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Abstract

A granular gas may be modeled as a set of hard-spheres undergoing inelastic collisions; its microscopic dynamics is thus strongly
irreversible. As pointed out in several experimental works bearing on turbulent flows or granular materials, the power injected in
a dissipative system to sustain a steady-state over an asymptotically large time window is a central observable. We describe an
analytic approach allowing us to determine the full distribution of the power injected in a granular gas within a steady-state
resulting from subjecting each particle independently either to a random force (stochastic thermostat) or to a deterministic force
proportional to its velocity (Gaussian thermostat). We provide an analysis of our results in the light of the relevance, for other types
of systems, of the injected power to fluctuation relations. To cite this article: P. Visco et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Puissance injectée dans un gaz granulaire. Un gaz granulaire est assimilé à une assemblée de sphères dures inélastiques, ce qui
confère à sa dynamique microscopique un caractère fortement irréversible. Ainsi que suggéré par plusieurs travaux expérimentaux,
réalisés sur des fluides turbulents ou granulaires, la puissance injectée dans ces systèmes pour les maintenir dans un état stationnaire
sur une grande fenêtre temporelle est une observable de choix. Nous présentons une méthode analytique permettant d’accéder à la
distribution de la puissance injectée dans un gaz granulaire au sein d’un état stationnaire obtenu en soumettant chaque particule
soit à une force aléatoire (thermostat stochastique), soit à une force déterministe proportionnelle à sa vitesse (thermostat gaussien).
Nous analysons nos résultats à la lumière du rôle joué, dans d’autres types de systèmes, par la puissance injectée dans le contexte
des relations de fluctuation. Pour citer cet article : P. Visco et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Motivations

One of the lessons of thermodynamics is that in order to characterize the macroscopic properties of systems in
equilibrium only a few numbers of well-chosen variables are necessary. Intensive state functions, like the free energy
per unit volume, depending on intensive variables only (like temperature and density), can then be used to determine
e.g. the system’s phase diagram. Statistical mechanics is the theory that precisely allows us to bridge the microscopics
to the interesting macroscopic behavior, which it does by bypassing the details of the dynamical rules governing the
time evolution of the system at hand. The outcome of its machinery lies in the determination of the much sought after
state functions.

Unfortunately, for systems that are in steady-states without being in equilibrium, no such theory exists. As long
as the dynamics breaks the detailed balance condition, steady-state properties will strongly depend on the details of
the microscopic evolution rules, and any statistical mechanical approach must incorporate those. Yet, a few guiding
principles inherited from equilibrium thermodynamics can be saved. We shall illustrate this on the example of the
granular gas, that we model as an assembly of hard-spheres interacting only through inelastic collisions. The irre-
versible dissipation of energy is compensated by an energy injection mechanism—two such will be presented in the
following—that maintains the gas in a steady-state, with time translation invariant properties. Our interest goes to the
total energy W(t) injected by the heating mechanism over an asymptotically large time window [0, t]. This is a space
integrated quantity, as it takes into account the work performed on each individual particle over [0, t]. That W is a
space extensive quantity means that its properties will not be too sensitive to the microscopic details of the interac-
tions. The key-role of the dynamics is taken into account in the time extensivity of W , but again with the hope that
irrelevant details will be smoothened out through time integration. These arguments have already been put forward
in a series of experimental and theoretical works bearing on turbulent flows, convection experiments, or on granular
materials themselves. The belief is that global, i.e. space and time integrated, observables, more than local response
functions, will allow comparing systems as far apart as turbulent flows or granular gases whose dynamics nevertheless
share strongly dissipative features, and that the theorist craves to unite within a common framework.

In the present work we shall focus on the probability distribution function (pdf) P(W, t) of W , as well as on
its related generating function P̂ (λ, t) = 〈e−λW 〉. More specifically, our efforts will be devoted to determining the
corresponding large deviation functions defined by

π(w) = lim
t→∞

1

t
lnP(W = w t, t), μ(λ) = lim

t→∞
1

t
ln P̂ (λ, t) (1)

As has been recognized long ago [1], π(w), or μ(λ), which are related by a Legendre transform π(w) = maxλ{μ(λ)+
λw}, play the role of intensive dynamical free energies, solely depending on intensive variables, like w(t) = W(t)

t
, the

fluctuating time averaged injected work.
It also turns out that in other classes of dynamical systems, the power injected by the heating mechanism can

be related to the entropy current flowing into the system, whose large deviation function (ldf) has been shown to
possess an important symmetry property: this is the celebrated fluctuation theorem [2,3]. While a crucial hypothesis
underlying its demonstration in the aforementioned works is missing in the granular gas, namely a weak form of time
reversibility, empirical attempts have been made in the past, at an experimental [4] and a theoretical [5,6] level, to see
whether such a fluctuation relation for W(t) would hold. There is furthermore no straightforward connection between
W and entropy production, an otherwise ill-defined concept [7,8] in a granular gas. These issues will be further
discussed in the final section. For now we start by describing the dynamical evolution rules of our granular gas, along
with two possible energy injection mechanisms. Then we present a kinetic-theory based approach to determining the
related large deviation functions. The discussion will cast our results within the framework of ‘fluctuation theorems’.

2. Stationary state of a granular gas

2.1. The microscopic dynamics of a granular gas is irreversible

A standard way of modeling a granular gas is to consider a set of N hard-spheres undergoing inelastic collisions in
which a fraction (1 − α2) of the relative kinetic energy is dissipated away. The restitution coefficient α lies between 0
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and 1 (elastic collisions). Two incoming particles with velocities v1 and v2 acquire velocities v∗
1 and v∗

2 after having
collided, with

v∗
1 = v1 − 1 + α

2
(v12 · σ )σ , v∗

2 = v2 + 1 + α

2
(v12 · σ )σ (2)

The component of the relative velocity v12 = v1 − v2 along the unit vector σ joining the centers of the particles is
reduced by a factor α, v∗

12 · σ = −αv12 · σ . For any given trajectory in phase space, the time-reversed one is not a
physical trajectory. One can write an energy balance equation for the total kinetic energy E(t) = ∑

i
1
2 v2

i , which varies
according to

�E = E(t) − E(0) = W(t) − D(t) (3)

where W(t) is the energy injected by an external driving mechanism, while D(t) � 0 is the energy irreversibly dissi-
pated through the inelastic collisions. The average variation rate of D can be estimated as the collision rate times the
energy dissipated through a collision,

d

dt
〈D〉 = −1 − α2

4�

〈|v12 · σ |3〉 (4)

where � is the mean free path. The mean kinetic energy per particle provides a typical energy scale, also termed
granular temperature, and it is defined as

Tg = 〈
v2
i

〉
/d = β−1

g (5)

In the absence of a heating mechanism, dimensional analysis and the assumption of homogeneity, lead to Tg decaying
with time as Tg(t) ∝ t−2 (Haff’s law). We now introduce two relevant heating mechanisms.

2.2. Free cooling and deterministic isokinetic thermostat

Each particle i, in addition to the inelastic collisions, is subjected to an energy-injecting viscous friction force
+γ vi . However unphysical it may appear at first sight, this thermostat is actually relevant to the study of the homoge-
neous cooling regime [9,10]. During the homogeneous cooling stage, the typical velocity

√
Tg , and thus the collision

frequency, decrease as 1/t . Rescaling time with the collision frequency allows us to eliminate time dependence and
leads to an effective (nonequilibrium) steady-state. The latter rescaling is exactly accounted for by an effective vis-
cous friction force that, instead of dissipating energy, pumps it into the system. Within the newly rescaled dynamics,
collisions occur at a constant rate. The energy provided by the thermostat reads

W(t) =
∑

i

t∫
0

dτ γ v2
i (τ ) (6)

Note that W � 0 for all trajectories in phase space.

2.3. Heated gas and stochastic thermostat

A more conventional way of achieving a steady-state is to inject energy by means of independent random forces
acting on each individual particle:

dvi

dt
= Fi + collisions,

〈
Fα

i (t)F
β
j (t ′)

〉 = 2Γ δij δ
αβδ(t − t ′) (7)

This heating mechanism is easier to handle mathematically than more realistic thermostats because it leads to a
uniform system, in contrast to boundary drives. It should be noted that there are some experimental setups that do
achieve a uniform heating [11]. Besides, when the experiment resorts to vibrating walls, within a large subvolume
far enough from the boundaries, energy and particles are roughly uniformly distributed [4], which allows for easier
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comparison, but this cannot be thought of as resulting from an effective bulk heating mechanism. In the present case,
the work provided by the external heating reads

W(t) =
∑

i

t∫
0

dτ Fi (τ ) · vi (τ ) (8)

Given that 〈W 〉/t = 2dΓ , the typical energy scale is set to Tg = ( 2d�Γ
√

π

(1−α2)Ωd

)2/3.

3. Large deviation function for the injected power

Let W(t) denote the total power injected into the granular gas by the heating mechanism over the time interval
[0, t]. We begin with introducing a phase space density ρ(Γ,W, t) that counts the number of systems in state Γ that
have accumulated over the time window [0, t] a total work W(t) = W . A generalized Liouville equation can be written
for ρ, in which the Liouville operator LW can be split into a W conserving part Lcoll and one accounting for changes
in W under the effect of the external injection mechanism Linj:

∂tρ = LW(Γ,W)ρ = Linj(Γ,W)ρ +Lcoll(Γ )ρ (9)

It is a convenient detour to go first to the Laplace transform of ρ, ρ̂(Γ,λ, t) = ∫
dW e−λWρ(Γ,W, t), then rewrite the

Liouville equation in terms of ρ̂,

∂t ρ̂ = LW(Γ,λ)ρ̂ = Linj(Γ,λ)ρ̂ +Lcoll(Γ )ρ̂ (10)

The largest eigenvalue μ(λ) of LW(λ) thus governs the asymptotic behavior of ρ̂,

ρ̂(Γ,λ, t) 
 C(λ)eμ(λ)t ρ̃(Γ,λ) (11)

where ρ̃(Γ,λ) is the (right) eigenvector of LW(Γ,λ) associated to μ(λ), and C(λ) is the projection of the initial state
on this eigenvector. We have chosen to normalize ρ̃ to unity, which, given that it has a definite sign, endows it with the
meaning of a probability distribution (note, however, that (10) is a not a Liouville equation since it does not conserve
probability). We shall provide further insight on this later. In order to determine μ and ρ̃, we project the eigenvalue
equation onto the one particle subspace. We shall focus on this isokinetic thermostat for which the results presented
here are new. We arrive at

μ(λ)f̃ (1)(v1, λ) = −γ ∂v1 · (v1f̃
(1)(v1, λ)

) − λγ v2
1 f̃ (1)(v1, λ) + coll. (12)

where in the rhs of (12) the loose notation ‘coll’ is a shorthand for the full collision operator acting on the two point
function f̃ (2). In order to extract physical information from this equation, we resort to the molecular chaos hypothesis,
which turns the two-body interaction term into

coll. = 1

�

∫
v12·σ>0

dv2 dσ (v12 · σ )

(
1

α2
f (1)(v∗∗

1 , λ)f (1)(v∗∗
2 , λ) − f (1)(v1, λ)f (1)(v2, λ)

)
(13)

where the ∗∗ superscripts denote pre-collisional quantities. Not surprisingly, one recovers the steady-state velocity pdf
equation at λ = 0. It is interesting that the process encoded in (12) can be read off as the original granular gas dynamics
in which additional particles are created (or destroyed, according to whether λ < 0 or > 0) at a velocity dependent rate
λv2. The eigenvalue μ(λ) is then interpreted as the population growth rate. This remark was numerically exploited, for
somewhat different systems, by Giardinà, Kurchan and Peliti [12]. The splitting of f (2) as a product of independent
one particle distributions is indeed a molecular chaos hypothesis for the system with the non-particle conserving
fictitious dynamics. The Boltzmann equation toolbox offers many ways to arrive at an expression for μ(λ).

Let us start with λ ∼ 0, that is in a regime for which W lies in the vicinity of 〈W 〉. Strictly at λ = 0, that is
when f̃ (1)(v,0) yields the steady-state velocity pdf, Sonine expansions have successfully been used to characterize
deviations from the Maxwell distribution [13]. These expansions work all the better as space dimension d is high, given
that the phase space contraction due to the inelastic collisions occurs only along one—among d—space direction. The
coefficients of the expansion turn out to be functions of the reduced variable (1 − α2)d−1, thus making explicit that
a large d expansion is equivalent to a quasi-elastic limit, hence the success of expanding around a Gaussian. What
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cannot be guessed, however, is that in practice d = 2 or d = 3 already turn out high enough dimensions for the Sonine
expansions to provide quantitatively reliable results. This provides the necessary motivation for attempting a Sonine
expansion at λ ∼ 0. However, further analysis, in the same vein as that carried out by Van Noije and Ernst [13], shows
that in the large velocity limit (and at λ > 0), the one point function f̃ (1)(v, λ) must be a Gaussian. The simplest
approximation is thus to project f̃ (1)(v, λ) onto a Gaussian with a λ-dependent variance. From (12) one can easily see
that

μ(λ)/N = −γ λ
〈
v2〉

λ
(14)

where 〈· · ·〉λ denotes an average performed with respect to the weight given by f̃ (1). This equation relates the variance
of f̃ (1) to μ in a particularly simple way. Thus, working in terms of rescaled quantities, with the granular temperature
precisely given by

Tg =
(

2d�γ
√

π

(1 − α2)Ωd

)2

(15)

and performing the following replacements

μ := μ/(Nγ ), λ := λTgd/2 (16)

one has, for the dimensionless quantities:

μ(λ) = −1 + 2λ − √
1 + 4λ

2λ
(17)

The asymptotic behavior is given by:

μ(λ)
λ→−1/4∼ 1 − 2

√
1 + 4λ +O

(
λ + 1

4

)
, μ(λ)

λ→∞∼ −1 + 1√
λ

+O
(

1

λ

)
(18)

Taking (14) into account one sees that the typical temperature scale as given by f̃ (1) is given by T (λ) ∼ Tg

∣∣μ(λ)
2λ

∣∣. That
T (λ → +∞) → 0 means that values of W much lower than the average 〈W 〉 are produced during trajectories over
which typical velocities are small, which is, of course, no surprise (Fig. 1). By contrast, given that T (λ → −1/4) =
2Tg , the larger than average W trajectories arise from realizations in which the effective kinetic temperature is at a
value twice the stationary state temperature Tg .

It is possible to express the large deviation function of w = W/t by a simple Legendre transform,

π(w)
w→0+∼ −1 + 3

22/3
w1/3 +O

(
w2/3), π(w)

w→∞∼ −w

4
+O

(√
w

)
(19)

but the validity of the w → 0+ expression may be hindered by subtle effects that we shall discuss in the next section
(Fig. 2).

Fig. 1. Plot of μ(λ). Fig. 2. Plot of π(w).
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We refer the reader to [14,15] for details about the stochastic thermostat for which we obtain, in terms of dimen-
sionless variables (for which 〈w〉 = 1),

μ := μ
Tg

dΓ N
, λ := λTg (20)

the following expression

μ(λ) = −λ + 1

2

T (λ)

Tg

λ2 (21)

where
√

T (λ) sets the typical velocity scale for trajectories characterized by λ. At large values of λ, corresponding
to values of W small with respect to 〈W 〉, we expect that T (λ) � Tg and indeed T (λ)

Tg

 2

λ
as λ → +∞. This can be

further refined to obtain the behavior of μ(λ) at λ → +∞,

μ(λ)
λ→+∞
 −λ1/4 (22)

Besides, μ(λ) possesses a cut in the λ plane at λc = −3/28/3, such that, as λ → λ+
c ,

μ(λ) = 3/22/3 − 33/221/6
√

λ − λc +O(λ − λc) (23)

The presence of this cut is responsible for the exponential decay of the pdf of W at large values of W . However, the
non-analytic behavior at λ → +∞ leads to a non-analytic behavior as w = W/t → 0+,

π
(
w → 0+) ∼ −w−1/3, π(w → 1) 
 −(w − 1)2/2, π(w → ∞) ∼ −w (24)

4. Dissipated energy

4.1. Cumulant generating function

So far our interest has been focused on the distribution of the energy injected into the system to keep it in a
nonequilibrium steady state. As already mentioned in Section 2, the dissipated energy is intimately related to the
injected power trough Eq. (3), which expresses the energy balance of the system, and which we rewrite here for a
practical purpose:

�E(t) = W(t) − D(t) (25)

Since we are interested in the large time behavior of both W(t) and D(t), it is worthwhile to note that while W(t) and
D(t) are of order t , the boundary term �E(t) is of order one. This simple remark would intuitively, and naïvely, lead
to the conclusion that at large time W(t) and D(t) are distributed in the same way, and hence share the same large
deviation function. Before entering the details of the reasons for which W and D do not necessarily share the same
large deviation function, we will first show that they actually share the same cumulant generating function.

The dissipated energy D(t) increases at each collision by an amount equal to the difference of the energy of the
colliding pair just before (at t = t−) and immediately after (t = t+) the collision:

D(t+) = D(t−) + 1 − α2

4
(vij · σ )2 (26)

If we now define the joint probability ρD(Γ,D, t) of having a microscopic configuration Γ and a given value of D at
time t , it is possible to write a Liouville equation for ρD :

∂

∂t
ρD(Γ,D, t) = LD(Γ,D)ρD(Γ,D, t) = Linj(Γ )ρD +Ldiss(Γ,D)ρD (27)

where Linj describes some energy injection mechanism. As for the collision operator, its explicit expression reads

Ldiss = σd−1
N∑

i<j

∫
v ·σ>0

dσ (vij · σ )

(
1

α2
δ(rij − σ )b̃∗∗

ij − δ(rij + σ )

)
(28)
ij
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where σ is the particle diameter and where

b̃∗∗
ij g(v1, . . . ,vi , . . . ,vj , . . . ,vN,D) = g

(
v1, . . . ,v∗∗

i , . . . ,v∗∗
j , . . . ,vN,D − (vij · σ )2

4

(
1

α2
− 1

))
(29)

We now translate (27) in terms of the Laplace transform ρ̂D(Γ,λ, t) = ∫
dD e−λDρD(Γ,D, t), which evolves accord-

ing to

∂

∂t
ρ̂D(Γ,λ, t) = Linj(Γ )ρ̂D +Ldiss(Γ,λ)ρ̂D (30)

with

Ldiss(Γ,λ) = σd−1
N∑

i<j

∫
vij ·σ>0

dσ (vij · σ )

(
1

α2
δ(rij − σ )e

−λ
(vij ·σ )2

4 ( 1
α2 −1)

b∗∗
ij − δ(rij + σ )

)
(31)

and

b∗∗
ij g(v1, . . . ,vi , . . . ,vj , . . . ,vN) = g

(
v1, . . . ,v∗∗

i , . . . ,v∗∗
j , . . . ,vN

)
(32)

A straightforward calculation shows that

Ldiss(Γ,λ) = e−λ�ELdiss(Γ,0)e+λ�E = e−λ�ELdiss(Γ )e+λ�E (33)

Assuming, for definiteness, a deterministic energy injection mechanism in which each particle is subjected to a force
Fi , we must have

Linj(Γ,λ) = −λ
∑

i

Fi · vi −
∑

i

∂vi
· (Fi ) (34)

Hence, conversely to (33), we may verify that,

Linj(Γ,λ) = e+λ�ELinj(Γ,0)e−λ�E = e+λ�ELinj(Γ )e−λ�E (35)

Using that LW(Γ,λ) = Linj(Γ,λ) +Ldiss(Γ,0) and that LD(Γ,λ) = Linj(Γ,0) +Ldiss(Γ,λ) we arrive at the follow-
ing key identity

LW(Γ,λ) = e−λ�ELD(Γ,λ)eλ�E (36)

That LD(Γ,λ) and LW(Γ,λ) are related through the similarity transformation (36) establishes that these operators
have exactly the same eigenvalues, and that the corresponding eigenvectors differ only by a factor eλ�E . This allows
us to conclude that W and D have the same cumulant generating function. Thus, if furthermore the largest eigenvalue
of LD(λ) is related to the large deviation function for the dissipated energy through a Legendre transform, the above
analysis shows that the large deviation function of the injected and dissipated energy are indeed equal.

4.2. Influence of time boundary contributions

It has already been stressed [16] that it is possible that μ(λ) and π(w) may not be related by a Legendre transform.
As already discussed in the previous subsection, one expects, in writing the energy balance equation (25), that, given
that �E is not extensive in time, W and D should have the same large deviation functions (expressed in terms of
w = W/t or δ = D/t). Since they share the same cumulant generating function μ(λ), this also means that within a
finite interval around their average value, w and δ do share the same large deviation function. Nevertheless, beyond
a finite value of w or δ, their ldf may become distinct; this may occur [16–19] if �E is distributed exponentially or
slower than exponentially. The technical reason of this phenomenon is simply due to a problem of Laplace transform
inversion. In fact, we assumed that the ldf π is related to the eigenvalue μ trough a Legendre transform. This result
is obtained carrying out the Laplace transform inversion through a saddle point expansion (in the t → ∞ limit). In
practice this last step is valid only for values of λ for which it is possible to define a path (in the λ-complex plane)
including a straight line parallel to the λ-imaginary axis. The problem arises hence when there are some cuts which
are not included in the expression of μ(λ), but in some other subleading term. Unfortunately, as far as we know, there
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is no general method to know a priori if and where the two large deviation functions may differ. The only argument
in this direction involves the probability distribution of the boundary term: as already mentioned above, if its tails
decrease exponentially, or slower, it is possible that such problem may occur. This is the scenario in the cases at hand.
One can show that �E has tails decreasing as exp(−N1/2(βg�E)1/2) and exp(−N1/4(βg�E)3/4) for the Gaussian
thermostat and for the stochastic thermostat, respectively (an analysis of the typical values of �E is presented in [20]).
Note also that these tails decrease exponentially in the number of degrees of freedom, which leaves room, in principle,
even in the thermodynamic limit, for W and D having ldf differing significantly beyond a finite threshold value.

5. A critical discussion of numerical results

In this section we would like to present simulations of the granular gas heated with the stochastic thermostat. The
total work W(t) provided by the random forces over [0, t] is of course, on average, a positive quantity, but there
exist phase space trajectories which will yield a negative W (this cannot occur for the deterministic thermostat where
W(t) � 0). It is therefore tempting to plot the quantity π(w) − π(−w) as a function of w. It is well-known [2,3]
that for a well-defined class of thermostated systems the power W injected by the thermostat verifies the celebrated
fluctuation theorem π(w) − π(−w) = βw, where β is an appropriate inverse energy scale. However, one of the key
hypotheses underlying the latter fluctuation relation is that the dynamics features a weak form of time reversibility, for
which each trajectory possesses a time reversed partner (however unlikely). In our granular gas, dissipative collisions
hamper time reversed trajectories to be physically acceptable trajectories at all. It should therefore come as no surprise
that no specific fluctuation relation emerges in our case. Of course, this is fully confirmed by the explicit calculations
presented in the previous section, that show no specific symmetry property of the injected power ldf. In spite of this, it
may be instructive to plot w → 1

t
ln P(wt,t)

P (−wt,t)
at large times (in the infinite time limit, this is exactly π(w)−π(−w)), as

has been done in a vibrated granular gas experiment [4]. This is shown in Fig. 3, and the result is rather intriguing: one
actually observes a straight line with slope βg! This deserves to be explained, given that our analytic results establish
the absence of such a relation, even for values of w not too far from its average. The first remark is that a numerical
simulation is always carried out at finite times, and thus one is measuring π(w, t) = 1

t
lnP(wt, t) rather than its

t → ∞ limit π(w). Hence the first question is: has the simulation reached the infinite time regime? The answer to that
question is tricky. Though π(w, t) notably deviates from a quadratic form, which would correspond to P(W, t) being
Gaussian, this is no proof that the asymptotic regime has been reached. For that matter it is instructive to investigate
the behavior of the third cumulant 〈W 3〉/t as a function of time. This is presented in Fig. 4. The conclusion is that
the third cumulant reaches its asymptotic value, consistent with the analytic expression, at times a few tens as large
as those for which it is possible to measure negative values of w = W/t , as presented in Fig. 3. A similar plot of
the fourth cumulant would signal that the asymptotic regime has not been reached over the chosen time window.
What one actually observes is simply the leftover of a short time quadratic behavior for π(w). This is also consistent
with the quadratic approximation for μ(λ), which, if taken for granted as the whole function, would indeed imply

Fig. 3. Plot of π(w, t)−π(−w, t) for t = 1,2 and 3 mean free times
(mft). The inset show the probability density function of w(t) for the
same times.

Fig. 4. Plot of the third cumulant of W divided by time. The asymp-
totic regime is reached after fifty mft.
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π(w) − π(−w) = βgw (after restoring the appropriate physical scales as in (20)). The lesson to be drawn from this
discussion is that it seems to be an optimistic endeavor to investigate solely on numerical or experimental grounds the
validity of the fluctuation relation. Without criteria for the time scale at which the asymptotic regime is entered, the
analysis is at risk of remaining confined within short time effects [4,21].

6. Conclusions

We have presented an analytic calculation for the large deviation function of an N -body dynamical system with
strong dissipative interactions. By contrast to existing approaches, based on a stochastic modeling, the noise source
is completely contained within the microscopic formulation, which avoids the arbitrariness inherent to choosing a
particular type of Markov dynamics. Our calculation required that we extend the standard methods of kinetic theory,
so as to grasp the infinite hierarchy of correlation functions encoded in a temporal large deviation function. We have
shown that theoretical input was required to properly analyze numerical data when large deviations are measured.
Our study also allows us to infer that the power injected into a granular gas to maintain a steady-state has both
generic features and ones that are sensitive to the details of the mechanisms at work. At large injected powers, the
ldf π(w) behaves linearly with w = W/t , meaning that the power distribution decays exponentially. A less robust
feature, however, is the w → 0 behavior, which proves extremely sensitive to the details of the heating mechanism.
The present work calls for further investigation in other dissipative systems, such as turbulent flows.
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