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We demonstrate an accurate method to control the motion of a micromechanical oscillator in
contact with a thermal bath. The experiment is carried out on the cantilever tip of an atomic force
microscope. Applying an appropriate time dependent external force, we decrease the time
necessary to reach equilibrium by two orders of magnitude compared to the intrinsic equilibration
time. Finally, we analyze the energetic cost of such a fast equilibration, by measuring with kB T
accuracy the energy exchanges along the process. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962825]

The last decade witnessed spectacular advances in the
fabrication and control of high-quality micromechanical
oscillators. They are nowadays widely used in applications
including timing, synchronization, high precision sensing of
force, acceleration and mass. They even provide an interest-
ing connection between quantum resources dedicated to
quantum state manipulations and resources for transmitting
quantum states.1–3

Most applications involve micromechanical oscillators in
the underdamped regime and in contact with a thermal bath.
In the present letter, we implement a generic method to speed
up the transition between the two equilibrium states of such a
micromechanical oscillator in the limit where the relevant
description is that provided by the 1D underdamped harmonic
oscillator in the presence of thermal noise. Such a system
evolves towards a new equilibrium state by dissipating energy
along an oscillating dynamics whose amplitude decreases
with a relaxation time of s¼m/c, where m is the oscillator
mass and c the viscous coefficient, which depends on the sur-
rounding medium and the probe geometry. The reduction of
the duration time of the transient regime to an arbitrary time tf
" s is an important issue for applications, such as Atomic
Force Microscopy (AFM), which has become a pivotal tool in
the experimental study of biological systems, material science,
polymer physics, etc. Many experiments are done in gaseous
media, which increases the quality factor and produces long
transients. An arbitrary acceleration of the equilibration time
of AFM cantilevers is the basis of the high speed AFM, and it
has been achieved, in particular, using feedback techniques4–6

or changing the viscoelastic behavior of the cantilevers.7

Alternatively, it has been recently shown that, in the case of
an overdamped system, fast relaxation can be obtained by
using an appropriate driving force which remains efficient
even in a very noisy environment. This result was obtained on
a Brownian particle trapped by optical tweezers and the new
equilibrium was reached 100 times faster than the natural
equilibration time.8 Here, we generalize this idea, referred to
as Engineered Swift Equilibration (ESE), to the underdamped

systems, using as micromechanical oscillator the cantilever tip
of an atomic force microscope. We also measured directly the
energy needed in the course of the transformation to acceler-
ate the process. Our approach is therefore of the feed-forward
type, and in that, it belongs to a category of techniques known
in the engineering community as input shaping.6,9

Specifically, we propose an ESE protocol, which does
not require any feedback and which is based only on a statis-
tical analysis of the cantilever tip position x(t), whose
dynamics is described with a rather good accuracy by a sec-
ond order Langevin equation

m€x ¼ #c _x # jxþ FðtÞ þ fðtÞ; (1)

where j is the stiffness of the system and F the external
applied force. f is a white noise delta correlated in time:
hfðtÞfðt0Þi ¼ 2ckBTdðt# t0Þ. The resonant frequency xo ¼ffiffiffiffiffiffiffiffiffi

j=m
p

is the frequency of the first cantilever mode. The pro-
cess that we want to speed up is the transition of the cantile-
ver tip from an initial equilibrium position xi to a new one xf,
obtained by applying a time dependent force F(t).

In the case of an underdamped oscillator in the presence
of thermal fluctuations, the equilibrium velocity and position
probability distribution function (pdf) qeqðx; v; tÞ reads as

qeqðx; vÞ ¼ 1
Z exp # jx2

2kBT #
Fx

kBT

h i
exp # mv2

2kBT

h i
, where j, m, and

T are fixed all along the protocol and Z is the partition func-
tion. Once a parameter is changed, for example, the external
force F, the Kramers equation gives us the evolution of the
pdf. By appropriately tuning the strength of F as a function
of time, it is possible to force the system to equilibrate in a
given time tf. This is the spirit of the ESE protocols.

Specifically, in our ESE process (see supplementary
material for an accurate derivation), the force evolves
according to a polynomial equation in the normalized time
s ¼ t=tf as

F sð Þ
j xf
¼ s3 10# 15sþ 6s2ð Þ þ c

jtf
30s2 # 60s3 þ 30s4ð Þ

þ m

jt2
f

60s# 180s2 þ 120s3ð Þ; (2)
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with boundary conditions F(t)¼ 0 for t< 0 and FðtÞ=j ¼
Ff =j ¼ xf for t> tf. Interestingly, the protocol dependence
on the final position xf is separable and keeps its shape under
different traveling distances. Eq. (2) is factorized in that way
to clearly show the three terms corresponding to the three
different regimes determined by the values of tf, i.e.,
tf ' c=j; 2p=xo ( tf ( c=j, and 2p=xo > tf . As demon-
strated in the following, the system will reach the desired
equilibrium state from its initial equilibrium state using this
protocol and in the time interval tf that we choose.

The sketch of the experimental setup is illustrated in Fig.
1(a). The oscillator under consideration is a silicon cantilever
(size 500 lm) 30 lm) 2.7 lm, NanoAndMore) with a poly-
styrene sphere (Sigma-Aldrich, R¼ 75 lm) glued on its tip.
We will refer to this ensemble sphere-cantilever as the probe.
The whole probe and the flat surface, facing the sphere, are
coated with a 100 nm thick gold layer. The experiment is done
in nitrogen atmosphere at room temperature T¼ 300 K and
pressure p¼ 1 bar. Therefore, the viscosity is very low, which
gives a completely underdamped dynamics. The surface-sphere
distance d can be tuned using an electronically controlled pie-
zostage (Piezo Jena). The position x(t) of the cantilever tip is
measured by a highly sensitive interferometer with subpicome-
ter resolution and high speed acquisition facq¼ 200 kHz.10

The stiffness, viscosity, and mass are the intrinsic parameters
of the oscillator and are calibrated using the Brownian
motion of the thermally excited probe; in this specific case,
j ¼ ð2:5060:50ÞN=m; c ¼ ð1:0060:30Þ ) 10#6 N s=m, and
m ¼ ð8:3760:16Þ ) 10#9 kg. Hence, the resonance of the first
mode of the probe is xo¼ 17.3 krad/s.

An attractive electrostatic interaction is generated by
applying a voltage difference V(t) between the surface
and the sphere. The sphere-surface force can be written as

F ¼ 4p!0RV2=d for d " R,11 where !0 is the dielectric con-
stant, d the distance between the sphere and the surface, and
R the radius of the bead. Therefore, we can write F ¼ KV2,
where K ¼ ð1:7160:01Þ ) 10#10N=V2 is the calibration fac-
tor obtained from the equilibrium relation jDx ¼ KV2,
where Dx is the displacement of the cantilever once we apply
a voltage V.12 In practice, the voltage V(t) is produced by an
arbitrary signal generator (Agilent 33522) at 2 MHz sam-
pling rate. The experiments were performed at a distance
d> 1 lm and for a maximum required displacement below
Dx ¼ jxf # xij < 3nm. The condition Dx " d is indeed very
important because strictly speaking the real sphere-plane dis-
tance is d # Dx (see Fig. 1). Thus, in principle, F is also a
function of Dx. However, the condition Dx" d allows us to
neglect the dependence of F on x and to implement the ESE
protocol, with an x independent force (see Eq. (2)). We point
out that the limitations d<R and Dx< d come from the kind
of forcing that we have chosen and are not imposed by the
ESE. Other kinds of forcing can be used, for example, put-
ting an electrode on the other side of the cantilever, which
will not have any limitation.

The time dependent behavior of FðtÞ=ðjxf Þ needed to
equilibrate the probe in a time tf is obtained by inserting in
Eq. (2) the experimental values of the parameters. The com-
puted time evolutions of F(t) are plotted in Fig. 1(b), for var-
ious tf. Decreasing tf below some threshold (for our
experiment, this threshold is 0.23 ms), the behavior is no lon-
ger monotonous.

In order to emphasize the main features of ESE, we
compare it to a standard step protocol (STEP) in which we
instantaneously change F(t) from Fi¼ 0 to the final value
Ff ¼ j xf . In the absence of noise, the response of the system
to STEP forcing obeys the equation xðtÞ=xf ¼ 1# exp

ð#nxotÞsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1# n2

p
xotþ /Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1# n2

p
, where n ¼

c=ð2
ffiffiffiffiffiffiffi
mj
p

Þ and / ¼ cos#1n. From this time evolution, one

can fix a reference velocity v0 ¼ xfffiffiffiffiffiffiffiffi
1#n2
p nxo ¼ ð20:9

60:2Þnm=ms, which we use to compare quantitatively STEP
and ESE responses.

Examples of the time evolution of x(t) and _xðtÞ for the
two protocols are plotted in Fig. 2 when the equilibrium
position is changed from xi¼ 0 to xf¼ 0.5 nm. In this specific
illustration, we choose for ESE tf¼ 2 ms for which the
needed F(t) is plotted in Fig. 1(b) (blue line). In Fig. 2, we
compare the STEP and ESE protocols by plotting for each of
them, a single realization (blue lines) and the mean response
(red lines) obtained by averaging over 5000 realizations of
the protocols. Within the STEP protocol (Figs. 2(c) and
2(d)), both x(t) and _xðtÞ do not relax up to more than several
s. This has to be compared to ESE (Figs. 2(a) and 2(b)), for
which the system reaches the target position xf in the desired
timelapse (tf¼ 2 ms); this is about two orders of magnitude
faster than STEP. Note that the velocity scale for the velocity
along ESE is five times expanded with respect to STEP.
Remarkably, the ESE turns out to be very efficient even at
the level of a single realization.

However, the ESE formulation put to work here cannot
be operational for too small values of tf. This can be
observed by comparing results with tf ranging from 0.2 ms to
10 ms. As shown in Fig. 3, where the ensemble averages of

FIG. 1. (a) Sketch of the experimental setup. The cantilever-sphere system
is connected to the ground, while the surface is connected to the signal gen-
erator. The external force is applied by the voltage difference between them.
(b) Force ESE protocol for different final times tf¼ 0.2 ms (red), 0.5 ms
(black), and 2 ms (blue) as a function of the normalized time s¼ t/tf. If we
reduce enough the protocol time, the inertial term of the protocol becomes
dominant and yields a nonmonotonous force (see the red curve).
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5000 trajectories with tf¼ (0.2, 0.5, 2.0) ms are presented,
the response of the systems to ESE protocol is excellent as
long as tf > tosc ¼ 2p=xo ’ 0:4 ms. For times shorter than
tosc, the ESE response remains significantly superior to its
STEP counterpart, but it begins to deteriorate with the occur-
rence of small damped oscillations. The reason for these
residual oscillations lies in the modeling of the probe dynam-
ics. Indeed, Eq. (1) describes well the probe dynamics only
for frequencies smaller than the first longitudinal mode fre-
quency of the micromechanical oscillator. When tf< tosc, the
high order modes are also excited and Eq. (1) does not prop-
erly describe the dynamics of the tip. The effect is visible in
the proper trajectory or velocity (see Fig. 3 for tf¼ 0.2 ms).
However, despite this small residual error, the improvement
for equilibration speed of ESE is still quite appreciable in
this regime, as it can be easily checked by comparing the
STEP response in Fig. 2(c) with Fig. 3(a). We emphasize
that the feature addressed here is not a deficiency of the ESE
method at such, but a consequence of its implementation on
an equation that becomes inaccurate at a high frequency.

This is the intrinsic limitation of ESE which works as far as
the mathematical model of the physical system is accurate
enough.

A relevant question deals with the measurement of the
energy dissipated for various values of tf. Indeed, a good char-
acterization of the energetics of small systems is essential to
understand their time evolution, their limits, and their interac-
tions with the environment. Even if the energy exchange is
comparable with the intrinsic thermal noise, this heat release
is important in small devices, either natural, such as
enzymes,13 or artificial, such as thermal nanoengines.14 Our
system has a total energy E ¼ U þ K ¼ 1

2 jx2 # Fxþ 1
2 mv2,

where U and K correspond to the potential and the kinetic
energy, respectively. The stochastic energy received by the
system along a single trajectory can be expressed as

DE ¼
ðtf

0

@E

@F
_F þ @E

@x
_x þ @E

@v
_v

# $
dt : (3)

Following Ref. 15, we identify the first term in the rhs of Eq.
(3) with the stochastic work dW. The heat dQ ¼ dE# dW
splits into two contributions dQx and dQv which correspond
to potential and kinetic heat, respectively.15 The value of the
dissipated heat at the end of the protocol has to correspond
to the difference between the exerted work and the difference
of free energy between the initial and final state DF . The
free energy difference is DF ¼ DU # TDSeq. As the differ-
ence of the entropy of the system DSeq between the initial
and final state is zero (position-wise, the statistical distribu-
tion is simply shifted by a quantity xf ¼ Ff=j) and since
DE ¼ DU due to the isothermal condition, the free energy
difference is DF ¼ DU ¼ F2

f =2j ¼ W þ Q. In all this dis-
cussion, W and Q refer to the mean work and heat.

In Fig. 4, the evolution of the energetics is shown for
two different ESE times, tf¼ 0.2 ms and tf¼ 2 ms. Despite
the limitation of our ESE implementation for tf< tosc, we
estimate the energetics in this regime as well. Indeed, we
checked that the measured time evolutions of W and Q
coincide quite well with those of the numerical simulation of

FIG. 2. Dynamics of the system along
the STEP and ESE protocols. All pro-
cesses start at t¼ 0 ms. (a) Position
evolution along the ESE process with
tf¼ 2.0 ms. (b) Normalized velocity
_xðtÞ=vo as a function of time, along the
ESE process. (c) Position evolution
along the STEP protocol. Intrinsic
oscillations of the cantilever are much
faster than the dissipation process,
what makes difficult to distinguish the
trajectory. The inset provides a magni-
fication of a small region. (d)
Normalized velocity evolution along
the STEP process. The inset increases
the time resolution, to observe the
intrinsic oscillations. All figures show
the dynamics of a single realization
(blue) and the ensemble average over
5000 realizations (red). Vertical black
solid lines in (a) and (b) represent the
limits of the ESE protocol (tf¼ 2 ms).

FIG. 3. Comparison of the ESE protocols at various tf. (a) Ensemble average
of the trajectory over 5000 realizations for tf¼ 0.2 ms (red), tf¼ 0.5 ms
(black), and tf¼ 2 ms (blue). The higher modes start to dominate the dynam-
ics of the system once the protocol is shorter than 2p/xo ’ 0.4 ms. (b)
Ensemble average of the normalized velocity for the same time periods in
(a). The normalized velocity _xðtÞ=vo allows a better vision of the higher
order effect. In both figures, the vertical lines represent the end of each pro-
tocol. All processes start at t¼ 0 ms.
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Eq. (1) for the ESE protocols. This means that the residual
errors remain small even when tf < tosc, as we have shown
in Fig. 3. Due to the low viscosity of the environment, dissi-
pation lies within the detection limit of our experiment, and
no significant changes are provided in the final value of the
work needed to execute the protocol. However, there is a sig-
nificant difference in the evolution of the energetics when tf
is larger or smaller than tosc. Indeed, we checked that for
tf* 0.3 ms the behavior of W is similar to the blue line in
Fig. 4. Instead, when tf( 0.3 ms, the protocol becomes non-
monotonous to compensate for the inertial term in the
dynamics (see Fig. 1(b)). Therefore, the work is not growing
continuously, but becomes negative for a small time interval
in the course of the transformation. This means that the sys-
tem shall exercise work on the environment to ensure a
relaxation on a very short amount of time. In Fig. 4(b), the
total heat is plotted as a function of time. There are signifi-
cant changes in the time evolution but not in the final value.
The total heat is the sum of the potential and the kinetic one,
shown in Figs. 4(c) and 4(d), respectively. As the cantilever
moves from an equilibrium position to another rapidly, a
high speed is required and a large amount of heat is absorbed
via the kinetic energy. Figures 4(c) and 4(d) also show how
the heat is dissipated via the potential energy and not via
kinetic energy (see the nonzero value in the final times of
Fig. 4(c) and the zero value in Fig. 4(d)). All graphs corre-
spond to ensemble averages over 5000 realizations.

Using a micromechanical oscillator, we have shown that
ESE protocols speed-up the relaxation time of about 2 orders
of magnitude. The bound ultimately faced has to do with the
limit of the modeling of the cantilever dynamics by a simple
Langevin oscillator with a single resonant frequency. The
ESE could be useful to design the high speed AFM, where in
such a case the time tf is the settling time needed for a fast dis-
placement of the tip to a new position.5 By reducing the oper-
ating time of AFM or optical trap, one enlarges the frequency
window in which the system under scrutiny (biomolecule,

material, and enzyme.) can be probed. Our formalism can be
readily applied to the optical traps operating under vacuum
and for which inertia becomes predominant.16 We can also
imagine protocols where the free parameter is the distance
between the tip and the surface, modulated by a high accuracy
piezoelectric device. Finally, the ESE protocols could be com-
bined with standard feedback techniques to further decrease
the operating time.

Supplementary material contains two sections. The first
one describes the energy measurements are performed. The
second section presents a detailed mathematical analysis on
the method used to compute the ESE protocols.
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