2
1q2

)
d5 + · · ·

]
.

� (67)
In the lowest small-d order, it follows from (67) that f (q) 

and n(q) are related via

f (q) =
n(q)

d
.� (68)

The corresponding pressure reads

βP =

∫ 1

0
dq f (q) =

1
d

∫ 1

0
dq n(q).� (69)
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To leading order, both f (q) and βP are proportional to 1/d . 
This is nothing but the ideal gas law, valid under extreme con-
finement, where the entropy cost for squeezing the ions in a 
narrow slit overweights Coulombic contributions.

In the next order, we find from (67) that

f (q) =
n(q)

d
− a1

12
q n(q) d.� (70)

The coefficient a1 is expressed in terms of the function f (q) in 
equation (65). To compute it, it is sufficient to take the f − n 
relation (68) from the preceding order, i.e.

a1 = 2π�B

∫ 1

0
dq q

n(q)
d

.� (71)

Thus we get, in the d0 order

f (q) =
n(q)

d
− π�B

6
qn(q)

[∫ 1

0
dq qn(q)

]
� (72)

and

βP =
1
d

∫ 1

0
dq n(q)− π�B

6

[∫ 1

0
dq qn(q)

]2

.� (73)

In the next order, the relation (67) implies that

f (q) =
n(q)

d
− a1

12
qn(q)d +

(
a2

1

1440
q2 − a2

80
q
)

n(q)d3.

� (74)

The coefficient a1 in equation  (65) is calculated using the 
function f (q) from the preceding f − n relation (72),

a1 =
2π�B

d

∫ 1

0
dq qn(q)− 1

3
(π�B)

2

[∫ 1

0
dq qn(q)

][∫ 1

0
dq q2n(q)

]
,

� (75)
while to obtain the coefficient a2 (66) at the correct order it 
is sufficient to take the function f (q) from the f − n relation 
(68),

a2 =
2
3
(π�B)

2

d2

[∫ 1

0
dq qn(q)

][∫ 1

0
dq q2n(q)

]
.� (76)

In the d1 order, we arrive at

f (q) =
n(q)

d
− π�B

6

[∫ 1

0
dq qn(q)

]
qn(q) +

7
360

(π�B)
2d

[∫ 1

0
dq qn(q)

]

×

[∫ 1

0
dq q2n(q)

]
qn(q) +

1
360

(π�B)
2d

[∫ 1

0
dq qn(q)

]2

q2n(q)

� (77)
and

βP =
1
d

∫ 1

0
dq n(q)− π�B

6

[∫ 1

0
dq qn(q)

]2

+
1

45
(π�B)

2d

[∫ 1

0
dq qn(q)

]2 [∫ 1

0
dq q2n(q)

]
.

�

(78)

Taking into account the electroneutrality condition (62), the 
pressure can be rewritten in terms of the moments (14) and the 
dimensionless distance d̃ = 2π�Bσ〈q〉d as

P̃ ≡ βP
2π�Bσ2 =

2

d̃
− 1

3
+

2
45

d̃
〈q2〉
〈q〉2 .� (79)

Notice that the first two terms of this small- d̃  expansion do 
not depend on the number distribution n(q). For the mono-
disperse case with the distribution n(q) = 2σδ(q − 1) and the 
moments 〈q j〉 = 1 for all j = 1, 2, . . . we recover the previous 
result (53). For the uniform distribution n(q) = 4σ with the 
moments 〈q j〉 = 1/( j + 1) ( j = 1, 2, . . .), the third term on 
the rhs of (79) is modified by the factor 〈q2〉/〈q〉2 = 4/3.

The method presented in this part works not only for con-
tinuous distributions n(q), but also for discrete distributions 
like n(q) =

∑Q
α=1 nαδ(q − qα) involving counterions of the 

same sign.

3.2.2.  Large-distance expansion.  For simplicity, let us 
restrict ourselves to the interesting case having uniform den-
sity distribution (n(q) = 4σ with q ∈ [0, 1] so that 〈q〉 = 1/2), 
both because of its simplicity and because it is, loosely speak-
ing, ‘maximally’ distinct from the discrete cases studied 
previously.

We switch to the formulation (i) with the gauge and BCs of 
type (39). The PB equation (43) is rewritten as

[φ′(x)]2 = 8π�B

[∫ 1

0
dq f (q)eqφ(x) − βP

]
� (80)

and the pressure is given by (44). Other choices of distribu-
tion with qmax �= 1 can be recast into equation  (80) with �B 
and q replaced by �Bq2

max and q/qmax respectively. We keep in 
mind that both φ(x) and φ′(x) are negative or equal to 0 on the 
whole interval [0, d/2].

We assume that for large distance d the potential behaves 
like in the one-wall case (A.2) with the same exponent 
β = 1/3,

φ(x̃) ∼ −b
(

x̃
〈q〉

)1/3

.� (81)

Here, the prefactor b, which differs from its one-wall counter-
part, is as-yet undetermined and the dimensionless distance is 
x̃ = 2π�Bσ〈q〉x. As in the one-wall problem, we expect that 
for large d, the relation (63) between n(q) and f (q) is deter-
mined for small q by the asymptotic form of φ(x). Inserting 
(81) into (63) results in

f (q)
2π�Bσ2 =

4〈q〉
d̃

h(u), u = bq

(
d̃

2〈q〉

)1/3

,� (82)

where

h(u) =
u3/3

2 − e−u(2 + 2u + u2)
∼

u→0
1 +

3
4

u +
21
80

u2 + · · · .

� (83)
On the other hand, when d̃  (and thus u) is large, we get
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h(u) ∼
u→∞

u3/6 and
f (q)

2π�Bσ2 ∼
u→∞

b3q3/3.� (84)

Note that for large but finite d̃ , the value of

f (0)
2π�Bσ2 =

4〈q〉
d̃

=
2

d̃
� (85)

does not vanish. This is at variance with the one-wall case 
formulated in an unconstrained half-space, where f (q) ∝ q3 
for small q (we are indeed addressing the situation where n(q) 
goes to a constant for q → 0, so that γ = 0 and α = 3). The 
pressure is given by

P̃ ≡ βP
2π�Bσ2 =

∫ 1

0
dq

f (q)
2π�Bσ2 exp


−bq

(
d̃

2〈q〉

)1/3



∼
d̃→∞

2
b

(
2〈q〉

d̃

)4/3 ∫ ∞

0
du e−uh(u).

�

(86)

At large distances, d appears under the combination 
d̃/〈q〉 = 2π�Bσd , which is independent of the valence distri-
bution, and in particular independent of 〈q〉. This simply stems 
from the fact at large-d, screening is mediated by those ions 
of smallest valence, irrespective of the details of the complete 
distribution. We have already met that statement above. What 
makes the present situation of interest is that these ions have 
a vanishing valence. Should this not be the case, one would 
recover the monodisperse phenomenology, with as asymptotic 
decay of pressure in 1/d2.

To obtain the prefactor b, equation  (80) tells us that for 
large d̃  we have

∫ −b
(

d̃
2〈q〉

)1/3

0

dφ√∫ 1
0 dq f (q)

2π�Bσ2 eqφ − βP
2π�Bσ2

= − d̃
〈q〉

.� (87)

With the aid of the substitution

φ = −b

(
d̃

2〈q〉

)1/3

ϕ� (88)

the powers of d̃  correctly cancel on both sides of this equality, 
confirming the adequacy of the assumption (81), and we arrive 
at the equation

∫ 1

0

dϕ∫∞
0 du (e−uϕ − e−u)h(u)

=

(
2
b

)3/2

.� (89)

It implies that b = 3.186 23. Considering this value in (86) 
leads to the large-distance asymptotic

P̃ ≡ βP
2π�Bσ2 ∼

d̃→∞

1.766

(d̃ )4/3
.� (90)

The corresponding exponent, 4/3, is significantly smaller than 
that holding in the monodisperse case (where P ∝ d−2) as yet 
another signature of less efficient screening, with therefore an 
enhanced inter-plate repulsion at large distances.

3.3.  Comparison to numerical results

We now test our analytical predictions. Once the polydisper-
sity function n(q) has been chosen, we a) solve iteratively the 
PB equation and b) perform Monte Carlo simulations (MC) 

Figure 3.  Flat polydispersity situation (γ = 0, α = 3), meaning that n(q) is uniform in the interval [0, 1], for the two-plates situation. 
(a) Plot of the normalisation function f (q), at different inter-plate distances. The circles are the estimates of f (q) from the MC simulations. 
The solid lines show numerical results from the poly-disperse PB treatment and finally, the dot-dashed lines are for the analytic results 
using equation (82). This is complemented by the dashed black line indicating the analytic asymptotic equation (84). (b) Equation of state. 
The black solid line is for the mono-disperse PB, black circles show the numerical results for the poly-disperse PB and the black dashed 
line is for the analytic prediction equation (90).
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at a small enough Coulombic coupling (Ξ = 2π〈q〉3�2
Bσ < 1) 

[24–25]9, which should enforce the validity of the mean-field 
PB approach. For a realistic system of polyvalent ions, this 
constraint can be met if the surface charge density or/and 
Bjerrum length is sufficiently small, so that each species-
defined coupling parameter, by using that species valency 
rather the average one when defining the coupling param
eters, is smaller than one. Both treatments are summarised in 
appendix B. They are very different, one consisting in solving 
an (implicit) differential equation, and the other one being 
particle based, with an exact treatment of Coulomb forces 
between each pair of charged bodies (wall–wall, ion-wall and 
ion–ion).

All results presented below are for the two-plates case. We 
start with the flat polydisperse distribution where n(q) is a 
constant (thus equal to 4σ). Figure 3 shows f (q) and the pres
sure, predicted to behave at large d as d−4/3. It can be seen 
that both PB resolutions and MC methods coincide, and cor-
roborate the analytical predictions. At any finite d, the small q 
limit of f is finite, as given by equation (82).

It can be seen that upon increasing d, f evolves towards 
the single plate behaviour f ∝ q3. It is also interesting to note 
that whereas the mono- and polydisperse systems exhibit dis-
tinct pressure regimes at large d, they share very close pres
sure at smaller distances. This ‘coincidence’ is made possible 
by the relevant choice of measuring distances in unit of the 
Gouy length (2π�Bσ〈q〉)−1 in both cases, but is otherwise all 
the less trivial as it also holds beyond mean-field, at arbitrary 
Coulombic couplings [36]. At large distances, the asymptotic 
prediction in d−4/3 for the pressure is well obeyed.

4.  Discussion

In the present section, we first summarise our main findings 
and present a more heuristic derivation. This allows us to 
generalise some of the two-plates results, which will then be 
tested against both Poisson–Boltzmann numerical solutions 
and Monte Carlo simulations. We will also extend the anal-
ysis to a broader class of polydisperse distributions. Finally, 
we address a central question, establishing the connection 
between our continuous mixture results, and the properties 
that characterise discrete mixtures. Indeed, in any physically 
relevant system, n(q) is discrete, with the result that the min-
imum charge cannot vanish. Yet, physics is governed, at large 
distances, by the small-q features of n(q), and more precisely, 
the new power-law regimes reported in previous sections are 
ruled by the vicinity of q = 0. This raises a legitimate con-
cern, and we explain in which sense the continuous limit is 
relevant to the discrete case.

4.1.  One-plate: summary of continuous distribution  
phenomenology

Our treatment elaborates on the one-plate situation, 
screened by counterions only. Some emphasis was put on 

the long-range behaviour, that is governed, expectedly, by 
the population of counterions having the smallest valence 
(qmin). When qmin > 0, the system ultimately behaves like a 
monodisperse one, having counterions of valence qmin. The 
one-plate density thus behaves at large distances x like x−2  
and likewise, the two-plate pressure scales with distance d 
like d−2. Both functions are furthermore independent of the 
plate’s bare charge σe.

The situation changes when polydispersity is consid-
ered. We have introduced an important characteristics of 
polydispersity, through the exponent γ specifying the low-
q behaviour of the valence distribution n(q): n(q) ∝ σqγ  
for small q, where the surface charge density σ is kept for 
dimensional reasons. We have γ > −1 to ensure normal-
isability. Decreasing γ leads to an increase in the popula-
tion of small q counterions. These are less sensitive to the 
electric field of the plate, that they consequently screen 
less. Thus, the resulting one-plate electrostatic potential 
φ becomes longer range than in the monodisperse case, 
and behaves (in absolute value) like x1/(γ+3). Formally, 
the monodisperse case is recovered for γ → ∞ (where 
the small q regime is completely depleted), for which our 
formula yields φ ∝ x0 , hinting at a logarithmic depend
ence. For a given choice of index γ, we have shown that the 
counterionic number density n(x) behaves (again at large x) 
like x−2(γ+2)/(γ+3), while the charge density displays a dif-
ferent scaling: ρ(x) ∝ x−(2γ+5)/(γ+3). Again, when γ → ∞, 
monodisperse phenomenology is recovered, with common 
asymptotic dependences for n and ρ in x−2 . The fact that 
the power-law exponent is γ dependent immediately implies 
that the saturation feature discussed in section  2 is lost: 
when increasing σ, both n(x) and |ρ(x)| increase without 
bound: n(x) ∝ σ2/(γ+3) and |ρ(x)| ∝ σ1/(γ+3).

4.2.  Heuristic derivation of two plates scaling laws,  
and comparison to numerical results

The above one-plate considerations allow to recover some of 
our two-plates results, and to generalise them beyond the case 
γ = 0 that was worked out in detail in section 3. We again 
focus on the large-distance asymptotic, where in the vicinity 
of a given plate, the electrostatic potential is to a good approx
imation provided by its one-plate limit and thus behaves like 
x1/(γ+3). For finite γ, the key to the large-d physics is that 
there is always a population of counterions that is too weakly 
charged to ‘feel’ the electric potential. They have valence 
q smaller than some d-dependent threshold q∗, that we can 
simply estimate by the following argument: q∗∆φ = 1, where 
∆φ is the potential difference between the plate-contact, 
and the mid-plate point. Thus, we get the crossover valence 
q∗ ∝ d−1/(γ+3). A relevant quantity is the total density of 

the corresponding essentially ‘free’ counterions, nf given by ∫ q∗

0 n(q)dq ∝ (q∗)1+γ ∝ d−(γ+1)/(γ+3). These ions are the 

main contributors to the force/pressure between the two plates; 
having a surface density nf and a flat (x-independent) profile, 
their volume density is simply given by nf /d, a quantity that 
gives the inter-plate pressure. We get here

9 See footnote 6.
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P ∝
nf

d
∝ d−2(γ+2)/(γ+3).� (91)

In the flat polydisperse γ = 0 case, we recover the prediction 
P ∝ d−4/3 derived in section 3, and confirmed by PB and MC 
simulations. Interestingly, we also retrieve the same func-
tional dependence for the inter-plate pressure as the one-wall 
number density (same exponent 2(γ + 2)/(γ + 3), see equa-
tion (29)). As a consequence, we can, along the same lines as 
in the monodisperse case, define a non-linear dimensionless 

ratio Rγ, by comparing the true PB pressure at large d to 
the superposition of the two one-plate densities at d/210.  
We have shown above that R∞ = π2/8 (monodisperse 
situation). Computing Rγ requires the knowledge of all 
prefactors, which the present scaling analysis does not pro-
vide. Yet, the explicit results of section  3 for γ = 0 yield 
R0 � (3/2)2/3 1.766/2 � 1.157, slightly smaller than R∞, 
but again larger than unity. Assuming that Rγ remains close to 
1 for other values, this would mean that the error incurred by 
computing the two-plate pressure at large d from the superpo-
sition of the one-plate densities, results in an underestimation, 
but not larger than 25%.

Figure 4.  Skew distribution of counterions with γ = 1, meaning that small q ions are less numerous than ions with a larger q (small −q 
depleted distribution). (a) Plot of the normalisation function f (q), at different distances. It can be seen that increasing d, f adopts its one-
plate shape in q2γ+3 = q5 (see black dashed line), except below the threshold q∗ where it shows the same behaviour as the parent n(q) (here 
linear in q) (see black dotted line). (Colored lines) as figure 3. (b) Equation of state, which clearly shows a long-range d̃−3/2-dependence, as 
predicted by equation (91). The symbols and curves have the same meaning as in figure 3.

10 In the present symmetric two-wall setup, the PB pressure is simply given 
by the mid-distance counterion density (up to a factor kT).

Figure 5.  Poisson–Boltzmann equation of state for a uniform 
n(q) with q in the range [0.05, 1]. Black circles show the numerical 
results for the poly-disperse PB. The two continuous curves show 
the PB monodisperse predictions, with two distinct Gouy lengths: 
(black solid line) for µ−1 = 2π�Bσ〈q〉, which is relevant at small 
distances, and (black dotted line) for µ−1 = 2π�Bσqmin. These two 
curves have an asymptotic 1/d2 decay. An intermediate asymptotic 
with exponent 4/3 sets in (dashed line).

Figure 6.  Same as figure 5, for a uniform n(q) with q in the range 
[0.5, 1].
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In figure 4, we show numerical PB results for γ = 1, with 
thus less small q counterions than the γ = 0 distribution dis-
cussed earlier. As a consequence, the pressure exhibits a faster 
decay with d, predicted to be d−3/2, see equation (91). This 
is fully confirmed in figure 4. In addition, we have tested a 
number of expectations, shaped on our previous analysis. First 
of all, all distribution n(q) having non-vanishing n(0) should 
display the same large-distance pressure, that of the γ = 0 
class. This was checked for the choice n(q) ∝ (qmax − q) 
(results not shown). Second, all distributions depleted near 
the origin (n(q) = 0 for some range q < qmin) should asymp-
totically behave like a monodisperse system, with counterion 
valence qmin. Yet, if qmin is not too large, the system should 
require large distances d before ‘realising’ that qmin is actually 

non vanishing. We should thus expect a cross-over between 
the finite γ behaviour in some intermediate d-range, and the 
γ = ∞ ultimate decay. This is what figure 5 clearly illustrates. 
On the other hand, if qmin and the maximum valence qmax are 
not separated enough, the behaviour is of course close to its 
monodisperse counterpart. Figure 6 shows that it is already 
the case when qmax/qmin = 2. Finally, we show in figure  7 
that for quite a large class of polydispersities, although the 
large-d asymptotic may be n(q)-dependent, the behaviour of 
pressure at smaller distances is made rather universal, using 
properly scaled quantities [36]. The data collapse reported is 
quite striking at short distances. For large d, the collapse is 
necessarily broken, since the different distributions studied 
correspond to distinct types, with various γ exponents. The 

Figure 7.  Equation of state versus distance (where d̃  is defined as 2π�Bσ〈q〉 d )), for various valence distributions: mono-disperse, uniform, 
skewed n(q) ∼ q (up to an upper cutoff), skewed n(q) ∼ (qmax − q) (up to an upper cutoff), and uniform in [qmin, qmax] with qmin �= 0. The 
MC simulations are run at a coupling constant Ξ = 0.175.

Figure 8.  Monte Carlo reduced pressure versus normalized separation, for strongly coupled systems (Ξ = 1750 and 175 000) for which 
the Poisson–Boltzmann theory analysed in this paper would completely fail. Significantly different distributions n(q) are considered: 
monodisperse, bidisperse with qmin/qmax = 1/2, qmin/qmax = 1/3, continuous (qmin  =  0, γ = 0), and skewed (as in figure 7).
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corresponding decays range from d−4/3 to d−2, including 
d−3/2. It is at this point relevant to stress that this collapse holds 
beyond the mean-field regime which has been under scrutiny 
here, as revealed in figure 8 by Monte Carlo simulations for 
two strong coupling cases at various counterion mixtures. The 
negative pressures seen at these high coupling parameters are 
a consequence of the now well-known ion–ion correlations, 
which is omitted in our mean-field treatment. Surprisingly, 
these correlations do not break the collapse. These ion–ion 
correlations, that increase with the coupling parameter, can 
turn repulsive electrostatic interactions between two equally 
charged surfaces into attractive ones. Even though the chosen 
coupling parameters are above realistic values for an aqueous 
electrolyte system (to be sure that the system is indeed domi-
nated by ion–ion correlation effects), we emphasize that the 
same data-collapse holds for more experimentally relevant 
coupling parameters [36]. In addition, we address the possi-
bility of a broader universality, including the tail of the equa-
tion of state, in the following subsection.

4.3.  From continuous to discrete distribution of charges

So far, we only considered continuous distributions of charges 
n(q), and we established the connection between the behav-
iour of n(q) for q → 0, and the long-range pressure or ionic 
profiles. This may seem rather academic since any real phys-
ical system will exhibit some discreteness in n(q). Our treat-
ment thus raises a two-pronged question: first, how ‘close to 

continuous’ should a discrete n(q) be to exhibit the predicted 
behaviour? Second, since the tail of the density profile (one-
plate case), or the long-distance equation of state (two plates) 
is necessarily ruled by the smallest charges in the system, 
how can the continuous power-laws derived for qmin = 0 be 
observed in a discrete system having necessarily qmin > 0? 
We note here that if a species with a strictly vanishing charge 
is present in the mixture, it is simply discarded by the ana-
lytical treatment worked out here.

Figure 9 shows a rather striking result, establishing the 
proximity between the discrete and continuous cases. The 
pressure arising in the Poisson–Boltzmann framework is com-
puted for a number of mixtures, having N  different species, 
with equispaced charges (like with a mixture of ions having 
integer charge values), and such that the number density of 
a constituent scales like q itself (skewed distribution). This 
means that the index γ introduced above is unity, and we 
expect a large distance pressure in d−3/2 for the continuous 
mixture with qmin = 0 (see equation (91)). Since we show P 
normalised by the monodisperse reference case, the contin-
uous power-law for P/Pmono should be in d1/2 (dotted line), 
in good agreement with the disc symbols on the figure. On 
the other hand, all discrete mixtures should asymptotically 
behave, scaling-wise, like their monodisperse counterpart, at 
distances when only qmin does remain in the solution. This 
means that P/Pmono in figure 9 is expected to flatten at large 
d, and converge towards a simple value: from our choice of 
units, 〈q〉2/q2

min (e.g. 9/4 for N = 2), in perfect agreement 
with the numerical data. Yet, the most interesting feature is 
that for N = 5 already, the ‘continuous’ power-law is clearly 
visible, not asymptotically of course, but transiently (and for 
about a decade in distance). Figure 9 thereby shows how the 

Figure 9.  Normalized pressure P̃/P̃mono as obtained from the 
poly-disperse Poisson–Boltzmann, where P̃mono is associated to a 
monodisperse system, with thus long-distance decay in d̃−2. Five 
discrete n(q) are considered with different number of species N . 
The 1–2 system has charges 1/2 and 1 (N = 2, qmin = 1/2), the 
1–3 system features charges 1/3, 2/3 and 1 (N = 3, qmin = 1/3) 
etc, and the 1–5 system is with charges 1/5, 2/5,... 1. In all cases, the 
distribution is skewed, so that n(q) ∝ q. As more and more species 
are added in the mixture, a transient asymptotic sets in (dotted 
line), which exactly matches the continuous limiting distribution 
(obtained for N → ∞, see the bullets). The value of the horizontal 
plateaus is given in the text.

Figure 10.  Illustration of quasi-universality for different 
distributions exhibiting the same value of qmin. Five discrete 
distributions are considered, with equidistributed charges starting 
at qmin = 0.05 and such that 〈q〉 = 1/2, and N = 2, 3, 5, 10 and 
20 charges. The pressure is compared to those of the corresponding 
continuous model N → ∞, and of the two limiting monodisperse 
regimes: one with n(q) = δ(q − 1/2) (lower bound shown by 
the continuous line), and the other for n(q) = δ(q − 0.05) (upper 
bound, dotted line).
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continuous limit results are recovered upon increasing N , and 
that an arguably small value of N  is sufficient to exhibit some 
of the hallmarks of continuous systems.

Figure 10 illustrates a similar effect, with the distinction 
that all distributions shown share the same value of qmin, even 
the continuous case. Here, we chose a ‘flat’ situation where 
n(q) is the same for all q values. The first message conveyed is 
that all curves are reasonably close (and all the closer as we are 
displaying data on a log scale), so that discreteness effects are 
not paramount. While the N = 20 charges case is arguably 
close to the continuous limit, considering N = 2 − 3 peaks 
is already sufficient to observe the main trend. The second 
message pertains to the transient asymptotic. In figure 10, the 
dashed line with slope −4/3 is the prediction derived in this 
work (corresponding to γ = 0 and qmin = 0). While all distri-
butions yield a large d tail in d−2 since qmin �= 0, the ‘contin-
uous/qmin = 0’ power-law in d−4/3 does hold approximately 
in a finite distance range, over 4 decades. The salient features 
of figures 9 and 10 explain why the analytical derivations pro-
posed here have relevance for discrete systems as well.
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Appendix A.  One-plate geometry: long-range 
features

In this appendix, we establish the connection between the 
small q-behaviour of function f (q) as encoded in equa-
tion (26), with the long-distance regime of densities (charge, 
and number densities, that do differ in general). Injecting (26) 
into (24), we get

[φ′(x̃)]2 =
4

〈q〉2 aΓ(α+ 1)
1

[−φ(x̃)]α+1 , x̃ → ∞,� (A.1)

where Γ denotes the Gamma function. The solution of this 
asymptotic equation is searched in the form

φ(x̃) ∼
x̃→∞

−b
(

x̃
〈q〉

)β

.� (A.2)

Inserting this ansatz into equation (A.1), the exponent β and 
the prefactor b are determined self-consistently as

β =
2

α+ 3
, bα+3 = aΓ(α+ 1)(α+ 3)2.� (A.3)

The large-distance behaviour of the electric potential reads

φ(x̃) ∼
x̃→∞

−
[
aΓ(α+ 1)(α+ 3)2] 1

α+3 (x̃/〈q〉)
2

α+3 .� (A.4)

The logarithmic dependence found in the monodisperse case 
for φ changes to an asymptotic power-law behaviour with 
non-universal index and prefactor, depending on the model’s 
parameters a and α. This is the consequence of a less efficient 
screening with counterions having a small q. As we shall see 

below, large-β values correspond to systems with enhanced 
population with q near 0, with resulting impeded screening. 
The asymptotic number density profile of particles reads as

n(x̃) =
∫ 1

0
dq f (q)eqφ(x̃) ∼

x̃→∞
2π�Bσ

2a
Γ(α+ 1)
[−φ(x̃)]α+1

= 2π�Bσ
2 [aΓ(α+ 1)]

2
α+3

(α+ 3)2(α+1
α+3 )

1

(x̃/〈q〉)2(α+1
α+3 )

.
�

(A.5)

Similarly, the asymptotic charge density profile reads as

ρ(x̃)
(−e)

=

∫ 1

0
dq qf (q)eqφ(x̃) ∼

x̃→∞
2π�Bσ

2a
Γ(α+ 2)
[−φ(x̃)]α+2

= 2π�Bσ
2 [aΓ(α+ 1)]

1
α+3 (α+ 1)

(α+ 3)2(α+2
α+3 )

1

(x̃/〈q〉)2(α+2
α+3 )

.
�

(A.6)

It is easy to check that these asymptotic behaviours fulfil the 
exact relation ρ(x̃)/(−e) = n′(x̃)/φ′(x̃), see equation  (17). 
We conclude that the non-universal large-x behaviour of the 
reduced potential, the number and charge density profiles are 
determined by the small-q behaviour of the normalisation 
function f (q). This was expected, since those counterions 
with the smallest q are the least sensitive to the created electric 
field, and thus the most delocalised.

Let us rewrite the n − f  relation (18) in terms of the dimen-
sionless x̃,

n(q)
σ

=
f (q)

2π�Bσ2

∫ ∞

0

dx̃
〈q〉

eqφ(x̃).� (A.7)

In the limit q → 0, we can use the small-q asymptotic (26) in 
equation (A.7) to write down

n(q)
σ

∼
q→0

aqα
∫ ∞

0

dx̃
〈q〉

eqφ(x̃).� (A.8)

The integral on the rhs of this equation diverges as q → 0 due 
to the integration of unity over an infinite support. We do not 
know the functional form of the reduced potential φ at small 
x̃, but we do know its asymptotic form (A.4) at large x̃. Since 
the integral diverges, any integration on a finite interval does 
not affect the leading divergent term. Based on this fact we 
make an assumption which will be later verified numerically 
on a specific model: to study the small-q divergence of the 
integral in (A.8) it is sufficient to insert there the asymptotic 
large- x̃ formula for the potential (A.4). If this assumption is 
correct, we obtain
∫ ∞

0

dx̃
〈q〉

eqφ(x̃) ∼
q→0

1
2

1√
aΓ(α+ 1)

Γ

(
α+ 3

2

)
q−

α+3
2 .� (A.9)

Consequently,

n(q)
σ

∼
q→0

1
2

√
a

Γ(α+ 1)
Γ

(
α+ 3

2

)
q

α−3
2 .� (A.10)

We see that in the q → 0 limit, the density distribution goes 
to a nonzero constant when α = 3, it vanishes when α > 3 
and diverges for α < 3. Since the surface density of particles 
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must be finite, the density distribution should be integrable for 
small q and we have the restriction α > 1.

The crucial relation (A.10) relates the small-q behaviour of 
the density function of particles n(q), which is given from the 
outset in the direct formulation of the problem, to the small-
q behaviour of the normalisation function f (q) (26). It turns 
convenient to introduce a parameter γ through

α = 2γ + 3, a = c2 22γ+5
√
π

Γ
(
γ + 5

2

)
(γ + 2)Γ(γ + 3)

.� (A.11)

Indeed, γ characterises the behaviour of n(q) at small q, which 
is physically more relevant that the behaviour of f (q), see the 
main text.

Appendix B.  Computational aspects

B.1.  Poisson–Boltzmann resolution

The polydisperse Poisson–Boltzmann equation, equation (43), 
was solved numerically through a real-valued variable-coef-
ficient ordinary differential equation  (ODE) solver with an 
initial guess of fg(q)-distribution aimed to target a particular 
nt(q)-distribution. For each such fg(q) guess, a new corre
sponding ng(q)-distribution is found through equation (63). A 
new guess for the correct ft(q)-distribution is then generated 
by a mixing of the new distribution fg,new(q) with the old one, 
fg,old(q). The new fg,new(q)-distribution is found from a re-
distribution of the old fg,old(q) through

fg,new(q) = fg,old(q)
nt(q)
ng(q)

.� (B.1)

The mixing of fg,old(q) and fg,new(q) is then done with a small 
fraction of the new guess compared to the old. However, such 
a mixing of f (q) runs into the risk of creating unrealistic nega-
tive values of pressures and imaginary electrostatic potentials 
(see e.g. equation  (44)). To avoid such negative pressures a 
renormalisation of the total distribution f (q) is performed 
using equation (44) such that the pressure at contact matches 
the pressure calculated from the mid-plane. Such a scheme 
usually reaches a convergence just after a few iterations. 
Consistency was then checked by calculating the pressure 
through the two pressure routes, at contact and across the mid-
plane according to equation (44).
Alternatively one can solve the second order ODE, instead 
of the redefined first order ODE, for the poly-disperse case 
according to equation (20), but at the expense of time to conv
ergence. Both routes yield, however, the same results. A typ-
ical calculation was based on a discretisation of q, n(q), and 
f (q) into 1000 bins as well as discretisation of the x axis (usu-
ally by some fractions of �B). We verified that our solutions 
did not depend on these discretizations/binnings by increasing 
or decreasing the number of bins/steps.

B.2.  Monte Carlo simulations

We have performed Monte-Carlo simulations in a quasi-2D 
geometry. Long-ranged electrostatic interactions are handled 

with Ewald summation techniques corrected for quasi-2D-di-
mensionality by introducing a vacuum slab in the z-direction 
perpendicular to the surfaces [37, 38]. We verified that our 
vacuum slab is sufficiently wide, so as not to influence the 
results. All simulations consisted of 512 point charges while 
the surfaces are modelled as structureless infinite plates with 
uniform surface charge densities equal to σe. Simulations 
were performed both for discrete mixtures of charges as 
well as for quasi-continuous11 distributions of charges, 
q ∈ [qmin, qmax]. Standard displacement trials were performed 
with an acceptance ratio of around 30%. Pressures were esti-
mated using the contact densities and the contact theorem 
as well as across the mid-plane, and were collected over 105 
Monte Carlo cycles. These two approaches yielded the same 
pressures within statistical noise/errors. Estimates of f (q) for 
each mixture was done by measuring the contact values at 
the wall for each q-values (via a discretisation). To be able to 
compare with our Poisson–Boltzmann calculations, we have 
performed the simulations at sufficiently low coupling param
eter (Ξ = 0.175). To show quasi-universality also beyond 
mean-field we have performed simulations at higher coupling 
parameters (Ξ = 1750 and Ξ = 175 000).
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