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Abstract. Among random sampling methods, Markov chain Monte Carlo
(MC) algorithms are foremost. Using a combination of analytical and numer-
ical approaches, we study their convergence properties toward the steady state,
within a random walk Metropolis scheme. Analyzing the relaxation properties of
some model algorithms sufficiently simple to enable analytic progress, we show
that the deviations from the target steady-state distribution can feature a localiz-
ation transition as a function of the characteristic length of the attempted jumps
defining the random walk. While the iteration of the MC algorithm converges
to equilibrium for all choices of jump parameters, the localization transition
changes drastically the asymptotic shape of the difference between the probab-
ility distribution reached after a finite number of steps of the algorithm and the
target equilibrium distribution. We argue that the relaxation before and after
the localization transition is respectively limited by diffusion and rejection rates.
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1. Introduction

Although Buffon’s needle problem1 may be considered as the earliest documented use
of Monte Carlo (MC) sampling (18th century), the method was developed at the end
of the Second World War and dates from the early days of computer use [1, 2]. With
the increase in computational power, it has become a pervasive and versatile technique
in basic sciences and engineering. It uses random sampling for solving both determ-
inistic and stochastic problems, as found in physics, biology, chemistry, or artificial
intelligence [3–8]. MC techniques also allow to assess risk in quantitative analysis and
decision making [9, 10], and their methodological developments provide tools for eco-
nomy, epidemiology or archaeology [11]. It is then crucial to understand the type of
errors which can be introduced as a consequence of the incomplete convergence of such
algorithms.

Our interest goes to the relaxation rate of Markov chain MC techniques [12, 13],
that create correlated random samples from a target distribution. The samples are
obtained by a random walk, with appropriate transition probabilities. The walker’s
density evolves at long times toward the target distribution (ergodic theorem in the
context of Markov chains), and quantities of interest follow from the law of large num-
bers and other methods of statistical inference [9–17]. The MC method and its modern
developments [18–28] have now been adopted in many topics in and outside physics. A
key issue deals with the speed of convergence of the algorithm: the larger the conver-
gence time, the larger the error bars for the computed quantities. For most practical
applications, if the amplitude a of the random jumps is small, phase space is not suf-
ficiently explored, even though most attempted jumps are accepted. Conversely, large
jumps will lead to a large rejection probability, and to an equally ineffective method,
see section 2.1. In between, one expects an optimal jump size aopt at which the conver-
gence rate is maximal. There have been theoretical attempts in deriving aopt for specific
models [29]. In practice, without a precise knowledge of aopt, a widely accepted rule
of thumb is to choose a such that the acceptance probability is close to 50% for the
attempted moves [14, 15, 30, 31]. In this paper, we show the existence of a new critical
value a∗, where an unexpected localization transition occurs such that the relaxation
mechanism is drastically different for a < a∗ and a > a∗. This deeply modifies the nature
and amplitude of the error. The existence of the critical value a∗ is our main finding,
and the novelty of this work. Besides, although there is no reason to expect any relation
between aopt and a

∗, we report, rather interestingly, a number of examples, where they
coincide precisely. We emphasize that while a number of results have been proven for
relaxation rates, those mainly hold close to the diffusive limit [32–34]; there, powerful

1 When a needle of length ℓ is randomly tossed over a floor with parallel equidistant strips of size 2ℓ, the probability that the needle
crosses a line between two strips is 1/π.
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mathematical techniques based on micro-local analysis have been developed [35–37],
leading to accurate results on the relaxation rates. In the present work, we explore a
regime well beyond the diffusive limit, which has so far been investigated only through
numerical simulations [38]. As an alternative approach, we focus on the study of the
relaxation eigenmodes, which allows us to obtain accurate analytic results for relaxation
rates, valid all the way up to the localization transition, thus far from the small jump
diffusive region. We also obtain a scaling function description of the relaxation in the
localizing phase.

The paper is organized as follows. In section 2, the formalism is laid, with the master
equation approach. Section 3 contains our main findings, with emphasis on relaxation
to equilibrium, and the localization transition for the leading relaxation eigenvectors of
this master equation. In section 4, we show, how to construct accurate analytic approx-
imations to the relaxation rate before the localization onset, using the Fokker–Planck
limit eigenvectors of the master equation. Our conclusion is presented in section 5. For
the ease of reading, more technical developments are relegated to six appendices. We
provide a derivation of the master equation and introduce the analytical tools that
are used for its investigation (see section 2.1 and appendix A). In appendix B, we
show analytically that in the localized phase, relaxation eigenvectors are replaced by a
self-similar relaxation ansatz. In section 4.2, we show how the relaxation rate can be
computed (semi)analytically using the Fokker–Planck eigenvector basis. In this paper,
we have chosen to focus mainly on specific one-dimensional (1D) cases for which exact
(or highly accurate approximate) analytical treatment was possible. In appendix D, we
present additional numerical evidence for a localization transition with more general 1D
and higher dimensional examples leaving the analytic treatment of higher dimensional
cases for future works.

2. Master equation for Metropolis MC sampling and relaxation to equilibrium

We start with by reminding general results on the master equation describing relaxation
of the Metropolis MC algorithm. The spectral properties of Markov-chains have been
extensively studied in the mathematical literature [39, 40]. Here we instead focus on the
nature of the eigenvectors which have received much less attention. This introduction
will allow us to fix notations and to contrast the relaxation of a discrete Markov-chain
with the relaxation properties that we find for the continuous case.

The Markov chain MC method amounts to considering a random walker with pos-
ition x (here on the line), in the presence of an external confining potential U (x ). We
adopt the framework of the Metropolis algorithm [13–15, 41, 42]. The position of the
particle evolves in discrete time steps n following the rule

xn =


xn−1+ ηn with prob. p=min

(
1,e−β∆U

)
xn−1 with prob. 1− p,

(1)

where ∆U = U(xn−1+ ηn)−U(xn−1) and β = 1/(kBT ) denotes inverse temperature. The
random jumps ηn at different times are independent, drawn from a continuous and
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symmetric probability distribution w(η). In other words, the particle attempts at time
n a displacement ηn from its current location xn−1, which is definitely accepted (with
probability 1) if it leads to an energy decrease, but is accepted with a lesser probability
e−β∆U if the move leads to an energy increase ∆U > 0. A key quantity in what follows is
the amplitude a of the attempted jumps, that we introduce as the characteristic length
associated with w(η), taken to obey the scaling form

w (η) =
1

a
f (η/a) . (2)

Normalization demands that
´
f =
´
w = 1.

The dynamics encoded in equation (1) can be written in terms of a master equation
for Pn(x), the probability density of the walker at time n,

Pn (x) =

ˆ ∞

−∞
Fβ (x,y) Pn−1 (y) dy. (3)

The explicit form of the temperature-dependent kernel F β is given below in equation (6).
Generically, Pn(x) converges toward the target distribution [43, 44], given by the (equi-
librium) Gibbs–Boltzmann expression P∞(x)∝ exp(−βU(x)). We assume that U is con-
fining enough so that exp(−βU(x)) is integrable, and for simplicity that U(x) = U(−x).
Our main interest is to find how quickly the dynamics converges toward the target dens-
ity, and with which error δPn(x) = Pn(x)−P∞(x). The convergence rate can be defined
from the large time limit of the deviation from equilibrium of some observable O(x):

logΛ = sup
{O(x),P0(x)}

lim
n→∞

1

n
log

∣∣∣∣ˆ O (x)δPn (x)dx

∣∣∣∣ (4)

where the maximum is taken over all possible smooth and sufficiently localized functions
O(x) and initial distributions P0(x) which allow numerical estimation. If Λ< 1 (given
that Λ⩽ 1) the probability distribution Pn(x) converges exponentially fast to the equi-
librium distribution for large n, i.e. |Pn(x)−P∞(x)| ∝ Λn ∝ e−n/τ where τ =−(logΛ)−1

denotes the convergence time (in number of MC algorithm steps unit). The conver-
gence rate − log(Λ)> 0 is the figure of merit of the algorithm; the smaller the Λ, the
larger the rate, the smaller the convergence time and the more efficient the sampling is.
When there are no selection rules we expect the limit in equation (4) to be independent
on both O(x) and P0(x) providing an approach to compute Λ without discretization
of the master equation. In this article we discuss in detail the case of a symmetrical
(even) 1D potential U (x ), in this case symmetric and anti-symmetric observables O(x)
will in general converge to different values and Λ will be the maximum over symmet-
ric/antisymmetric values.

The relaxation properties of Markov-chains are well established mathematically, and
we will now discuss the connection between this definition of the convergence rate and
the relaxation quantities that are more frequently used in the mathematical literat-
ure. Two main quantities are introduced to characterize relaxation in this context [39].
The first quantity, the mixing time, describes the number of steps required for the
probability distribution Pn(x) to deviate less than ϵ> 0 from P∞(x) where the total
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variation distance is used as the distance metric. This quantity explicitly depends on
the target precision ϵ and our formal definition for Λ can be viewed as the leading
asymptotic behavior of this quantity for ϵ→ 0. The second quantity, the relaxation
time, is defined from the eigenvalue spectrum of the master equation. Taking λr as the
eigenvalue with largest modulus < 1, the relaxation time is then defined as the inverse
spectral gap 1/(1− |λr|). The Levin–Peres–Wilmer theorem, demonstrated for discrete
Markov-chains in [39], chapter 12, establishes a connection between the two quantities:
the relaxation time provides the leading asymptotic behavior for the mixing time in
the ϵ→ 0 limit. To our knowledge, there is no generalization of this theorem to infinite
Markov-chains. The spectral theorem, implies that 1−Λ will coincide with the spec-
tral gap of the master equation if both the observables functions O(x) and the initial
probability distributions P0(x) are all in L2(P∞). This is not exactly our case as we
consider, for example, the case of δ function like initial distributions P0(x) localized
at a single point and those are not in L2(P∞). Our numerical simulations suggest that
the relaxation rates obtained from different numerical methods are all consistent (dir-
ect MC simulations, master equation diagonalization or forward iteration of the master
equation) and thus it seems safe to think that 1−Λ coincides with the spectral gap of
the master equation (although we will see that eigendecomposition will differ from what
we know for the Schrödinger equation). We note that in all the numerical diagonaliza-
tions of the Metropolis master equation that we considered we found λr = λ1 where λ1
is the largest positive eigenvalue < 1. To conclude this discussion on the definition of the
characteristic Markov-chain relaxation times we mention that we found it preferable to
work with Λ directly instead of the inverse spectral gap, as Λ→ 1 in the limit of small
jumps sizes in the Metropolis-algorithm, while the inverse spectral gap diverges.

2.1. Why an optimal jump amplitude?

The relaxation time of the Metropolis algorithm, for a given functional form w of the
jumps (see equation (2) below), depends on the jump amplitude a. On general grounds,
this time should exhibit a non-monotonous behavior with a well-defined minimum at
some specific amplitude aopt (corresponding to a minimum convergence time τ (min-
imum Λ, i.e. a maximum rate − lnΛ = 1/τ). This is the so-called Goldilocks principle
[45]. The rationale behind this expectation goes as follows:

• In the diffusive limit where a is small, though most of the jumps are accepted, the
particle moves over a limited region of space which results in a long time for exploring
the full available space. Hence, we expect τ to diverge, i.e. Λ→ 1. We can be more
specific, assuming a confinement potential of the form U(x) = |x|α with α> 0. At
equilibrium, the walker’s density P will be concentrated within the thermal length
ℓ∝ β−1/α around the origin, and equilibrium will be reached after a characteristic
time τ such that Dτ = ℓ2, where D is the diffusion coefficient. For our discrete time
dynamics, we have D ∝ a2, so that we expect here τ ∝ β−2/αa−2, meaning Λ− 1∝ a2.

• In the opposite long jump limit with large a, most of the moves are rejected and
the particle hardly moves. As long as w(0) is non-vanishing, increasing the jump
amplitude a simply reduces the displacement probability by a factor 1/a, while
leading to the same sampling of phase space on the scale of the confinement length
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ℓ≪ a. Hence we expect the system to relax very slowly, i.e. the relaxation time τ
to diverge as τ ∝ a, so that Λ− 1∝ 1/a. This scaling law can only be altered for
w(0) = 0.

We thus expect an optimal finite jump amplitude a= aopt, for a given functional form
w, where Λ(a) is minimal and hence the convergence is the fastest.

2.2. Master equation and study of its relaxation properties

A quantity of central importance in the master equation describing the MC algorithm
is the rejection probability R(x ), or more precisely the fraction of rejected moves per
attempted jump:

R (x) =

ˆ ∞

−∞
dyw (y−x)

(
1− e−β (U(y)−U(x))

)
θ (U (y)−U (x)) , (5)

where θ(z) is the Heaviside function: θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0. Thus,
the rejection probability R(x ) from the current location x is zero if the new position
y occurs downhill. The integral kernel of the master equation is derived in the next
section 2.3, is then given by:

Fβ (x,y) = δ (x− y)R (x)+w (x− y)
[
θ (U (y)−U (x))+ e−β (U(x)−U(y)) θ (U (x)−U (y))

]
.

(6)

Averaging over the position of the particle yields the mean rejection probability Rn =´
R(x)Pn(x)dx which is monitored by default in all rejection-based algorithms. This is

the quantity that the practitioner aims at keeping close to 50%, following a time honored
rule of thumb stating that this provides efficient sampling [15, 30]. In the limit n→∞,
this mean rejection probability approaches the stationary value R∞. Rigorous studies,
in a 1D harmonically confined setting with a Gaussian jump distribution, have found
that the optimal acceptance probability 1−R∞ is close to 44%, while this quantity may
decay when increasing space dimension [29]. On intuitive grounds, one may expect a
relation between R(x ) and the convergence rate of the algorithm. Indeed, starting from
an arbitrary point x 0 at time n =0, the density at time n, given x 0, can be written

Pn (x|x0) =R (x0)
n δ (x−x0)+ pn (x|x0) (7)

where pn(x|x0) is a smooth function. Thus, an observable O that would only meas-
ure the walker’s presence in the immediate vicinity of x 0, for instance On(x0) =

limϵ→0

´ x0+ϵ
x0−ϵ Pn(x)dx, would decay as R(x0)

n. The system as a whole cannot relax faster,

and we obtain from equation (4) a lower bound for the convergence rate, corresponding
to Λ>R(x0), which holds for all choices of x 0:

Λ⩾max
x0

R (x0) . (8)

Our objective is to study Λ as a function of a, for a fixed choice of U (x ) and f (z ). We
expect Λ to be minimum at a well defined value a= aopt.
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More precisely, for a given confining potential U (x ) and type of jumps f (z ), the
convergence rate and the resulting error are encoded in the spectral properties of
the kernel Fβ(x,y) in equation (3). We have attacked this question by four comple-
mentary techniques: the derivation of exact results, numerical diagonalization, numer-
ical iteration of the master equation, and direct MC simulation of the random walk
dynamics, with proper averaging over multiple realizations to gather statistics, see
appendix A. We begin with a discretized approximation to the master equation (3),
for which Perron–Frobenius theorem shows that the equilibrium state, reached at large
n (formally n→∞), is unique [44]: it is given by P∞(x). At any time, the probability
density can furthermore be decomposed as

Pn (x) =
∑
λ

AλPλ (x) λn (9)

where the eigenvectors of F β are denoted by Pλ(x), and the eigenvalues λ can be proven
to be real [39], see also section 2.2. Indeed, detailed balance [13–15] allows to transform
the master equation into a self-adjoint problem, similarly to the mapping between the
Fokker–Planck and Schrödinger equations [46]. The precise form of the projection coef-
ficients Aλ is not essential. Ordering eigenvalues in decreasing order (λ0 > λ1 ⩾ λ2 . . .),
the eigenvalue λ0 = 1 is associated with equilibrium, with eigenvector P∞(x). For all the
cases considered here the modulus of the negative eigenvalues is < λ1, thus the asymp-
totic error δPn behaves like Pλ1(x), and decays to 0 like λn1 (also meaning that Λ = λ1).
Finding the optimal a is a min–max problem, where one should minimize Λ = λ1, i.e. the
maximum eigenvalue, leaving aside the top (equilibrium) eigenvalue λ0 = 1.

2.3. Derivation of the master equation and mapping to a self-adjoint problem

In this section we provide a detailed derivation of the master equation and of its mapping
to a self adjoint problem which is useful to construct a self adjoint discretization of the
continuum master equation. Such discretizations allow to ensure that the numerical
eigenspectrum is real which is not the case for direct discretizations of equations (3)
and (6) for which eigenvalues tend to develop a small finite imaginary part due to
numerical instabilities.

The master equation obeyed by the walker’s density is a sum of two terms, cor-
responding to whether attempted jumps are accepted or rejected. This leads to the
following recurrence equation:

Pn (x) =

ˆ ∞

−∞
dx ′Pn−1 (x

′) w (x−x ′) min
(
1,e−β (U(x)−U(x ′))

)
+

[
1−
ˆ ∞

−∞
dyw (y−x) min

(
1,e−β (U(y)−U(x))

)]
Pn−1 (x) , (10)

where w(η) is the jump distribution and U (x ) the confining potential. At a given time
step n, the first term describes the probability flux to x from all other positions x ′. The
second term is for the probability that all attempted moves made by the particle at x
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(to another arbitrary position y) are rejected. It proves convenient to replace the ‘min’
function above by the identity

min
(
1,e−β (U(x)−U(x ′))

)
= θ (U (x ′)−U (x))+ e−β (U(x)−U(x ′)) θ (U (x)−U (x ′)) (11)

where θ(z) is the Heaviside theta function. This identity allows to find the kernel of the
master equation (3) in the form quoted in equation (6) from the previous section.

A first check for the validity of the master equation is that it should conserve the
total probability

´∞
−∞Pn(x)dx= 1. From (3), this means that kernel Fβ(x,x

′) must
satisfy the condition

ˆ ∞

−∞
Fβ (x,x

′) dx= 1 for all x ′. (12)

Indeed, substituting Fβ(x,x
′) from (6) into the integral (12), it is easy to check that it

satisfies the probability conservation for all x ′.
Next, we verify explicitly that the master equation (3), with Fβ(x,x

′) given in (6),
admits, as n→∞, a stationary solution that is of the Gibbs–Boltzmann equilibrium
form

P∞ (x) =
1

Z
e−βU(x), (13)

where the partition function Z is a normalization constant. Assuming a stationary
solution exists as n→∞ in (3), it must satisfy the integral equation

P∞ (x) =

ˆ ∞

−∞
Fβ (x,x

′) P∞ (x ′) dx ′. (14)

To verify this equality, we substitute P∞(x ′) = (1/Z)e−βU(x ′) on the right hand side (rhs)
of (14) and use the explicit form of Fβ(x,x

′) from (6). By writing down each term on the
rhs explicitly, it is straightforward to check that indeed for arbitrary symmetric jump
distributions such that w(x−x ′) = w(x ′−x), the rhs gives (after a few cancellations)
(1/Z)e−βU(x) for arbitrary confining potential U (x ). This is of course expected since
the Metropolis rule indeed does satisfy detailed balance with respect to the Gibbs–
Boltzmann stationary state.

Solving the master equation (3) analytically for arbitrary potential is out of reach.
A first difficulty one encounters is that the kernel Fβ(x,x

′) in (6) is non-symmetric
under the exchange of x and x ′: the integral operator Fβ(x,x

′) is not self-adjoint. This
problem can be circumvented by applying the following ‘symmetrizing’ trick [46]. Let
us first define a new quantity Qn(x) related simply to Pn(x) via the relation

Pn (x) = e−βU(x)/2Qn (x) . (15)

Substituting this relation in (3), we see that Qn(x) satisfies the following integral
equation
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Qn (x) = K̂βQn−1 (x) =

ˆ ∞

−∞
Kβ (x,x

′)Qn−1 (x
′) dx ′ (16)

where the action of the integral operator K̂β is described by its kernel Kβ(x,x
′):

Kβ (x,x
′) = w (x−x ′)e−β|U(x)−U(x ′)|/2+ δ (x−x ′)R (x) (17)

and the rejection probability R(x ) is defined in equation (5). We notice that another
view of this calculation is that the original master equation (6) is self adjoint with a
different definition of the dot product involving the equilibrium measure. We choose
the write down the explicit form of the symmetrized kernel equation (17) because it is
compact and provides a direct way to discretize the master equation into a self-adjoint
matrix.

Thus, for symmetric jump distribution w(x−x ′) = w(x ′−x),Kβ(x,x
′) is symmetric

and we can consider K̂β as a real self-adjoint integral operator (operating on the real

line) whose matrix element ⟨y|K̂β|y ′⟩=Kβ(y,y
′) is given by equation (17). Besides,

equation (16) admits a stationary solution

Q∞ (x) =
1

Z
e−βU(x)/2. (18)

The solution of the integral equation (16) can be written as a linear combination of

the eigenmodes of the operator K̂β, i.e.

Qn (x) =
∑
λ

Aλψλ (x) λ
n (19)

where ψλ(x) satisfies the eigenvalue equation

ˆ ∞

−∞
Kβ (x,x

′) ψλ (x
′) dx ′ = λψλ (x) (20)

and the Aλ’s are arbitrary at this point. Consequently, from equation (15),

Pn (x) =
∑
λ

Aλψλ (x) e
−βU(x)/2λn =

∑
λ

AλPλ (x)λn with

Pλ (x) = ψλ (x) e
−βU(x)/2, (21)

as written in equation (9) in the main text.

Since the operator K̂β is real self-adjoint, both its eigenvalues and eigenvectors are
real valued [39]. This property extends to the operator defined from Fβ(x,x

′), since

e−βU(x)/2Fβ (x,x
′) = e−βU(x ′)/2Kβ (x,x

′) . (22)

Having a real spectrum is a non-trivial property, as the eigenvalues of Frobenius–Perron
type of operators to which the original integral equation (14) belongs are in general
complex numbers inside the unit circle |λ|< 1. The detailed balance rules which are used
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to derive the Metropolis algorithm actually constrain the eigenvalue of the associated
integral equation to be real (at non zero temperatures) [39]. The eigenvalue λ0 = 1
corresponds to the steady state solution Q∞(x) in (18); all other eigenvalues are real
and strictly below 1. We have labeled the spectrum so that 1> λ1 ⩾ λ2 . . .. A particular
interest goes into the eigenvalue λ1 that is closest to 1 from below, since it rules the
long time dynamics.

3. Relaxation to equilibrium and localization

The analysis of the relaxation dynamics to the steady state of the master equation (3)
in terms of a discrete set of relaxation eigen-modes is justified only for finite dimensional
approximations to the master equation. Explicit analytical calculations of the spectrum
for a number of potentials U (x ) reveal that the eigenvector decomposition (9) fails
in the continuum limit. In addition to the discrete spectrum with well defined eigen-
functions, a continuum of eigenvalues appears, with singular localized eigenfunctions
which in the continuum limit collapse to a point x 0 where they take a finite value. The
corresponding eigenvalue is R(x0). The continuum of these eigenvalues is very differ-
ent from the continuum spectrum of the Schrödinger equation for which eigenfunctions
are smooth delocalized functions which extend all the way to infinity with non zero
L2 norm. To emphasize the difference with the Schrödinger equation continuum, we
call this continuum of eigenvalues the singular spectrum. The singular continuum is
therefore bounded from below and above by minxR(x) and maxxR(x).

Equation (9) now takes the form

Pn (x) =
∑

λ∈{λ0...λN }

AλPλ (x) λn + Ln (x) , (23)

where Ln(x) stems from the singular continuum. Here, the discrete summation runs
over a finite (and possibly small) number of 1+N terms: N ⩾ 0 since the term λ0 = 1
is necessarily present in the expansion, to ensure the proper steady state. The remaining
term Ln(x) localizes at large times n→∞ around a finite number of points xl where
the rejection rate R(x ) in (5) is maximal: limn→∞Ln(x)/Ln(xl) = 0 for any x ̸= xl. This
property of the localizing term Ln is valid only for the non-discretized master equation
and is thus most directly established by analytical means. From our analytical computa-
tions, two possible scenarios emerge: (i) N > 0 for all a and (ii) N = 0 for a > a∗ where
a∗ gives the position for the localization transition; a∗ marks the transition from a diffu-
sion governed evolution to a phase where relaxation is limited by rejected moves. In case
(i), the eigenvalue λ1 lies above the singular continuum and Λ = λ1. The error is ruled by
a ‘regular’ eigenmode akin to what would be found in the discretized approximation. In
case (ii) on the contrary, λ1 merges with the singular continuum at a= a∗ and the error
is dominated by the localizing term Ln(x). Numerical simulations suggest that this loc-
alized scenario (ii) is the generic case, see also appendix B. In figure 1, we illustrate the
merging between regular and singular spectrum for the harmonic potential with a flat
jump distribution. To distinguish numerically the regular spectrum as in equation (9)
from the singular one, we have discretized Fβ(x,x

′) into a matrix of size Nd×Nd, and
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Figure 1. The top panel shows the spectrum of F β for harmonic confinement
U(x) = x2/2 as a function of jump amplitude a, for an uniform jump distribution
of range (−a,a). The color code, provided on the right-hand-side, is for the inverse
participation ratio (IPR) of the eigenvector associated to the eigenvalue displayed
(see appendix A). The upper envelope of the relaxation spectrum defines Λ, see
equation (4); shown by the red line, it reaches its minimum for a= aopt ≃ 3.33. This
value coincides with the threshold a∗ for localization. Here,N , denoting the number
of discrete relaxation modes (excluding the stationary state), is 0 for large jumps
(a > a∗), while N quickly grows as a diminishes. Dashed lines show the bounds
for the singular continuum, that appears in dark blue, see equations (5) and (8).
The bottom panel is for the IPR associated to Λ, as a function of a (same abscissa
as the upper panel). The localization transition is signaled by the sharp jump at
a= a∗. This threshold does not depend on the number of sites Nd, as long as Nd is
large enough. Here Nd = 1000. The length unit is the thermal length, meaning the
standard deviation of P∞(x).

computed the spectrum. Two methods have then been employed, both relying on a
large Nd analysis. For the regular part, the spacing between successive eigenvalues stay
non-zero as Nd →∞ while they do vanish in the singular part. Another signature can
be found with the eigenvectors by computing the inverse participation ratio (IPR).

The IPR of an eigenvector is a convenient quantity to study the localization of
quantum states [47] in the context of Anderson localization. In this problem the con-
tinuum Schrödinger equation in a random potential is discretized using a tight binding
model with Nd sites, a hoping terms in the Hamiltonian between nearest neighbors and
on-site disorder. The IPR for an eigenvector Ψλ(x) of this discrete Hamiltonian is then
defined as:

IPR(λ) =

Nd∑
i=1

|Ψλ (i) |4
/(∑

i

|Ψλ (i) |2
)2

. (24)
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This quantity can vary between two extremes. If the eigenfunction is completely delo-
calized over the whole system, so that Ψλ(i) is a constant (normalization is irrelevant
here), then IPR(λ) = 1/Nd, with Nd ≫ 1. If on the other hand,Ψλ(i) vanishes on all sites
but one, then IPR(λ) = 1, irrespective of the system size fixed by Nd. We notice that
in this definition the eigenvalue λ is assumed to be non-degenerate, this assumption is
justified in the context of the Anderson problem because the disorder potential lifts all
degeneracies and is also valid for the 1D examples considered here (note however that
relaxation modes of higher dimensional potentials with rotational symmetry will indeed
be degenerate).

The discretization of the master equation allows to define the IPR of its numerical
eigenstates Ψλ(i) in the same way as for the Anderson problem. If Ψλ(i), is the discretiz-
ation of an eigenvector which is well defined in the continuum limit, we expect IPR→ 0
as N−1

d . On the other hand, if part of the eigenfunction localizes, a slower decay as a
function of Nd will be observed and the discrete eigenfunctions Ψλ(i) will not converge
to a well defined continuum limit as Nd increases.

The transition to much larger IPR within the singular continuum is evidenced by
the color code in figure 1. At a= a∗, this singular part crosses the regular λ1 branch,
leading to a gap closure. For a > a∗, the singular continuum is dominant and governs
relaxation. In figure 1, a∗ is shown by an arrow. Furthermore here, the structure of
the spectrum ensures that a∗ = aopt, see figure 1; at this point, Λ(a) features a cusp.
Quite remarkably, the acceptance probability 1−Rn at a= a∗ = aopt tends at long times
toward 0.455, close to the 50% rule of thumb alluded to above.

The critical nature of the parameter a= a∗ can be appreciated by the behavior of
the IPR of the slowest decay mode, as displayed in figure 1-bottom. The large value of
the IPR for a > a∗ indicates that δPn ceases to be spread over the whole system, but
rather gets more and more ‘pinned’ onto a discrete set of points; in the present case, this
set reduces to a single point, xl = 0. This results in the central dip in the error δPn(x)
observed in the main graph in figure 2, that becomes more narrow as time n increases
(see below). Figure 2 also reveals that a complete change of symmetry goes with the
crossing of a∗. For a < a∗, the longest lived perturbation in the system is antisymmetric,
see the inset of figure 2: given the symmetry of the confining potentials considered
(U(x) = U(−x)), such a mode takes indeed longer to relax than symmetric ones. This
can be understood from the mapping of our problem to a Schrödinger equation, for
small a (see section 4.1): the first excited state, meaning the λ1 branch, has only one
zero and is anti-symmetric. On the other hand, for a > a∗, δPn becomes symmetric after
a transient (see the evolution from an early asymmetric situation toward symmetry in
figure 2).

To gain more insights into the localization phenomenon and its dynamics, we studied
analytically the master equation for confinement in a box, i.e. when U(x) = 0 for |x|< L
and U(x) =∞ for |x|> L. Such a case is rich enough to display the generic phenomen-
ology of localization, while remaining sufficiently simple to allow for the derivation of
exact results for several jump distributions w(η), see appendix B. For cases where w(η)
is minimum at η=0, we proved that N = 0 for sufficiently large a as in the case of
harmonic confinement. As in figure 2, the localization transition then manifests as a
progressive collapse of the error δPn = Pn(x)−P∞(x) onto the point where rejection
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Figure 2. Scaled evolution of the error δPn(x) = Pn(x)−P∞(x) vs x for different
times n (indicated by the color code on the right), for the same system as in figure 1,
with the same choice of length unit. Initial P0(x) = (2π)−1/2 exp(−(x− 1)2/2).
Comparison between a= 3.6> a∗ (main graph) and a= 3< a∗ (inset). Although
the values of a and the convergence rates are similar in the two graphs, the asymp-
totic errors are significantly different.

probability is maximal (xl = 0), with a spread which decays as 1/
√
n. More precisely,

in the vicinity of this point, we obtained the asymptotic form

δPn (x) = Λnn−γφ
(
x
√
n
)

(25)

where φ(z) is a regular scaling function, and the exponent γ depends on w(η) and
U (x ). We found that a scaling function ansatz with Λ = 1 also describes the relaxation
of a zero temperature Metropolis MC algorithms toward a minimum [48]. In the zero
temperature limit, one expects a Dirac delta-function at the minimum of the potential.
Indeed we found that this expectation is fulfilled. At finite temperature however, the
steady state has a finite width which is given by the thermal length, and thus the
scaling-function ansatz does not directly follow from the ground state. The difference
between the two cases can also be seen from the vanishing integral

´
φ(x)dx= 0 in (25)

while this integral is normalized to unity at zero temperature. Figure 3 shows that such
a form is well obeyed in the simulations, and that γ = 1/2 for the case displayed, in full
agreement with our exact treatment that also explicitly provides φ(z) in appendix B
(equation (B35)), shown by the continuous line. Numerical evidence shows that for
the harmonic potential, γ=0. Analytical studies of the box potential where w(η) is
maximum at η=0, provide examples where we can prove that N = 1, in the large a
limit. The localization transition in the error can consequently not be seen for a generic
observable, but special choices of the observable or initial conditions allow to reveal a
hidden localization transition, even in this case.
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Figure 3. Comparison between the exact calculation presented in appendix B and
the numerical data for the scaling behavior of localization. Box potential con-
finement with w(η) = 3(1+ a−2η2)θ(a− |η|)/(8a). Lengths are expressed in unit
of the box size L, convergence to the scaling function is shown for a =2.1 and
P0(x) = 2θ(1/2− |x|). Our analytical expression for the scaling function φ(z) and
the proof that N = 0, for this choice of w(η), are obtained for a > 2> a∗ ≃ 1.79.

4. Analytical approximations in the truncated Schrödinger eigenbasis

We already mentioned that the critical amplitude a∗ separates two regimes, a regime
a < a∗ where the dynamics is governed by the relaxation of diffusion eigenmodes and a
regime a > a∗ where the relaxation is governed by the highest rejection probability. In
the limit of small a, the master symmetric master equations (16) and (17) reduces to
a Schrödinger equation, and it is possible to use its lowest eigenmodes to project the
full master equation on a small finite dimensional-basis; the details of this procedure
are described in the following sections 4 and 4.1, then theoretical results and their
comparison with numerics for an harmonic potential for a flat jump distribution is
shown in sections 4.2 and 4.3.

4.1. The diffusive limit: Schrödinger reformulation

The master equations (3) and (6) can be shown to reduce to a diffusive-like Fokker–
Planck equation [46] in the limit of small jumps. In this limit the self-adjoint representa-
tion given by equations (16) and (17) leads to a Schrödinger equation. The Schrödinger
equation can be obtained from the Taylor-expansion of the wavefunction ψλ in the
eigenvalue equation (20) in powers of x ′−x . We find that eigenvalues λn of the mas-
ter equation can be determined from the eigenvalues ϵn of the effective Schrödinger
equation:

−1

2
ψ ′ ′ (x)+

β2

8
U ′ (x)2ψ (x)− β

4
U ′ ′ (x)ψ (x) = ϵnψ (x) . (26)

This relation reads

λn = 1−σ2ϵn, (27)
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{λn} where we introduced the second moment of the jump distribution

σ2 =

ˆ
dy y2w (y) , (28)

and represents the lowest order term in the expansion of λn as function of the jump
variance σ2.

We stress that a truncation of the Taylor expansion behind the derivation of the
Schrödinger equation is justified if the length-scale on which the wavefunctions vary
is large compared to a, the typical amplitude of the jumps generated by w(η). Thus
equation (26) is not valid in the limit of the high energy modes ϵn of the Schrödinger
equation. This limitation of the Schrödinger picture can be anticipated from the fact
that the eigenvalues of the original master equation are in the interval λ ∈ [−1,1] while
the eigenvalues predicted by equation (26) extend to all the range (−∞,1]. The ground
state of the Hamiltonian equation (26) has a vanishing ground state eigenvalue ϵ0 = 0
with an eigenvector given by ψ0 = e−βU(x)/2. This eigenvector describes the equilibrium
probability distribution and is identical to the ground state of the original equations (16)
and (17), without the assumption of a small jump length.

Note that since the original confining potential is symmetric in x (even), so is
the effective potential in the Schrödinger equation (26), β2U ′(x)2/8−βU ′ ′(x)/4. The
Schrödinger reformulation then allows to understand why the longest lived eigenmode,
for small a, is antisymmetric: it corresponds to the first excited state, with an eigen-
function featuring a unique zero.

Since equation (26) is a Schrödinger equation, its (normalized) excited state eigen-
vectors ψn(x) (n⩾ 1) are all orthogonal to ψ0(x) and provide a natural basis for a
variational estimation of the relaxation rate. Indeed, the definition of Λ in the main
text as the leading relaxation mode (upper value of the relaxation spectrum, leav-
ing aside the top eigenvalue λ=1 corresponding to the equilibrium state) can be
recast as

Λ = max
Φ⊥ψ0

´
dy
´
dy ′Φ(y)Kβ (y,y

′)Φ(y ′)´
Φ2 (y) dy

. (29)

As a consequence, by restricting to the first N excited states (which are perpendicular
to the ground state ψ0(x)), we get a lower bound in the form

Λ⩾ max
c1,...cNs

´
dy
´
dy ′Φ(y)Kβ (y,y

′)Φ(y ′)´
Φ2 (y) dy

(30)

Φ = c1ψ1+ . . .+ cNsψNs. (31)

When the Schrödinger equation limit is valid, equations (26)–(27) allow to approximate
the relaxation rates of the Metropolis algorithm from the eigenvalues of the Schrödinger
equation:

λn = 1−σ2ϵn. (32)

Upon increasing of the typical size of jump length, the operator K̂β will mix different
Schrödinger eigenmodes and this estimate will no longer be valid.
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Solving the present optimization problem is equivalent to finding the largest eigen-
value of the reduced Ns×Ns matrices K(Ns) with matrix elements

Knm =

ˆ
dy

ˆ
dy ′ψn (y)Kβ (y,y

′)ψm (y ′) , (33)

with the truncation 1⩽ n,m⩽Ns where the positive integer Ns gives the number
of retained eigenfunctions. We will show in section 4.2 that with a few modes only,
very good quantitative estimates for Λ can be obtained by this approach, even where
equation (26) is no longer valid, far from the small jump amplitude limit.

In cases where the potential U (x ) is even (as assumed here), the eigenbasis ψn(x)
will split into symmetric and anti-symmetric eigenfunctions. The master equation ker-
nel K β inherits the symmetry properties of the potential U (x ) and the matrix elements
equation (33) will be non-zero only for wavefunctions from the same parity. The trun-
cated matrix will thus split into a direct sum of even–even and odd–odd matrices. The
mapping to the Schrödinger equation ensures that at least in the small jump limit, Λ
will be in the odd sector, but we will show in section 4.2 an example where this is not
necessarily true for large a.

4.2. Analytical calculation of the MC relaxation rate for an harmonic potential

In this section, we show two examples of analytic calculations in the truncated
Schrödinger eigenbasis, as introduced in sections 4 and 4.1.

For a harmonic potential U(x) = x2/2, the (dimensionless) Schrödinger equation
reduces to the celebrated eigenvalue equation of a quantum harmonic oscillator:

ϵnψn (x) =−ψ ′ ′
n (x)+

x2

4
ψn (x) . (34)

The corresponding eigenfunctions can be expressed through Hermite polynomials Hn:

ψn (x) =
1

Nn
e−x

2/4Hn

(
2−1/2x

)
(35)

Nn =

√ˆ
dxHn

(
2−1/2x

)2
e−x2/2dx (36)

where Nn is the normalization. To obtain an approximation (and lower bound) for Λ,
we calculate the matrix elements

Knm =

ˆ
dy

ˆ
dy ′ψn (y)Kβ=1 (y,y

′)ψm (y ′) (37)

where the integral kernel is given by equation (17). Here, as in the main text, we have
expressed positions in units of thermal length which amounts to setting β=1. This
gives the following expression for K nm
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Knm =

ˆ ∞

−∞
dy w (y)

ˆ ∞

−∞
dx ψm (x− y/2) ψn (x+ y/2)e−|xy|/2

+

ˆ ∞

−∞
dx ψn (x)ψm (x)R (x) (38)

where R(x ) is the rejection probability. For sufficiently simple expressions of w(η) and
low values of indices n and m, the integrals can be evaluated analytically.

For a symmetric potential U (x ), the truncated matrix splits into a direct sum of odd–
even subspaces, as discussed in 4. The sequence of Ns×Ns truncated matrices built from

odd eigenfunctions will be noted K
(Ns)
o . For example, the matrix K

(1)
o reduces to a single

scalar K 11 while K
(2)
o is the 2× 2 symmetric matrix with matrix elements corresponding

to K nm for n,m ∈ {1,3}; higher order approximations are obtained similarly. Likewise

with the even sector: the sequence of Ns×Ns matrices K
(Ns)
e is constructed from even

wavefunctions. Since ψ0(x) is an exact eigenvector for any value of the jump amplitude

a, the lowest order K
(1)
e is given by the scalar K 22; the next order K

(2)
e is given by

K nm for n,m ∈ {2,4} and so forth with increasing order Ns. The relaxation rate is then
approximated by

Λ(Ns)
o =maxeigen values

(
K(Ns)

o

)
, Λ(Ns)

e =maxeigen values
(
K(Ns)

e

)
(39)

Λ(Ns) =max
{
Λ(Ns)
o .Λ(Ns)

e

}
. (40)

Below, we considered the case of an harmonic potential U (x ) for several possible
shapes of w(η). In all cases, we found that the following approximation is very accurate:

Λ≃max
{
Λ(Ns),max

x
R (x)

}
(41)

where R(x ) is the rejection probability. This expression is operational even for small
values Ns = 2, and indistinguishable from numerical diagonalization at Ns = 6.

4.3. Harmonic potential with a flat jump distribution w(η)

We report explicit results for the lowest order terms for w(η) = θ(a− |η|)/(2a), indicat-
ing that the scaling function f reads f(z) = θ(1− |z|)/2. We find:

K11 (a) = 1−
a3erfc

(
a

2
√
2

)
− 2
√

2
π

(
a2+8

)
e−

a2

8 +16
√

2
π

6a
(42)

K13 (a) =
−
√
2πa5erfc

(
a

2
√
2

)
+4
(
a4+ a2+8

)
e−

a2

8 − 32

20
√
3πa

(43)

K33 (a) = 1− 1

420

(
5a4+63a2+210

)
a2erfc

(
a

2
√
2

)

+

(
20a6+207a4+372a2+2976

)
e−

a2

8

420
√
2πa

−
124
√

2
π

35a
. (44)
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Figure 4. Harmonic confinement with flat jump distribution. Plot of the largest
non-stationary eigenvalue as function of jump amplitude a, obtained by (1) exact
numerical diagonalization (dots) and (2) analytical approximation in the truncated
Schrödinger equation basis, with increasing Ns, the number of anti-symmetric dif-
fusion modes retained (see section 4.2). With Ns = 2, the analytical predictions are
already very accurate for a < a∗, convergence is very slow on the other side of the
localization transition a > a∗.

The steady state rejection probability R∞ is given by:

R∞ =
2

a

√
2

π

(
e−

a2

8 − 1
)
+erf

(
a

2
√
2

)
, (45)

and the maximum rejection probability reads:

R (0) = max
x
R (x) = 1−

√
π/2

a
erf

(
a√
2

)
. (46)

This gives explicit expressions for the first two orders:

Λ(1) = Λ(1)
o =K11 (a) (47)

Λ(2) = Λ(2)
o =

K11 (a)+K33 (a)

2
+

√
K13 (a)

2+

(
K11 (a)−K33 (a)

2

)2

. (48)

We do not report explicit expressions for higher K nm matrix elements, as expressions
become more cumbersome. From figure 4 (in the main text), we see that this approxim-
ation quickly converges for a < a∗ and that Λ(2) is already very close to the value of Λ
obtained by numerical diagonalization. For a > a∗, the convergence of this expansion is
much slower and Λ is instead given by the maximum rejection probability, as explained
in the main text.

The convergence range of this approximation scheme for harmonic confinement with
flat jump distribution is illustrated in figure 4. We find that for a < a∗, a very small
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Figure 5. Comparison between numerical eigenvalues and the analytical approx-
imation for U(x) = x2/2 with flat jump distribution w(η) = θ(a− |η|)/(2a). The
symbols show numerical eigenvalues of the discretized master equation (Nd = 2000,
Xmax = 10) while the continuous curves display the analytical results for the four
slowest relaxation eigenmodes: λ1,λ2,λ3 and λ4. The analytical approximation

is obtained from the two highest eigenvalues of K
(6)
o (yielding λ1 and λ3) and

K
(6)
e (yielding λ2 and λ4). The analytical top eigenvalue Λ is thus here Λ(6).

We see that below Λ, the other eigenvalues are also indistinguishable from the
numerical eigenvalues, until the crossing with the singular continuum, bounded by
R(0) = maxxR(x). This shows that lower eigenvalues are also very accurately repro-
duced in this approximation, for values of a below the localization transition of the
corresponding mode. The maximum rejection probability is given by equation (46).

number of diffusion eigenmodes provide a very accurate estimation of Λ(a) or good
analytical approximations when the diagonalization of the reduced matrix is possible.
On the contrary, for a > a∗, the convergence of this procedure is very slow, and Λ(a)
coincides with the maximum rejection probability. We notice that the fast convergence
of the Fokker–Planck eigenvector expansion was reported previously in [31], but it was
not realized that this fast convergence is limited to the diffusive phase only. For a flat
jump distribution w(η) in a harmonic potential, for which aopt = a∗, this procedure also
provides an analytical estimate of the optimal mean acceptance probability, 1−R∞ ≃
0.455, close to values obtained by numerical diagonalization. A similar computation can
be done for Gaussian jumps (see section 4.2), for which we get analytically 1−R∞ ≃
0.467, which improves the previously reported numerical estimate of 0.44 [29], alluded
to above. Figure 5 shows the rapid convergence of this approximation for sub-leading
relaxation modes in the range where they do not cross the singular continuum.

4.4. Generalization to higher dimensions

An interesting issue is to assess how robust is the localization transition found: does
it survive in higher dimensions or in the presence of interactions between particles?
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To investigate these, we have studied (a) a non interacting model in dimensions 2
and 3, and (b), an interacting system in dimension 1 and (c) the situation where the
confining potential features multiple local minima, see appendix D. In all cases, we
found a localization transition, demonstrating its wider applicability. Analyzing the
fate of the present localization transition for more complex potential landscapes, as
found in disordered systems, is an interesting open problem.

5. Conclusions

To summarize, we have uncovered that a localization transition does generically take
place in MC sampling, for a critical value a∗ of the amplitude of the jump distribution.
A central result of this paper is to show that at a= a∗, a singular continuum takes over
the regular spectrum as the leading relaxation mode. We found that below a < a∗, the
relaxation rate can be determined very accurately by the projection of the full master
equation on the leading relaxation modes of the Fokker–Planck dynamics. This opens
the way to analytic calculation for the relaxation rate. For a > a∗, the convergence of
this expansion becomes much slower and the relaxation rate is instead given by maximal
rejection probability. This results in a dynamical collapse, evidenced by a sharp increase
of the IPR at a= a∗, reminiscent of Anderson localization [49]. However the underlying
physical pictures differ. In the Anderson scenario, the localization length is given by the
mean free path of a disordered potential. Here, the error progressively shrinks to a point
with increasing time n, without any corresponding limiting eigenvector ψ(x) with non
zero norm

´
|ψ(x)|2dx > 0. Thus our study shows an example of a well known Markov

process whose relaxation is not determined by the contribution of discrete eigenmodes,
but by a progressive localization (collapse) on discrete points. Furthermore, we found
that a∗, when it exists, coincides with the optimal jump length aopt, although we are not
able to prove it. We may surmise that the localization phenomenon has been overlooked
so far for the reason that the upper part of the spectrum, Λ(a), which rules relaxation,
is continuous for all a including the transition point a∗; it is the derivative dΛ/da that
is discontinuous at a∗. Yet, the error incurred, due to unavoidable lack of convergence at
finite time, does change nature when crossing a∗: its symmetry, amplitude, and scaling
are deeply affected. The understanding of the localization transition in MC relaxation
modes may help to avoid excess events on the localization sites in the applications of
MC random walks.
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Appendix A. Overview of the cases investigated and main tools of analysis

A.1. Potentials, sampling choice, and observables

The claims put forward in the main text rely on the study of a number of confining
potentials of the form U(x)∝ |x|α, with α> 0. Some emphasis has also been put in the
study of confinement by hard walls, the box potential, where U(x) = 0 for x ∈ [−L,L]
and U(x) =∞ for |x|> L.

In these potential landscapes, we have changed the sampling method, varying the
distribution f(η) of attempted jumps. Scaling out the jump’s typical length a, we obtain
the dimensionless distribution f (z ):

w (η) =
1

a
f
(η
a

)
. (A1)

Different choices were made, symmetric for simplicity (f(z) = f(−z)):

• Gaussian distribution of jumps

f (z) =
1√
2π

e−z
2/2. (A2)

• Exponential distribution

f (z) =
1

2
e−|z|. (A3)

• Flat distribution

f (z) = θ

(
1

2
− |z|

)
. (A4)

• Other more specific choices, as introduced to analyze the box confinement, see
appendix B.

In order to study convergence to equilibrium, it is important to pay attention to the
symmetry of the observables used, for it affects relaxation rates. This can be understood
from the Schrödinger reformulation, where excited states of increasing order are altern-
atively even and odd in x, while their energy is directly related to the relaxation rate,
see equation (27). Therefore, we can use even observables (with even initial conditions)
to suppress a slower relaxation rate corresponding to an odd mode, allowing to estimate
λ1 and λ2 from sampling. In particular, we measured

O1 (x) = (x− 0.5)2 , and O2 (x) = |x|. (A5)

A.2. Numerical diagonalization

Numerical diagonalization of the discretized form of the master equation (10) allows to
find the spectrum of eigenvalues. The master equation was discretized by a uniform mesh
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with Nd sites. The integration was replaced by a sum over accessible neighbors, ensuring
probability conservation. For particles in a box x ∈ [−L,L], the first and last points of
the mesh were set to −L and L respectively. For the harmonic potential, the first and
last points were set to ±Xmax where Xmax is the largest |x| allowed by the mesh. The
results in figure 1 from the main text were obtained for Xmax = 10 (in units of thermal
length in the harmonic potential). We increased Xmax up to 30 to check that the results
were independent on this choice of Xmax. To obtain eigenvalues and eigenvectors, we
used the diagonalization routines from the eigen++ library. To avoid the appearance
of spurious complex eigenvalues due to rounding errors in diagonalization algorithms,
we took advantage of detailed balance to transform the kernel of the integral master
equation into its symmetric form equation (17). Considering the fast increase of the
numerical time required for full diagonalization with matrix size, we used this approach
for Nd ⩽ 104.

A.3. Numerical iteration of the master equation

To study the relaxation of the error δPn(x), it is also possible to follow the evolution
of a fixed initial state by successive iterations of the master equation. This approach
is computationally less demanding than full diagonalization. With this method, we ran
simulations up to Nd = 2× 105.

A.4. Monte Carlo simulations

To put our analytical calculations to the test and assess the accuracy of the predicted
bounds, we have directly simulated the dynamics defined by the master equation. The
Metropolis rule, spelled out in the main text, defines a Markov chain which can be
readily simulated by means of classical MC. For large enough time n, equilibrium will
be reached and the walker’s position will sample the Gibbs–Boltzmann distribution (13).
The sampling scheme obeys detailed balance [14], which guarantees the existence of a
steady state, that is furthermore unique for an ergodic irreducible chain [16]. We are
interested in the long-time approach toward the equilibrium distribution. To gather
statistics, we perform the simulation until n =30 typically, and repeat this for m= 1010

or 1011 independent samples. At every time step n, we compute a number of observables,
see appendix section A.1. An observable O is then averaged over all m samples at fixed
time n, leading to O.

O (n) =
1

m

m∑
i=1

O(i) (n) (A6)

where the observable measured at time n in the ith sample is O(i)(n).
Our Monte Carlo estimates of the largest eigenvalue are obtained by fits to the

deviation from the equilibrium value at time n of the form |O(n)−⟨O⟩eq |= c1λ
n
1 + c2λ

n
2 ,

where ⟨O⟩eq is the equilibrium value, reached after long times. We exclude the first values
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Figure 6. Convergence rate Λ vs. jump amplitude a for an harmonic confinement
(U(x) = x2/2) and a flat w(η) distribution as in equation (A4) (cf figure 1 of the
main text). Comparison between the direct Monte Carlo simulations measure (MC)
and the numerical diagonalization technique. Both methods agree very well. The
Monte Carlo approach needs to look at symmetric and asymmetric observables to
measure the different branches of the spectrum. The observables used are provided
in equation (A5). For a < a∗ ≃ 3.33, using the asymmetric observable O1 provides
a very good estimate of the largest eigenvalue λ1 = Λ. For a < a∗, using the even
observable O2 yields the second largest eigenvalue λ2. For a > a∗, the largest of
both (λ from O2) gives a very good estimation of Λ. The singular continuum is
shown by the gray region. As in the main text, a is given in units of the thermal
length at equilibrium.

(typically n < 5) to minimize influence of transient behavior and c1 and c2 are free
constants. Technically, we use an analytical value for ⟨O⟩eq, if known, or Monte Carlo
results at n =200, where the statistical error dominates over the systematic deviation.
Performing this procedure for multiple jump distributions parametrised by a allows us
to gather measurements of relaxation rates, which we can compare to our analytical
results and the other computational approaches. For a reliable fit, it is necessary to
have good estimates of the standard errors of the measured mean values; Welford’s
algorithm has been used [50, p 232]. The acceptance probability is computed during
an independent simulation of a single particle over 1.1 · 106 Metropolis steps, where the
first 105 steps are ignored for the average.

We verify the quality of the three numerical approaches by comparing them to each
other, and to the analytical results for the case of the box potential. Figure 6 shows the
estimates of Λ obtained from the Monte Carlo simulations and λ1 obtained from the
diagonalization (the upper envelope of the spectrum).

Figure 7 shows the shape of the deviation δPn(x) from the equilibrium distribution
at a finite time, for uniform jumps in the harmonic potential. The direct Monte Carlo
results and the results from the iteration of the master equation are compatible within
statistical fluctuations. This lends a high confidence in the results of the iteration for
longer times, which are shown in the main manuscript.
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Figure 7. Shape of the rescaled deviation δPn(x) vs x from the equilibrium dis-
tribution at finite times (here n =15). The symbols show results of direct Monte
Carlo and the lines show the results of the iteration of the master equation; both
methods are in good agreement. Same confinement and jump distribution as in
figure 6.

Appendix B. The box potential

Obtaining exact analytical results in the general case of a potential U (x ) in |x|α seems
out of reach. Yet, the box potential, where the random walker moves freely between
hard walls at ±L, is a useful model system that presents the whole range of phenomena
observed generically. A key aspect lies in the choice of the jump distribution scaling
function f (z ), that can lead to any of the two scenarios mentioned in the main text: a○
a gaped spectrum for which the discrete branch λ1 is above the singular continuum, for
all jump amplitudes a (regular case, where the singular continuum, although present,
does not play a role in the long time error, and there is no localization); b○ a gapless
spectrum where the singular continuum becomes the dominant relaxation mode for
a > a∗. This situation b○ where localization appears is the generic case. This is why we
focused on case b○ in the main text.

It is useful here to introduce the late-time rejection probabilities Ra(0) at x =0,
and Ra(edge) at the system’s edge, meaning x=±L in the box case. Both depend on
a. For a→ 0, we have Ra(0)<Ra(edge): all moves from x =0 are accepted (vanishing
rejection probability), while only half of them are, starting from the edge (both in the
box case, and when exponent α> 1, leading to a convex-up confining potential). A
careful inspection of all the numerical data we gathered shows that case a○ corresponds
to Ra(0)<Ra(edge) for all a; b○ is for the situation where Ra(0) and Ra(edge) do cross
for a= a∗, so that Ra(0)>Ra(edge) for a > a∗. It is then straightforward to realize that
the behavior of w(η) at small η discriminates the two regimes: if w(η) decreases when
increasing |η|, we have case a○; if w(η) increases when increasing |η|, we have case b○.
We considered the family of polynomial w -functions, for instance piecewise linear or
quadratic such as

w(1) (η) =
1

a(2b+ c)

(
b+ c

a− |η|
a

)
θ (a− |η|) (B1)

https://doi.org/10.1088/1742-5468/ad002d 25

https://doi.org/10.1088/1742-5468/ad002d


Metropolis Monte Carlo sampling: convergence, localization transition and optimality

J.S
tat.

M
ech.(2023)

123205

Figure 8. Spectrum of the kernel Fβ(x,x
′) for the box potential, with either a○

w(2)(η) = w∩(η), left column (b= 0, c= 1), or b○ w(2)(η) = w∪(η), right column (b=
2, c=−1). In both cases, the singular continuum appears in dark blue. In the gaped
case a○ where there is no transition, it remains below the discrete λ1 branch; the
optimal jump can be found by minimizing λ1 in equation (B8) which gives aopt =√
c(1+3k(2))(b+ c)−1 ≃ 2.251. In the gapless case b○ on the right, the singular

continuum becomes the dominant relaxation mode for a > a∗. Localization ensues,
for a > a∗ = aopt ≃ 1.79. Lengths are in units of the box size (L=1).

w(2) (η) =
1

a(2b+4c/3)

(
b+ c

a2− η2

a2

)
θ (a− |η|) (B2)

parameterized by the constants b and c, in addition to the jump size a: positive values
of c define convex-down functions, pictorially written w∩(η) and associated to case
a○; c< 0 defines convex-up functions, denoted w∪(η), associated to case b○. We take
hereafter L=1, without loss of generality.

B.1. Numerical results

We show in figure 8 the spectrum of Fβ(x,x
′) obtained by numerical diagonalization

with the parabolic jump distribution w(2)(η), either of the type w∩ or w∪. The dis-
tinction between the gaped ( a○, with w∩) and gapless ( b○, with w∪) cases appears. At
variance with case a○, b○ shows a regime for a > a∗ ≃ 1.79 where the singular continuum
defines the dominant relaxation mode, so that localization ensues. The crossing of the
curves Ra(0) and Ra(edge) for a slightly below a∗ is also visible. For the present box
potential, U (x ) either vanishes inside the box, or diverges outside. Hence, the value of
inverse temperature is irrelevant. We have checked that the qualitative results remain
unchanged for all monotonous (for η > 0) jump distributions w(η) even in η, in particu-
lar using the piecewise linear distribution w(1)(η). Thus for the box potential U(x) = 0
(x ∈ [−1,1]) the presence or absence of localization is determined by whether w(η) is
either minimum or maximum at η=0.
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B.2. Exact results on eigenvalues of the Monte-Carlo master equation for a box potential

We have seen above that the box potential subsumes the gapless/gaped spectra dicho-
tomy, corresponding to the a○ absence/ b○ presence of localization. Besides, the shape of
the gapless spectrum shown in figure 8 is closely reminiscent of its counterpart presented
in the main text. We thus take advantage of the fact that exact results can be obtained
with the box confinement, to shed new light on the localization phenomenon and its
scaling properties.

For a box potential U(x) = 0 (x ∈ [−1,1]) the eigenvalue problem of the Monte-Carlo
master equation simplifies into:

λΨλ (x) =

ˆ 1

−1

Ψλ (y) w (x− y) dy+

[
1−
ˆ 1

−1

w (y−x) dy

]
Ψλ (x) (B3)

where λ is the eigenvalue and Ψλ(x) is the eigenvector. For a > 2 and the two choices
w(p)(η) (p= 1,2) from equation (B2), this equation reduces to a second order differential
equation which can be solved to yield a single eigenvalue λ< 1. This eigenvalue can be
written in the form:

λ
(p)
1 =R(p) (1)+

(
k(p)− 1

)[
R(p) (1)−R(p) (0)

]
. (B4)

Here, the rejection probability R(p)(x), with index p=1 and p=2 is given by

R(p) (x) = 1−
ˆ 1

−1

w(p) (x− y)dy. (B5)

The constants k(p) read k(1) ≃ 1.439 and k(2) ≃ 1.356; they are the solutions of

1√
k(1)

arccoth
√
k(1) = 1 ,

√
k(2) arccoth

√
k(2) =

3

2
. (B6)

In both cases, k(p) > 1, which implies that if R(p)(1)>R(p)(0), the eigenvalue λ
(p)
1 >

R(p)(1) = maxxR
(p)(x) (case a○). On the contrary, if R(p)(1)<R(p)(0), λ

(p)
1 <R(p)(1) =

minxR
(p)(x). Thus, it is indeed the comparison between R(p)(1) and R(p)(0) which

determines if λ
(p)
1 is above or below the singular continuum, thereby discriminating

between a○ and b○.
Evaluating the integrals in equation (B5) we find the explicit expressions (we remind

that they are valid for a > 2):

λ
(1)
1 =

−2ab+2a2b+ c− 2ac+ a2c+ k(1)c

a2 (2b+ c)
(B7)

λ
(2)
1 =

−3a2b+3a3b+ c− 3a2c+2a3c+3k(2)c

a3 (3b+2c)
. (B8)

To summarize at this point, for both parametrizations of the jump distribution
function and for a > 2, there is a single eigenvalue λ< 1 (besides the singular con-
tinuum). This eigenvalue lies above maxxR(x) or below minxR(x) depending on
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whether w(η) is a○ maximum or b○ minimum at η=0. Considering that the interval
(minxR(x),maxxR(x)) is actually filled with singular eigenvalues λ=R(x), we describe
this situation as λ1 lying above or below the singular continuum.

B.3. Exact results on the localization of the error δPn(x)

We wish to describe analytically the relaxation of the error δPn(x) when λ1 lies below
maxxR(x). We remind that for the two parametrizations of w(η) from the previous
section, a stronger result holds and that in this case, λ1 <minxR(x). The master
equation for the error δPn = Pn−P∞ reads:

δPn+1 (x) =

ˆ 1

−1

δPn (y)w (x− y)dy+R (x)δPn (x) with

R (x) = 1−
ˆ 1

−1

w (x− y)dy. (B9)

Normalization implies
´
δP0(x)dx=

´
δPn(x)dx= 0.

For a > 2 and focusing on the case of a parabolic jump distribution in equation (B2),
it is possible to simplify notations:

w(2) (η) = w0+w2 η
2, R (x) = r0− r2x

2, r0 = 1− 2w0−
2w2

3
,

r2 = 2w2, with w2 > 0. (B10)

We then look at symmetric initial conditions δP0(x) = δP0(−x):

δPn+1 (x) = w2

ˆ 1

−1

δPn (y)y
2dy + R (x) δPn (x) . (B11)

We introduce the generating function:

G(x,z) =
∞∑
n=0

δPn (x)z
n = δP0 (x)+w2z

ˆ 1

−1

G(y,z)y2dy+ zR (x)G(x,z) (B12)

from which we get

G(x,z) =
1

1− zR (x)

(
δP0 (x)+w2z

ˆ 1

−1

G(y,z)y2dy

)
. (B13)

We then solve for G2(z) =
´ 1
−1G(x,z)x

2dx. Integrating the master equation we find:

G2 (z) =

√
r2z

√
1− r0z arctan

√
r2z√

1−r0z

ˆ 1

−1

δP0 (x)x
2

1− zR (x)
dx. (B14)

To make further progress, we choose as an initial condition

δP0 (x) = r−1θ (r− |x|)− 1, (B15)
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which allows to compute the integral in equation (B14) explicitly:

G2 (z) =

ˆ 1

−1

G(x,z)x2dx =
2

r2z

(
1− 1

r

arctanrZ

arctanZ

)
with

Z =

√
r2z

1− r0z
. (B16)

We note that G2(z) is the generating function for the series

Sn =

ˆ 1

−1

δPn (x)x
2dx (B17)

which can be viewed as the error in the variance x 2 at step n. The general method
of singularity [51] analysis allows to find the asymptotic behavior of a series from the
analysis of the singularities of its generating function in the complex plane which are
nearest to the origin z =0. For G2(z) the singularity closest to the origin is z = r−1

0 . The
asymptotic expansion of the generating function near this singularity allows us to find:

Sn ≃−2(1− r)

r2
r
3/2
0

(πr2)
3/2

rn0
n3/2

−
(1− r)r

3/2
0

[
−48r2r0+4π2

(
1+ r+ r2

)
r0− 15π2r2r2

]
4π7/2r4r

5/2
2

rn0
n5/2

. (B18)

We then introduce the functions Qn(x) as

δPn (x) =R (x)nQn (x) , (B19)

and the recurrence equation (B11) becomes:

Qn+1 (x) =
w2

R (x)

ˆ 1

−1

δPn (y)R (x)−n y2dy+Qn (x) (B20)

=
w2

R (x)

n∑
m=0

ˆ 1

−1

Pm (y)R (x)−m y2dy+Q0 (x) . (B21)

Taking the limit n→∞ and under the proviso that the series converges, we find

Q∞ (x) =
w2

R (x)
G2

(
R (x)−1

)
+ δP0 (x) (B22)

where G2(z) is defined in equation (B14). The problem with this expression is that
R(x)−1 ⩾ r−1

0 lies outside the radius of convergence |z|⩽ r0 of G2(z), so this formula is
valid only at x =0 when R(0) = r0. Using the obtained value of G2(r

−1
0 ), we find

Q∞ (0) = 0. (B23)
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We can then obtain an asymptotic estimate for Qn(0):

Qn (0) =Q∞ (0)− r2
2r0

∞∑
m=n

ˆ 1

−1

δPm (y)r−m0 y2dy (B24)

≃ 1− r

r2
r
1/2
0

π3/2r
1/2
2

4n+1

2n3/2
+

(1− r)r
1/2
0

[
−48r2r0+4π2

(
1+ r+ r2

)
r0− 15π2r2r2

]
12π7/2r4r

3/2
2

rn0
n3/2

.

(B25)

From equation (B19), it follows that δPn(0) = rn0Qn(0) where we used R(0) = r0.
Equation (B25) indicates that Qn(0) decays as a power law n−1/2 for large n:

δPn (0)≃
2(1− r)

π3/2r2

√
r0
r2

rn0
n1/2

. (B26)

Comparison of equations (B18) and (B25) with numerical simulations of discretized
approximation of the Master equation are shown in figure 9.

For x ̸= 0 the series becomes diverging andQ∞(x) does not exist. The leading asymp-
totic behavior can be extracted from the singular behavior of Q(x,z) near z = r−1

0 :

δPn (x)≃−1− r

r2x2

(
r0
πr2

)3/2
rn0
n3/2

. (B27)

Interestingly, we find that the ratio δPn(x)/δPn(0) (for x ̸= 0) does not decay exponen-
tially but as a power law n−1. Comparing equations (B26) and (B27), we thus proved
the main property of the localizing contribution to the error δPn(x):

lim
n→∞

δPn (x)/δPn (0) = 0 whenever x ̸= 0. (B28)

To find a uniform approximation to δPn(x), we assume the following scaling form

δPn (x) =
R (0)n√

n
φ
(
x
√
n
)
. (B29)

Using equation (B18), we can approximate

r−n0 (δPn+1 (x)−R (x)δPn (x)) =
r2r

−n
0

2

ˆ 1

−1

δPn (y)y
2dy ≃−1− r

r2

√
r30

π3r2n3
. (B30)

On the other hand using equation (B29), we find:

r−n0 (δPn+1 (x)−R (x)δPn (x)) =
r0√
n+ ϵ

φ
(
x
√
n+ ϵ

)
−
(
r0− r2x

2
)
φ
(
x
√
n
)

(B31)

≃ r2x
2

n1/2
φ
(
x
√
n
)
− ϵr0

2n3/2
φ
(
x
√
n
)
+
ϵr0x

2n
φ ′ (x√n) , (B32)
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Figure 9. Comparison of the numerical results for Sn =
´ 1
−1
δPn(x)x

2dx and

Qn(x) =R(x)−nδPn(x) with the asymptotic estimates in equations (B18)
and (B25). We chose w(2)(η) = 3(1+ η2/a2)/(8a) and a =2.1; the number of sites
for the discretization of master equation was Nd = 2× 105. The initial conditions
were δP0(x) = 2θ(1/2− |x|)− 1 (r = 1/2). We note that even if simulations with a
finite Nd cannot reproduce the asymptotic power in the n→∞ behavior (because
of the discrete spectrum), the agreement at finite but large n is nevertheless very
good.

where we introduced a formal small expansion parameter ϵ=1 and expanded to first
order in ϵ. Introducing x̃= x

√
n and combining equations (B30) and (B32), we find a

first order differential equation on the scaling function φ(x̃):

r0x̃

2
φ ′ (x̃)+ r2x̃

2φ(x̃)− r0
2
φ(x̃) =−1− r

r2

√
r30
π3r2

. (B33)

Equation (B33) admits a single symmetric solution which can be expressed in a compact
form introducing the Dawson function:

D+ (x) = e−x
2

ˆ x

0

ey
2

dy. (B34)

We get

φ(x̃) =
2(1− r)

π3/2r2

√
r0
r2

[
1− 2x̃

√
r2
r0
D+

(
x̃

√
r2
r0

)]
. (B35)

From the results

D+ (0) = 0 and D+ (x)∼
1

2x
+

1

4x3
for x→∞, (B36)

we recover equations (B26) and (B27). Hence, the scaling assumption (B29) appears
fully consistent. The comparison between δPn(x) obtained by iteration of the master
equation and the prediction of the scaling form is shown in figure 10.
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Figure 10. Relaxation of δP0(x) = 2θ(1/2− |x|)− 1 (i.e. r = 1/2) for w(2)(η) =
3(1+ η2/a2)/(8a) and a =2.1; same parameters as figure 9. This figure compares
the rescaled δPn(x) as obtained by direct iteration of the Master equation at step
n =700, with the scaling prediction of equations (B29) and (B35). The right panel
shows convergence for n⩽ 100; the moving discontinuity is a trace of the initial
distribution P0(x), that is discontinuous at x=±1/2. Hence, as time proceeds, the
central peak extends further, and ultimately reaches the scaling form shown on the
left plot. We also illustrated the convergence to the scaling function equation (B35)
on figure 3 from the main text using the same dataset.

Appendix C. Analytical calculation of the relaxation rate in the Schrödinger
eigenbasis

C.1. Harmonic potential with a Gaussian jump distribution w(η)

For a Gaussian jump distribution

w (η) =
1

a
√
2π

exp

(
− η2

2a2

)
⇔ f (z) =

1√
2π

exp

(
−z

2

2

)
, (C1)

we find the matrix elements for the odd subspace of the Schrödinger eigenbasis:

K11 (a) = 1− a2

2
+
a2

π
arctan

(a
2

)
+

2a3

π (a2+4)
(C2)

K13 (a) =

√
3

2

a4

π
arctan

(a
2

)
+

(
12a4+80a2− 3π

(
a2+4

)2
a+96

)
a3

2
√
6π (a2+4)2

(C3)

K33 (a) = 1−
(
5a4+9a2+6

)
a2

2π
arctan

(
2

a

)
+

(
15a8+187a6+834a4+1560a2+1152

)
a3

3π (a2+4)3
(C4)
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Figure 11. The left panel shows analytic approximations for Λ for U(x) = x2/2
with a Gaussian jump distribution f(z) = (

√
2π)−1 exp

(
−z2/2

)
. In this case, the

matrices K
(Ns)
o provide a good approximation for Λ for a < aopt ≃ 2.21845. At a=

aopt, the symmetry of the leading relaxation mode changes from odd to even and

for a > aopt, Λ is instead well approximated by Λ
(Ns)
e , becoming increasingly close to

the maximum of the rejection probability as a increases further. We note, however,
that there does not seem to be a localization transition in this model: the IPR of
the eigenvector for Λ follows a N−1

d scaling suggesting that for this case N = 1. The

right panel is similar to figure 5, confirming that K
(6)
o and K

(6)
e provide very good

approximations for the leading eigenvalues up to the crossing with the maximum
of the rejection probability, given by equation (C8). Using this method, we find
position of the localization transition for slowest antisymmetric relaxation mode λ2
at a≃ 2.55657.

For the Gaussian jumps, Λ also depends on the matrix elements in the even sub-
space:

K22 (a) =
2
(
3a3+π

)
− a2

(
3a2+4

)
arctan

(
2
a

)
2π

(C5)

K24 (a) =
a3

4
√
3π (a2+4)

[
30a4+128a2− 3

(
a2+4

)(
5a2+8

)
aarctan

(
2

a

)
+64

]
(C6)

K44 (a) = 1−
(
35a6+80a4+72a2+32

)
a2 arctan

(
2
a

)
8π

+

(
105a8+940a6+2712a4+3072a2+1920

)
a3

12π (a2+4)2
(C7)

We also get:

R (0) = max
x
R (x) = 1− 1√

1+ a2
(C8)

R∞ = 1− 2

π
arctan

2

a
. (C9)

Figure 11 compares the result of the Schrödinger eigenbasis approximation for a
Gaussian w(η) to numerical eigenvalues for the discretized master equation. We do
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Figure 12. Results for U(x) = x2/2 with a jump distribution w(η) = |η|θ(a−
|η|)/a2. The continuous curves show the results of the analytical calculation K

(6)
o

and K
(6)
e ; they provide a very good approximation for the leading eigenvalues up

to the crossing with the maximum of the rejection probability.

not find evidence of a localization transition for Λ, but instead a change of parity at
a= aopt ≃ 2.21845. As for the case of a flat jump distribution shown on figure 5, the
Schrödinger eigenbasis approximation works very accurately for all the slowest relaxa-
tion modes until they cross the singular continuum. It seems that even if N = 1 for this
case, the maximum rejection probability maxxR(x) is still a very good approximation
for Λ at large a (a⩾ 4).

C.2. Harmonic potential with jump distribution w(η) = a−2|η|θ(a− |η|)

Again for a harmonic potential, analytical results for this shape of w(η) can be obtained
in the same way as above. We do not report them here, and only provide a comparison
between numerical and analytical calculations on figure 12.

C.3. Comparing the different jump distributions

Among the three jump distributions worked out above, the last one provides the value
Λ(aopt) = 0.61723, which is the lowest among the studied examples. In this respect, this
jump distribution, at the optimal jump amplitude aopt, yields the fastest method for
sampling the equilibrium distribution. Results are summarized in table 1.

Figure 13 compares the spectral results for the three jump distributions. We note
that they correspond to a w(η) that is either increasing, flat, or decreasing with |η|. In
spite of these differences, the leading relaxation eigenvalue Λ displays the same behavior
as a function of the acceptance probability 1−R∞. In particular, the three cases feature
optimality (smallest Λ, fastest convergence) for an acceptance probability close to 50%.
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Table 1. Summary of the results on the optimal jump length a for several shapes of
the jump distribution w(η) in a harmonic potential. These three cases correspond
to figures 5, 11 and 12.

w(η) aopt a∗ Λ(aopt) 1−R∞(aopt)

(2a)−1θ(a− |η|) 3.328 78 a∗ = aopt 0.623 82 0.455 43

(a
√
2π)−1 exp(−η2/(2a2)) 2.218 45 none 0.646 38 0.467

a−2|η|θ(a− |η|) 2.176 13 a∗ = aopt 0.6172 0.482

Figure 13. Comparing different jump distributions. Plots of the leading relaxa-
tion eigenvalue Λ as a function of the acceptance probability, for the three cases
summarized in table 1, corresponding to figures 5, 11 and 12.

Appendix D. Generalization: beyond one dimension and inclusion of interactions

While the results presented so far focused on one-dimensional dynamics, we here put
to the test the generality of the localization transition by considering more generic
models, beyond 1D or with interacting degrees of freedom. The analysis is here mostly
numerical.

D.1. Beyond 1D

Simulations in higher dimensions rapidly become demanding in terms of numerical
resources. In two dimensions, it is still possible to use direct diagonalization to obtain
the full eigenspectrum of the master equation and the IPR of the eigenvectors. An
example of such a simulation is shown on figure 14: the results are very similar to
the one dimensional simulation in figure 1 (main text) except that a∗ ≃ 2.6 instead of
a∗ ≃ 3.3 due to the two dimensional nature of attempted jumps.

Simulations in 3D are numerically more accessible if jumps are attempted in only
one of the directions x,y,z at a time. This makes the matrix representing the mas-
ter equation kernel sparse, allowing to find the time evolution of the error distribution
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Figure 14. Spectrum of the Monte-Carlo Master equation kernel for a two dimen-
sional particle confined to the cell (−5,5)× (−5,5) (discretized to 1002 boxes) and
in the potential U(x,y) = (x2+ y2)/2 (β=1). The attempted jumps are two dimen-
sional changing both x and y in an interval (−a,a) centered around their initial
values. Color shows IPR1/2, where the square root is used to enhance contrast
(the lower contrast in IPR values is related to the high symmetry of the potential
U(x,y), see for example the higher contrast in figure 16 where all symmetries are
broken).

Figure 15. A 3D example with the potential U(x,y,z) = (x2+ y2+ z2)/2 and a
confinement volume (−5,5)3 discretized in 1003 boxes. The initial distribution
P0(x,y,z) is an off-centered Gaussian.

δPn = Pn−P∞. We show in figure 15 the evolution of the IPR of δPn with the number of
algorithm steps (time). A sharp transition from decreasing to increasing IPR as a func-
tion of time is seen around a =3.3. Since the attempted jumps are 1D, the localization
transition takes place at the same value as for the 1D harmonic potential.
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Figure 16. Spectrum of the Monte-Carlo Master equation kernel for two interacting
particles, with interaction potential given by equation (D1). Two situations were
investigated, with a repulsive (left panel) or an attractive potential (right panel).
The configuration space, restricted to the interval (−5,5), was discretized in 100×
100 cells.

D.2. Interactions

We provide a numerical example illustrating the localization transition in the Monte
Carlo relaxation of interacting particles. We consider a case which is numerically
tractable by full diagonalization, in analogy with figure 1 from the main text and with
figure 8. We consider two particles at positions x 1 and x 2 in a one dimensional box,
with x1,x2 ∈ [−5,5]. The energy of a configuration (x1,x2) is given by the potential:

U± (x1,x2) =
x21+x22

2
± 2

0.1+ |x1−x2|
+x1−x2 (D1)

where, depending on the plus or minus signs, the interaction between x 1 and x 2 is
repulsive (U+) or attractive (U−). We simulate the steady state of this system using a
Monte-Carlo algorithm, with jumps where we attempt to simultaneously change x 1 and
x 2 in an interval (−a,a) around their initial position. The spectrum of the corresponding
master equation is shown in figure 16, indicating that a localization transition occurs
in this case even when interactions are present. Switching from repulsive to attractive
interaction changes the value of the optimal jump length a∗, and the spread of the eigen-
spectrum. In both cases however, the IPR drastically increases for a > a∗, indicating a
localization transition.

D.3. Relaxation in presence of multiple local minima

Finally, we illustrate numerically the relaxation spectrum for a Monte Carlo simulation
in a 1D potential with many local minima. We take the potential:

U (x) = x2/2+3 sin9x (D2)

inside a box x ∈ (−5,5). This potential has many local minima as illustrated in the left
panel of figure 17. The eigenspectrum (see figure 17 right panel) features a localization
transition at a∗ ≃ 2.1 as in the prototype cases with only a single minimum. At variance
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Figure 17. (Left panel) Example of a potential with many local minima given
by equation (D2). (Right panel) Monte Carlo relaxation eigenspectrum for this
potential with a flat jump distribution as in figure 1 from the main text. The box
(−5,5) was discretized in 103 sites.

with the spectrum for U(x) = x2/2 (see figure 1 from the main text), many quasi-
degenerate eigenvalues are present near λ=1, for low values of the jump amplitude a.
In this regime indeed, hopping over the barrier is thermally activated and the mimima
become metastable.
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