
January 2024

EPL, 145 (2024) 21001 www.epljournal.org

doi: 10.1209/0295-5075/ad1d70

Non-equilibrium attractor for non-linear stochastic dynamics
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Abstract – We study the dynamical behaviour of mesoscopic systems in contact with a ther-
mal bath, described either via a non-linear Langevin equation at the trajectory level —or the
corresponding Fokker-Planck equation for the probability distribution function at the ensemble
level. Our focus is put on one-dimensional —or d-dimensional isotropic— systems in confining
potentials, with detailed balance —fluctuation-dissipation thus holds, and the stationary prob-
ability distribution has the canonical form at the bath temperature. When quenching the bath
temperature to low enough values, a far-from-equilibrium state emerges that rules the dynamics
over a characteristic intermediate timescale. Such a long-lived state has a Dirac-delta probability
distribution function and attracts all solutions over this intermediate timescale, in which the initial
conditions are immaterial while the influence of the bath is still negligible. Numerical evidence
and qualitative physical arguments suggest that the above picture extends to higher-dimensional
systems, with anisotropy and interactions.

Copyright c© 2024 EPLA

Stochastic processes are ubiquitous in physics. Systems of
interest are usually not isolated but in contact with a much
larger environment. What makes their dynamics stochas-
tic is the interaction with the environment (thermal bath):
the integration over its degrees of freedom entails that
the “force” —understood in a generalised sense— acting
on the system becomes effectively random [1,2]. It is in
this approach, often called mesoscopic, that the Langevin
equation emerges —see ref. [3] for a recent review.

More than a century ago, Langevin initiated the ap-
proach that bears his name, when studying Brownian
motion [4]. This is still an active field of research to-
day: current experimental techniques make it possible to
confine the Brownian particles in a potential, the profile
of which can be controlled [5–7]. In turn, shaping the
potential makes it possible to control the dynamical evo-
lution, allowing for optimising observables such as irre-
versible work [8,9] or escape times [10], building smooth
protocols that connect arbitrary states [11], or precisely
designing finite-time computations [12].

The relevance of the Langevin approach is not re-
stricted to Brownian motion; it is employed in a wealth
of physical contexts, in which the above general pic-
ture for stochastic dynamics applies. Examples abound,
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including astrophysics [13,14], polymers [15], laser-cooled
atoms [16,17], particle physics [18,19], systems with neg-
ative temperatures [20,21], or optical spectroscopy [22],
to name just a few. Interestingly, the analysis of experi-
mental “noisy” data makes it possible to infer the under-
lying stochastic, Langevin-like, dynamical equations, not
only in physics but also in neuroscience or biology [23–27].
Besides, since the early days of quantitative economy,
related approaches making use of random walks are em-
ployed [28,29].

In the long-time limit, systems evolving under stochas-
tic dynamics typically relax to equilibrium at the bath
temperature. The equilibrium state is thus a global at-
tractor, reached from an arbitrary initial condition, of the
system dynamics [30]. A relevant question is the follow-
ing: before equilibrium, does the system reach a global
non-equilibrium attractor, already independent of the ini-
tial preparation? In that case, relaxation to equilibrium
would proceed in two stages: first, the system would ap-
proach the universal non-equilibrium state and, second,
this non-equilibrium state would tend to the equilibrium
one.

In this letter, we show —under general assumptions—
that there emerges such a universal non-equilibrium state
for a wide class of systems in contact with a thermal
bath, when quenched to low enough temperatures. Their
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dynamics is assumed to be Markovian and described by
a non-linear Langevin equation. This state, which we
term long-lived non-equilibrium state (LLNES), is a global
attractor of the dynamics for an intermediate timescale,
over which initial conditions are immaterial but the system
is still far from equilibrium. In particular, the probability
distribution function (pdf) features a Dirac-delta shape
within the LLNES.

For the sake of concreteness, we focus here on the
physical, intuitive ideas, that are behind the emergence
of the LLNES in one-dimensional —or d-dimensional
isotropic— systems; a more formal, mathematical, ap-
proach is presented in the Supplementary Material
Supplementarymaterial.pdf (SM). Therein, we also pro-
vide numerical evidence on the existence of the LLNES for
a more general situation, d-dimensional confining poten-
tials —including anisotropy and interactions.

Let us now consider a physical system with mesoscopic
state described by r ≡ {x1, . . . , xd}. A prototypical exam-
ple is a colloidal particle confined in a d-dimensional po-
tential well. We assume the dynamics of r to be Markovian
and governed by the following Fokker-Planck equation for
the pdf P = P (r, t):

∂tP = ∇r ·
[

A(r)P +
1

2
B2(r)∇rP

]

. (1)

We stress the fact that, in general, not only the “force”
A(r) but also the diffusivity B2(r) are non-linear func-
tions of r. Sometimes, this Fokker-Planck equation with
non-linear coefficients is termed non-linear, although the
equation is indeed linear in the probability distribution
P [30]. This should be distinguished from other situa-
tions, where Fokker-Planck–like equations that are non-
linear in the probability distribution are employed —see,
for instance, [31–34].

The dynamics of the system is stochastic due to its con-
tact with a thermal bath at temperature T . We assume
that detailed balance holds [30,35], so the fluctuation-
dissipation relation

2A(r) = β B2(r)∇H(r). (2)

is verified, with β = (kBT )−1 and H(r) being the system’s
“Hamiltonian”. In certain contexts, H(r) would not be
the Hamiltonian of the system but the function playing
its role: e.g., for an overdamped Brownian particle, H(r)
would be the confining potential. Therefore, the canoni-
cal distribution, proportional to e−βH(r), is the stationary
solution of the Fokker-Planck equation [36].

The Markov process r(t) can also be characterised by
the Langevin equation at the trajectory level of descrip-
tion. When B depends on r, the noise is said to be
“multiplicative” [30] and several Langevin formulations
correspond to the same Fokker-Planck equation,

ṙ(t) = − [A(r) − (α − 1)B(r)∇B(r)] + B(r)η(t). (3)

Here, η(t) is the unit Gaussian white noise, 〈ηi(t)〉 =
0, 〈ηi(t)ηj(t

′)〉 = δijδ(t − t′) and the “multiplicative-
noise” parameter α must be chosen in the interval
[0, 1] [36]. For each physical situation, the correct inter-
pretation —typical ones are α = 0 for Ito’s, α = 1/2
for Stratonovich’s, α = 1 for Klimontovich’s— of the
Langevin equation with multiplicative noise is dictated by
physics, not by mathematics [37,38]. If B is constant, i.e.,
if the noise is additive, α becomes irrelevant.

Now we consider a quench to a low temperature: the
system is initially prepared at equilibrium at temperature
Ti, and put in contact with a thermal bath at a much
lower temperature Tf . In the subsequent relaxation to
equilibrium at temperature Tf , there is a time regime
in which noise is negligible: since H is independent of
the temperature, fluctuation-dissipation (2) entails that
B2(r)/|A(r)| ∝ Tf ≪ Ti. Therefore, terms containing
B(r) in eq. (3) can be neglected and the Langevin equa-
tion reduces to the deterministic, noiseless equation

ṙ = −A(r), (4)

which is independent of the parameter α in eq. (3).
In what follows, we establish the conditions under

which, for long enough times, the initial conditions are
forgotten for the solution of eq. (4). To be concrete, a
simple but physically relevant situation with radial sym-
metry, A(r) = A(r)r̂, r = |r|, r̂ = r/r, is considered.
The deterministic “force” A must be confining but other-
wise arbitrary. This is indeed the case of the prototypical
situation of a Brownian particle confined in an isotropic
potential U , for which the Langevin equation reads

ṙ = −γ−1 U ′(r)r̂ +
√

2D η(t), (5)

where γ and D are the friction and diffusion coefficients,
assumed to be position independent. The identifications
H = U , A = γ−1U ′(r)r̂ and B =

√
2D (thus additive

noise) in the general fluctuation-dissipation relation (2)
lead to the Einstein relation βγD = 1. Still, this is not
the only physical situation, e.g., one may also address the
relaxation of the velocity of a colloidal particle due to the
non-linear drag force stemming from its interaction with
the background fluid, considered later. Therein, the vari-
able r would stand for the velocity of the particle. Note
that, since A may change sign as r decreases, the potential
may have several minima.

From eq. (4), the time evolution for one trajectory start-
ing from ri is implicitly given by

t =

∫ ri

r(t)

dr′

A(r′)
, ri ≡ r(t = 0). (6)

Assuming that

lim
r→+∞

r−1A(r) = +∞, (7)

i.e., A diverging faster than linearly for large r, we have

t =

∫ +∞

r(t)

dr′

A(r′)
−

∫ +∞

ri

dr′

A(r′)
, (8)
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when the confining is stronger than harmonic at large dis-
tances. The first (second) term on the r.h.s. of eq. (8) is
the time needed to relax from a very large value of r, much
larger than ri, to the instantaneous position r(t) (ri).

Let us assume that the initial temperature Ti is much
larger than the final one Tf , implying the following
timescale separation:

t1 ≡ τ(Ti) ≪ t ≪ t2 ≡ τ(Tf ), (9)

where τ(T ) is the relaxation time to equilibrium at tem-
perature T . In this way, there appears an intermediate
time regime, in which the second term on the r.h.s. of
eq. (8) is negligible against the first while noise is still
irrelevant. Over the timescale in eq. (9), we thus get

r(t) ∼ rL(t),

∫ +∞

rL(t)

dr

A(r)
= t. (10)

The state rL(t) defined in eq. (10) is a non-equilibrium
attractor of the dynamics of the system, all solutions of
the Langevin equation tend to it over the timescale de-
fined in eq. (9), independently of their initial condition.
We term rL(t) long-lived non-equilibrium state (LLNES)1.
Note that t1 and t2 are thus determined by the conditions
rL(t1) = ri and rL(t2) = rf , respectively.

Over this far-from-equilibrium state, independent of ini-
tial conditions, the pdf is

PL(r, t) ∼ δ(r − rL(t)), (11)

as formally shown in the SM. Throughout the paper,
we use the symbol ∼ with the meaning of “asymptotic
to” [40], i.e., f(x) ∼ g(x) for x → x0 means that
limx→x0

f(x)/g(x) = 1. The function rL(t) defined by
eq. (10) depends on the specific form of the function A(r).
However, we can introduce a scaled variable c such that
its corresponding pdf is universal and time independent,

c ≡ r/〈r(t)〉, PL(c, t/) ∼ δ(c − 1). (12)

We recall that, over the LLNES, 〈r(t)〉 = rL(t). Note that
the terms containing B(r) in the Langevin equation (3)
eventually drive the system to equilibrium at Tf . In other
words, the LLNES is “destroyed” for long enough times,
when rL(t) = O(〈r〉eq(Tf)), i.e., as t = O(t2).

We now apply the results presented here to two different
physical situations. First, we consider the confined Brow-
nian particle of eq. (5), particularized for the non-linear
potential

U(r) =
1

2
kr2 +

1

4
λr4, λ > 0. (13)

The condition λ > 0 ensures that the potential is confin-
ing:

A(r) = ar + br3, a ≡ k/γ, b ≡ λ/γ. (14)

1This terminology was already employed in ref. [39] for a specific
form of A(r) in the context of non-linear Brownian motion.

Moreover, eq. (7) holds and we have the necessary
timescale separation.

We analyse the case k > 0 to start with, in which the
“force” A(r) > 0 ∀r 
= 0 and U(r) has only one minimum
at the origin. Later, we consider the case k < 0, which
corresponds to a “lemon-squeezer” potential with multiple
minima at r = rc, where

rc ≡
√

|a|/b =
√

|k|/λ. (15)

For k > 0, eq. (5) reduces to

ṙ = −ar
(

1 + r2/r2
c

)

r̂ +
√

2D η(t). (16)

In this physical situation, there are two characteristic
lengths,

rλ ≡ (kBT/λ)1/4, rk ≡ (kBT/k)1/2, (17)

which —aside from constants— correspondingly give the
equilibrium lengths at high and low temperatures. In fact,
it is useful for our analysis to introduce a dimensionless
temperature

T ∗ = kBTλ/k2 = (rk/rλ)4, (18)

high and low temperatures thus correspond to the regimes
T ∗ ≫ 1 and T ∗ ≪ 1, respectively. Note that rc = r2

λ/rk.
Let us analyse the emergence of the LLNES in this spe-

cific situation. The particularization of eq. (8) gives

2at = ln(1 + r2
c/r2(t)) − ln(1 + r2

c/r2
i ). (19)

For a high enough initial temperature T ∗

i ≫ 1, we estimate
ri with rλ,i = (kBTi/λ)1/4. There appears an intermedi-
ate time window over which ri ≫ r(t) ≫ rc and initial
conditions are forgotten, specifically

r(t) ∼ rL(t) = (2bt)−1/2, (T ∗

i )−1/2 ≪ 2at ≪ 1. (20)

Note that rL(t) only depends on b = λ/γ, i.e., only on the
behaviour of the potential at large distances.

In order to derive eq. (20), it is only necessary to con-
sider a high enough initial temperature; the role of the
final temperature is to (possibly) limit the timescale over
which the LLNES is observed. Noise is negligible as long
as rL(t) is much larger than the equilibrium value at
the final temperature, rk,f = (kBTf/k)1/2, which gives
the condition 2at ≪ (T ∗

f )−1. If T ∗

f = O(1) or larger,
this restricts the LLNES in eq. (20) to the time window
(T ∗

i )−1/2 ≪ 2at ≪ (T ∗

f )−1. If T ∗

f ≪ 1, the LLNES ex-
tends to longer times such that 2at = O(1), r(t) becomes
of the order of rc and

rL(t) = rc(e
2at − 1)−1/2. (21)

Figure 1 shows a set of stochastic trajectories for which
the behaviours in eqs. (20) and (21) are observed.

We now study the case k < 0, the “lemon-squeezer”
potential with multiple minima at r = rc. In the one-
dimensional situation, the potential would be bistable,
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Fig. 1: Stochastic trajectories for the overdamped Brownian
particle in a non-linear potential. Five realisations of the
Langevin equation (16) for d = 1, sampled from an initial
equilibrium state such that 〈r〉eq(T

∗

i )/rc = 103, to two final
states such that 〈r〉eq(T

∗

f,1)/rc = 10−2 (blue empty symbols)
and 〈r〉eq(T

∗

f,2)/rc = 10 (red filled symbols), are shown. Black
vertical lines correspond to the characteristic times that delimit
the different coloured regions: 1) t < t1(T

∗

i ) (blue), where ini-
tial conditions still prevail, 2) t1(T

∗

i ) < t < t2(T
∗

f,2) (orange),
where the power law equation (20) (dashed line) applies for
both final temperatures, 3) t2(T

∗

f,2) < t ≪ t2(T
∗

f,1) (green),
where eq. (21) (dotted curve) applies for T ∗

f,1, whereas ther-
mal noise becomes relevant for T ∗

f,2, and 4) t > t2(T
∗

f,1) (pink),
where noise becomes relevant for T ∗

f,1.

with two symmetric minima. The LLNES in eq. (20),
which only depends on the details of the potential at large
r, is still present for T ∗

i ≫ 1; it is thus independent of
the presence of other minima. Also, the LLNES extends
to longer times if T ∗

f ≪ 1, but it is no longer given by
eq. (21), and we have

rL(t) = rc

(

1 − e−2at
)−1/2

(22)

instead. The system reaches equilibrium at rc over this
regime, with small thermal fluctuations —see the SM for
a more detailed discussion.

Now we consider another relevant physical system: an
isotropic fluid with non-linear drag force. Specifically, we
investigate the stochastic evolution of N particles under-
going binary collisions and immersed in a background fluid
acting as a thermal bath. For dilute enough systems, the
velocity pdf P (v, t) obeys the Boltzmann-Fokker-Planck
equation [39,41,42]

∂tP = ∇v ·
[

ζ(v)

(

v +
kBT

m
∇v

)

P

]

+ J [P, P ], (23)

where ζ(v) stands for the velocity-dependent drag coeffi-
cient and J [P, P ] is the Boltzmann collision term, which is
bilinear in P —see the SM for more details. For low veloc-
ities, the drag force is usually linear in v, limv→0 ζ(v) = ζ0.
For large velocities, the drag force may become non-linear
in v: the dimensionless drag coefficient ζ∗ ≡ ζ/ζ0 thus

depends on v, as is the case when the masses of the Brown-
ian and background fluid particles are comparable [43–45].
If collisions among particles are elastic, this system tends
to the canonical distribution with H(v) = mv2/2, pro-
vided that A and B are such that eq. (2) holds. Since
A(v) = ζ(v)v, we need B2(v) = 2ζ(v)kBT/m; noise is
thus multiplicative.

The kinetic temperature is

Tkin(t) ≡ m

dkB
〈v2〉(t), (24)

which equals the bath temperature at equilibrium. Ini-
tially, the system is equilibrated at Ti, thus Tkin(t = 0) =
Ti, and the bath temperature is suddenly quenched to
Tf ≪ Ti. To be concrete, we restrict ourselves to drag
coefficients with algebraic behaviour for large v,

ζ∗(v) ∼ γ(v/vth,f )n, vth,f ≡ (2kBTf/m)1/2, (25)

with γ being the non-linearity parameter and vth,f the
thermal velocity at Tf . If n > 1, there appears a timescale
over which the non-linear drag dominates and both noise
and collisions —even if they are inelastic— are negligible.
Over this wide time window, initial conditions are forgot-
ten and the LLNES emerges. Specifically, we have

vL(t)/vth,f = (γζ0nt)−1/n, (Tf/Ti)
n/2 ≪ nγζ0t ≪ 1,

(26)
as derived in the SM. It is worth noting the strong anal-
ogy with eq. (20). The kinetic temperature thus shows a
slow non-exponential, algebraic, decay as Tkin(t) ∝ t−2/n,
which rules the emergence of memory effects such as the
Kovacs and Mpemba effects [39].

Figure 2 shows the pdf of the scaled variable c, for
the two specific examples of physical systems described
above. The delta-peak structure is clearly observed, for
one-, two-, and three-dimensional systems. For the non-
linear fluid, the data shown corresponds to n = 2.

In this letter, we have analysed the dynamical be-
haviour of a wide class of physical systems, described by a
non-linear Langevin (or the corresponding Fokker-Planck)
equation with detailed balance. When quenched to a low
enough temperature, all these systems reach a universal
long-lived non-equilibrium state, regardless of initial con-
ditions. This state, which we have termed LLNES, is char-
acterised by a Dirac-delta pdf.

There are two main hypotheses for the emergence of the
LLNES: i) the non-linearity of the ”force” in the Langevin
equation and ii) the separation of the initial tempera-
ture Ti from the final one Tf , Ti ≫ Tf . A separation
of timescales ensues, with the LLNES appearing in the
intermediate window, where initial conditions are irrele-
vant and noise is negligible. Under these quite general
assumptions, our results are independent of both the na-
ture of the noise (either additive or multiplicative) and the
dimensionality of the system, as shown in fig. 2.

For the sake of simplicity, we have restricted the discus-
sion to isotropic situations, in which our work proves the
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Fig. 2: Scaled pdf in the LLNES for different physical situations. Left: plot for both (OV) the overdamped particle in a
non-harmonic potential, eq. (16), and (FL) the molecular fluid with non-linear drag, eq. (23), for different spatial dimensions
d. For the former, c = r/〈r〉; for the latter, c = v/〈v〉. In order to appreciate the universal Dirac-delta shape in eq. (12), each
pdf is shifted by a factor σ to the right, as indicated in the legend. In each case, a small tail to the left of the peak is observed
—see the SM for a detailed account of the (small) deviations from the delta peak. Right: plot of the bivariate scaled pdf in the
LLNES for the molecular fluid in the two-dimensional case.

existence of the LLNES. For the same reason, our termi-
nology has been mainly focused on overdamped particles
in confining potentials. Still, the presented framework is
more general, since the physical meaning of the variables
xi in the d-dimensional mesoscopic state r ≡ {x1, . . . , xd}
and the “force” A(r) are not predetermined —as shown
by our analysis of the fluid with non-linear drag, in which
the xi stand for the components of the velocity. In a
generic situation, the xi may include both positions and
velocities, and thus our framework in principle applies to
underdamped systems. The Langevin equation for an un-
derdamped particle of mass m with non-linear drag force
in a confining potential would be

ẋ = v, v̇ = −ζ(v)v − 1

m
∇U(x) +

√

2ζ(v)kBT

m
η. (27)

Note that this equation does not belong in the general class
considered in eq. (3). To include eq. (27) in our framework,
we have to generalise eq. (3) to the case in which B is no
longer a scalar, affecting all the components of r ≡ {x, v}
in the same way, but a second-rank tensor2. The non-
linearity of the “force” A = {−v, ζ(v)v + ∇U(x)/m}
suggests that LLNES may also emerge in underdamped
systems. Certainly, this constitutes an interesting per-
spective for future research.

It is always the form of the “force” at large distances
that controls the emergence and shape of the LLNES, as
illustrated by our analyses of the quartic potential and
the non-linear fluid above. The effective reduction to
one degree of freedom stemming from isotropy have al-
lowed us to obtain analytical results for the emergence
of the LLNES. The SM presents formal proofs for the
one-degree-of-freedom case, and also numerical evidence
and qualitative, physical, arguments that hint at the the

2In the simple case depicted in eq. (27), B would be diagonal,
with the elements corresponding to x equal to zero and the elements
corresponding to v equal to

√

2ζ(v)kBT/m.

existence of the LLNES for more complex scenarios with
several degrees of freedom —including anisotropy and in-
teractions. Note that the nature of the interactions is
immaterial for our results —as long as the two main hy-
potheses i) and ii) above are fulfilled. Yet, either numeri-
cally checking the emergence of the LLNES or rigorously
proving the conditions for its existence in these more
complex situations, with anisotropy and interactions, are
highly non-trivial tasks that lie beyond the goals of the
present work.

Quasi-elastic one-dimensional granular systems have
been shown to display Dirac-delta pdfs [46–48] resembling
that of the LLNES. This result was derived from the in-
elastic Boltzmann equation, and therefore it cannot be
considered as a particular case of the general result de-
rived in this letter —obtained within the Langevin frame-
work. Still, the similarity of the observed pdfs entails it
is worth investigating possible connections between these
two intrinsically different physical situations. On another
note, the LLNES found here displays some similarities
with the quasi-stationary states (QSS) observed in some
systems with long-range interactions, such as the HMF
model [49,50]. The possible existence of a deeper connec-
tion between the LLNES and these long-lived QSS is also
worth investigating.

Finally, testing the emergence of the LLNES in real ex-
periments is an interesting prospect for future work. In
particular, it seems worth exploring the relevance of the
LLNES to control the time evolution of mesoscopic sys-
tems, like biomolecules or memory devices. In this re-
gard, it must be stressed that the two specific examples
considered here describe actual physical systems. Current
techniques make it possible to control the shape of the
potential confining a colloidal particle immersed in a
fluid [5,6], and the Langevin equation for the velocity with
non-linear drag has been successfully employed to describe
mixtures of ultracold atoms [45].
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