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Abstract. We study equilibrium statistical mechanics of classical point counter-ions, formulated on 2D
Euclidean space with logarithmic Coulomb interactions (infinite number of particles) or on the cylinder
surface (finite particle numbers), in the vicinity of a single uniformly charged line (one single double layer),
or between two such lines (interacting double layers). The weak-coupling Poisson-Boltzmann theory, which
applies when the coupling constant I is small, is briefly recapitulated (the coupling constant is defined as
I' = Be?, where §3 is the inverse temperature, and e the counter-ion charge). The opposite limit (I" — o)
is treated by using a recent method based on an exact expansion around the ground-state Wigner crystal
of counter-ions. These two limiting results are compared at intermediary values of the coupling constant
I' =2v (v = 1,2,3), to exact results derived within a 1D lattice representation of 2D Coulomb systems
in terms of anti-commuting field variables. The models (density profile, pressure) are solved exactly for
any particles numbers N at I' = 2 and up to relatively large finite N at I' = 4 and 6. For the one-line
geometry, the decay of the density profile at asymptotic distance from the line undergoes a fundamental
change with respect to the mean-field behavior at I" = 6. The like-charge attraction regime, possible for

large I" but precluded at mean-field level, survives for I' = 4 and 6, but disappears at ' = 2.

1 Introduction

Most mesoscopic objects, when dissolved in a polar sol-
vent such as water, acquire an electric charge through
the dissociation of functional surface groups [1]. Counter-
ions are then released in the solution, and form, together
with the charged object, the so-called electric double layer.
Since the pioneering work of Gouy and Chapman a cen-
tury ago [2, 3], the study of these charge density clouds has
formed an active line of research, in particular from a the-
oretical perspective [4-7]. Electric double layers are indeed
pivotal in affecting single mesoscopic “particle” properties,
together with inter-particle interactions.

The present paper concerns the equilibrium statistical
mechanics of charged particles in the vicinity of charged
walls (planar double layers). The general problem of mo-
bile ions confined by uniformly charged interfaces can be
formulated in two ways. In the case of “counter-ions only”,
there is just one species of equally charged ions neutraliz-
ing the surface charge on walls. In the case of “added elec-
trolyte”, the system is in contact with an infinite reservoir
of & electrolyte charges. Here, we shall restrict ourselves to
the former class of models (no salt case). The most stud-
ied 3D geometries are one planar wall with counter-ions
localized in the complementary half-space and two parallel
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planar walls with counter-ions being localized in between.
The high-temperature (weak-coupling) limit of general
Coulomb systems is described by the Poisson-Boltzmann
(PB) mean-field theory [8] which basically does not de-
pend on dimension. Formulating the Coulomb system as
a field theory, the PB equation can be viewed as a first-
order term of a systematic expansion in loops [9-13].

A relevant progress has been made in the last decade
in the opposite strong-coupling limit [7,14-30]. Within a
field-theoretical treatment [17,18], the leading behavior
stems from a single-particle picture and next-correction
orders correspond to a virial/fugacity expansion in inverse
powers of the coupling constant. The method requires a
renormalization of infrared divergences via the electroneu-
trality condition. A comparison with the Monte Carlo
simulations [19,20,26,27,29-32] confirmed the adequacy
of the leading single-particle theory, but the predictions
for the first correction turn out to be incorrect. Recently,
a different method based on an exact expansion around
the ground state (the 2D Wigner crystal of counter-ions
formed on the surface of charged walls) was proposed in
ref. [33] to overcome such shortcomings. This method is
a low-T expansion, that bears some resemblance with the
plasmon approach of Lau, Pincus and collaborators [21,
22]. The difference with refs. [21,22] lies in the excitations
considered, as will appear below. The procedure is sys-
tematic and free of divergences. It provides the correct
correction to leading strong-coupling behaviour, and the
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Fig. 1. Considered geometries: a) one infinite charged line;
b) two parallel charged lines; ¢) the semi-infinite cylinder of
circumference W; d) finite cylinder. Hatched domains are ac-
cessible to particles, oe is the uniform charge density of lines.

obtained results are in excellent agreement with available
data of Monte Carlo simulations under large coupling pa-
rameters [33].

The majority of previous studies has been restricted
to 3D which is the dimension of practical interest. Among
notable exceptions are refs. [31,32,34], dealing with 2D
Coulomb systems of counter-ions with logarithmic pair-
wise interactions, mainly in the context of Manning con-
densation. Here, we shall concentrate on 2D systems of
counter-ions, with charged lines on boundary walls. The
homogeneous line charge density is e (e is the elementary
charge and o > 0); point-like counter-ions are for simplic-
ity monovalent with charge —e. The studied geometries
are pictured in fig. 1; white walls are impenetrable to par-
ticles, domains accessible to particles are hatched. The
geometries of one (infinite) charged line and two parallel
charged lines at distance d are presented in figs. 1a and b,
respectively. The semi-infinite and finite cylinder surface
area of circumference W with charged circle boundaries
are pictured in figs. 1c and d, respectively. These cylindric
geometries will enable us to mimic the former ones, ob-
tained as the infinite-particle-number limit Wo — oo, for
finite numbers of counter-ions. The walls and the confining
domains are assumed to possess, for simplicity, the same
(vacuum) dielectric constant e = 1, so that there are no
image charges. The relevant dimensionless coupling con-
stant is I" = Be?, where 3 is the inverse temperature.

Interactions of counter-ions with each other and with
charged surfaces are determined by 2D electrostatics de-
fined as follows. In v spatial dimensions, the electrostatic
potential v at a point r € R¥, induced by a unit charge at
the origin 0, is the solution of Poisson’s equation

Av(r) = —s,0(r), (1.1)
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where s, is the surface area of the v-dimensional unit
sphere; so = 2w, s3 = 4m, etc. This definition of the v-
dimensional Coulomb potential maintains generic proper-
ties —such as screening sum rules— of “real” 3D Coulomb
systems with the interaction potential v(r) = 1/r, r € R3
and r = |r|. In an infinite 2D Euclidean space, the solution
of (1.1), subject to the boundary condition Vu(r) — 0 as
r — 00, reads

v(r) = —In (%) , reR? (1.2)
where the free-length scale L will be set for simplicity to
unity. Such potential is created by infinitely long charged
lines in 3D which are perpendicular to the given 2D plane;
the corresponding systems occurring in nature are the
so-called polyelectrolytes. The Coulomb potential (1.2) is
used for the geometries in figs. 1la and b. For cylindric ge-
ometries in figs. 1c¢ and d, the requirement of periodicity
along the y-axis, with period W, leads to the Coulomb
potential [35]

) Tz
v(r) =—1In ‘2 sinh (W)‘ , (1.3)
where the complex notation z = xz+iy is used for point r =
(z,y). At small distances r < W, this potential behaves
like the logarithmic one (1.2) with L = W/(27). At large
distances along the cylinder = > W, it behaves like the
1D Coulomb potential —(7/W)|x|.

Maintaining basic features of physical phenomena, 2D
models with one type of charges have interesting advan-
tages in comparison with 3D ones: They are less laborious
and some of the concepts can be often verified by explicit
calculations. 2D Coulomb systems are even exactly solv-
able at a special coupling I" = 2, in infinite space as well
as in inhomogeneous semi-infinite or finite domains; for a
review, see [36]. Such exactly solvable models can serve as
an adequacy test of weak- and strong-coupling series ex-
pansions for finite temperatures. It was shown in ref. [37]
that for the sequence of couplings I' = 2y (y =1,2,3,...)
statistical averages in 2D Coulomb models can be treated
within a 1D lattice theory of interacting fields of anti-
commuting (Grassmann) variables. This 1D representa-
tion enables one to treat exactly one-component Coulomb
systems with relatively large numbers of particles also for
I' = 4,6. The technique of anti-commuting variables was
applied to the general problem of integrability of the 2D
jellium [38] and to the translational symmetry breaking of
the jellium formulated on the cylinder surface [39].

The present work was motivated by the need to have a
control over weak- and strong-coupling theories. The exact
results for density profiles and pressures at intermediary
values of I' provide valuable tests of small- and large-I
analysis. Among the results obtained in this paper, two
deserve special attention. For the one-line geometry, the
asymptotic decay of the density profile from the line un-
dergoes a fundamental change from the mean-field behav-
ior at I' = 6. This means that the long-distance predic-
tions of the PB theory have a restricted validity, which is
relevant from the point of view of the renormalized-charge
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concept (for a review, see [16]). This also invalidates the
hypothesis that a strongly coupled double layer, at large
distances, behaves in a (suitably renormalized) mean-field
fashion [40,41]. For two-line geometry, there is evidence
about attraction between like-charged lines at relatively
small couplings I" = 4,6. The attraction is observed even
in the N = 2 particle systems.

The paper is organized as follows. For completeness, it
starts with a short recapitulation of the weak-coupling PB
theory for the straight-line(s) geometries in figs. la and b.
The models are subsequently studied in the large-I" limit,
by using the new method [33], in sect. 3. Intermediary val-
ues of the coupling constant I are investigated within the
technique of 1D Grassmann variables in sect. 4. The mod-
els, formulated on the cylinder surface in figs. 1c and d, are
solved exactly (density profile, pressure) for any particles
numbers N at I' = 2 and for (relatively large) finite N at
I' = 4,6. The results are compared with those obtained
in the weak- and strong-coupling limits. Conclusions are
finally drawn in sect. 5.

2 Weak-coupling limit

We begin with a brief reminder of the weak-coupling PB
theory, adapted for the geometries pictured in figs. la
and b. More details can be found in, e.g., [8].

2.1 Single charged line

We first consider the case of a single infinite line at = = 0,
carrying positive charge density oe (fig. 1la). Let the den-
sity of counter-ions in the half-plane x > 0 be denoted by
n(z); the corresponding charge density is p(z) = —en(x).
The contact theorem for planar wall surfaces [42-46] re-
lates the total contact density of particles to the surface
charge density on the wall and the bulk pressure of the
fluid P. For 2D systems of identical particles, it reads
BP =n(0) —7lo?, (2.1)

where I' = [e? is the coupling constant. Since in the
present case of a single isolated double layer the pressure
vanishes (P = 0), we have n(0) = 7[>

The induced average electrostatic potential ¢(x) is de-
termined by the Poisson equation

M = —2mp(x).

= (2.2)

The condition of electroneutrality oe + fooo dzp(z) =01is
equivalent to the boundary condition

dé()
dx

= 2roe.
x=0

(2.3)

Within the mean-field approach, valid for I" — 0 (“high
temperatures”), the average particle density is approxi-
mated by replacing the potential of mean force by the
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average electrostatic potential, n(z) = ngexp[feo(x)].
Equation (2.2) then reduces to the nonlinear PB equation

d?¢(z)

da?

= 2meng exp[Bed(x)]. (2.4)
This second-order differential equation, supplemented by
the boundary condition (2.3), can be integrated explicitly.
The solution for the counter-ion density profile reads

1 1

") = R (2.5)

Here, u = 1/(w['0) is the Gouy-Chapman length, i.e.
the distance from the charged wall at which an isolated
counter-ion has potential energy equal to thermal energy
ksT = 1/(5. In what follows, all lengths will be expressed
in units of p, & = x/p. Note that at asymptotically large
distances from the wall Z — oo, the density profile (2.5)
does not depend on the line charge density magnitude oe,
n(z) ~ 1/(r'z?). We shall see that this interesting phe-
nomenon takes place also at finite temperature (I" = 2 and
I' = 4), while another asymptotic decay seems to hold at
I'=6.

The density profile will be considered also in the
rescaled form 7(Z) = n(uz)/(rlc?). Thus, the solu-
tion (2.5) can be expressed as

1 1

(i) = (2.6)

This density profile satisfies both the electroneutrality
condition (2.3), written in the rescaled form as

/Ooodi"ﬁ(i") 1,

and the contact theorem (2.1) with P = 0, written as

(2.7)

n(0) = 1. (2.8)
It is worth emphasising that as an approximate approach,
PB could a priori violate the contact theorem. This is not
the case, as follows from arguments that can be found in
ref. [47].

2.2 Two charged lines

The system of two lines at distance d in fig. 1b has the
x — d — x symmetry, so it is sufficient to consider the
interval x € [0,d/2]. Because of the mentioned symmetry,
the electrostatic potential satisfies the additional bound-
ary condition at the mid-point x = d/2

do(x)
dx

=0.
r=d/2

(2.9)

Let us denote by n,, the value of the particle density
at = d/2. The PB equation (2.2), supplemented with
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the boundary condition (2.9), can be solved explicitly

Bed(x) = — In cos? {K <x _ dﬂ ,

2
Nm
= 2.10
n(@) cos?[K(x —d/2)]’ (2.10)
where the inverse length K is related to n,, via
K? =nl'n,,. (2.11)

The boundary condition at = 0 (2.3) implies the follow-
ing transcendental equation for the real K

d

(Kd) tan(Kd/2) = L= d. (2.12)

According to the contact theorem (2.1), the (rescaled)
pressure between the charged lines is given by

=Ty,

T nlo?

(2.13)

Note that in the PB approximation, the pressure between
two equivalently charged lines is always positive. This re-
pulsive behaviour is in agreement with general results [48].

Two limiting cases of the dimensionless distance be-
tween the lines d are of special interest. For small distances
d— 0, we have

-2 1 2 - -
P=>—-_4+=d4+0(d? 2.14
-~ g+ 30+ 0@, (214)
while for large distances d — o0, Kd — 7 and
T 1

We see that the asymptotic decay of P to zero does not
depend on o; this behavior is analogous to that of the den-
sity profile in the one-line problem. Note that d and 1/0
(or equivalently, the Gouy length) being the two relevant
length scales in the problem, an algebraic decay of P in
1/d? at large distances cannot involve any o dependence,
for dimensional reasons. A similar remark holds for the
density profile of the single plate problem, eq. (2.5).

3 Large coupling limit
3.1 Single charged line

At zero temperature, i.e. for I' — oo, the counter-ions
collapse on the charged line, see fig. 2a. They create a
1D Wigner crystal, with vertices R; = (0,j/0) (j =
0,+1,42,...); the nearest-neighbor distance a = 1/c en-
sures the local neutrality on the line. It is essential here
to bear in mind that the large-I" limit corresponds to the
regime in which a is much larger than the characteristic
Gouy distance p between the counter-ions and the charged
line [14], @ = a/pu x I' — oo. In the asymptotic limit
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Fig. 2. Ground-state Wigner crystal of counter-ions (shown by
the black dots) in a) one-line geometry; b) two-lines geometry.
Panel a) also introduces the notation (z,y) for the position
shift of a tagged counter-ion, that will be used in our analytical
calculation.

I' — oo, each vertex R; is occupied by a counter-ion j.
The ground-state energy of the discrete particle system
plus the homogeneous background charge density will be
denoted by FEy. For I' large but finite, the fluctuations
of counter-ions around their vertex positions become im-
portant. Our approach consists in a systematic account of
these fluctuations, and provides an expansion in inverse
powers of I'. It is the exact adaptation to the 2D case
of the procedure discussed in [33] for three-dimensional
systems. It differs from the approach of Netz and col-
laborators [7,18-20], that is a virial-like procedure. It is
closer in spirit to the approach of Lau, Pincus, and collab-
orators [21,22], that also amounts to a low-T' expansion
around the ground state. There is an important differ-
ence, however, in that the latter authors impose that the
counter-ions stick to the charged interfaces, so that the
counter-ions degrees of freedom are “in-plane” only (along
the interface). This precludes the possibility to study the
phenomenon of like-charge attraction at small distances,
see below. Indeed, it is essential to include in the anal-
ysis the excitations where the counter-ions can unbind
from the charged interface (displacements perpendicular
to the interface). Consequently, the results of refs. [21,22]
should be viewed as an implicit large-distance expansion,
and in this respect, complementary to our short-distance
analysis.

As depicted in fig. 2a, let us first shift one of the par-
ticles, say j = 0, from its lattice position Ry = (0,0) by a
small vector 0Rg = (z > 0,y), Ry < a. The correspond-
ing change in the total energy 0 E(z,y) = E(z,y)—Ey > 0
consists of two contributions. The first one is due to the
interaction of the shifted counter-ion with the uniform line
charge density

SEW (z) = me?o. (3.1)

The second contribution §E®)(z,y) comes from the inter-
action of the shifted particle with all other ions on the 1D
Wigner crystal. For the special case of the y = 0 shift,
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we find
= | i (il
SE®@) — 2 2 Jy Ui
(x,0) e Z Iny/a?+ > In .
j=—o0
(3#0) ~

=—¢2In H
=1

= (%)]

o m sinh(rox) (3.2)
ToT ’ :
This function has a small-z expansion of the form
e? e?
SE®) (2,0) = — = (rox)” + 15 (wow)* + O°).  (33)

Note that the interaction with counter-ions does not im-
ply any contribution linear in . The corresponding elec-
tric field indeed vanishes, by symmetry. The negative sign
of the leading z? term does not represent any problem:
The sum of 6E®)(z,0) and the linear term (3.1) is a
monotonously increasing function of z, as it should be.
For the special case of the x = 0 shift, we find

—e? 1nf[1 l1 - (‘Zyﬂ

— —¢’In [SIH(W?J)}

oy

SE®(0,y) =

2

= (moy)® + —(roy)* + O(°).

4
6 180 (34)

The calculation of the whole function §E®)(z,y) for the
particle shift simultaneously along both directions is com-
plicated. For our purpose, it is sufficient to derive its ex-
pansion in x, y up to harmonic terms:

2 ou\ 2 2
SE@ (z,y) = ——Zln () + (y)
J J
4 (0y> } N e?(no)?
J 6
where use was made of Y77 1/j% = m2/6 [49]. Note the
absence of the mixed harmonic term zy. The total energy

change, up to harmonic terms and in dimensionless form,
is finally given by

(v* —=%).  (3.5)

BOE(,y) ~ —F + (3 — 7).

= (3.6)

This formula reveals a relationship between the order of
the expansion of —SE(z,y) in the dimensionless lengths
Z, g and its expansion in 1/I". The linear term —Z is the
only one which does not vanish in the limit I" — oo. This
leading term reflects the single-particle character of the
system close to zero temperature: Each particle behaves
independently from the others, exposed only to the field
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of the line charge density. A similar conclusion is reached
within the original approach of Netz and collaborators [7,
18-20,26,27,29-32]. Terms of the p-th order in z, y have
prefactors proportional to I'oP, i.e. passing to Z, § they
become of the order 1/I'»~t. This is why the first 1/I"
correction to the single-particle regime is determined ex-
clusively by the terms harmonic in space.

Let us now consider a shift of all particles from their
lattice positions R; (j = 0,%1,£2,...) by small vectors
OR; = (z;,y;). To determine the corresponding increase
in the total energy 6 E({z;,y;}), we proceed as above and
obtain

~BSB({x; ) ~ =@+ WZ _‘”
j <k

1 (95 — yk)
77T 2 (j— k)2
i<k

The z-dependent density profile of counter-ions is de-
fined as the average n(x) = (Z;VZI 0(r —rj)). The mean-
value calculation with the energy (3.7) is simplified in two
ways. Firstly, since the y-coordinates do not mix with z-
coordinates, they can be neglected in the considered order.
Secondly, since all (identical) particles are exposed to the
same one-body potential of the charged line, a summation
over particle degrees of freedom can be represented by just
one auxiliary coordinate. We find

27r2Fj:_oo

o (Fz)

where C is determined by the normalization condi-

tion (2.7). Simple algebra yields
- 1 [z? 1
n(z) = {14-3[,( )}—l—(’)(rz)

The contact theorem (2.8) is fulfilled by this profile.

(3.7)

(3.8)

(3.9)

3.2 Two charged lines

In the problem of two lines at distance d, carrying the
same charge density oe, the electric field between the lines
vanishes. At zero temperature I" — oo, the counter-ions
collapse on the lines, see fig. 2b. The Wigner crystal is thus
composed of two one-dimensional arrays of sites with the
lattice constant a = 1/0, shifted with respect to one an-
other by half-period a/2. The vertices of the Wigner lattice

will be denoted as R\" = (0,5/0) (j = 0, j:l +£2,..) if

they belong to the line at = 0 and as R = (d,j/o)

(j = +3,+2,...) if they belong to the line at x = d. The
regime of large I lends itself to analytic progress when
the inequality d < a, or equivalently

do <1 (3.10)
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is obeyed. As before, the shifts of particles from their
Wigner positions along the y-direction have no effects on
statistical averages in the leading large-I" order and in the
first 1/I" correction, so we shall not consider them. Let the
first one of the particles, say the one localized on the x = 0
line at Réo) = (0,0), be shifted along the a-direction by
a small amount x > 0. The corresponding energy change,
up to harmonic terms, is given by

Lo lrse 5 2}
A Tal G
1/j% = 7?/2. When
all particles are shifted in the z-direction within the

—BOE(x) ~ (3.11)

where we used the formula ;1 s
2020

area limited by the two lines, R§-O) — (x§0),j/0) (Jj =

0,+1,£2,...) and R\ — (29 j/0) (j = +£1,£2,..),
the energy change is given by

~(0) _ ~(0)y2
1 i
*ﬂaE({zJ}) ~ 2w Z [xj(] - Z; ]
i<k

~(d ~(d
1 [x§)_xl(€)]2

22 4
i<k

1 d?
Com2r Z
7,k

The density of counter-ions at x (0 < x < d) is calcu-
lated with the energy (3.12)

d S~ ~N\2
. N 1 (@ -1
n(z) = C/ dz’ |14 == g —
0 il A, T

+

_ [i(@) ~(d)]2

i Tk
(J—k)?

(3.12)

1
i

j=+31+3,..
(3.13)

where C' is determined by the normalization condition

/Oddszﬁ(:z) =2

After simple algebra, we arrive at
1
e (F2> .

~\ 2 ~

2 2 d d?

A =214 = [[z-2) - &

ME) =541+ 35 (m 2) 12
(3.15)

This expression has the needed z — d — x symmetry.
To derive the pressure between the lines, we apply the
contact theorem (2.1) to obtain, in the I" — oo limit,

) 2d 12

(3.14)

or = (3.16)

Note that the small-d pressure expression (2.14), obtained
in the weak-coupling limit, and (3.16) obtained in the
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Fig. 3. Phase boundaries following from the equation of
state (3.16). The solid curve corresponds to P = 0, and dis-
criminates the repulsive region on the left-hand side from the
attractive one. The dashed curve corresponds to the maximum
attraction, given by 9P/dd = 0. The dashed-dotted line stands
for the phase boundary following from the refined equation of
state (4.47), where the function of coupling Ay is given by
its infinite N extrapolation (4.50). The two circles stand for
the exact location of the P = 0 points for I' = 4 and 6,
obtained in sect. 4. Likewise, the two squares are the corre-
sponding exact maximum attraction points at I' = 4 and 6
(see text). We stress that such diagrams are obtained from
large I" in conjunction with short-distance expansions. Conse-
quently, for the range of I" values plotted, a qualitative picture
only can be expected. The question mark is a reminder of the
fact that d should be much smaller than I" to allow for our
expansion.

large-I" limit, coincide only in the leading 2/ d term. The
sub-leading constant terms differ. It should be kept in
mind here that the present expansion makes sense pro-
vided eq. (3.10) is fulfilled, which means that d < I
Given that (3.16) exhibits an attractive regime, for large
enough I, for values of d slightly above 2, it can be con-
cluded that eq. (3.16) is able to capture the possibility of
like-charge attraction, a phenomenon first reported some
30 years ago [50-52]. It is also interesting to comment on
the mean-field failure to capture such an effect, in spite
of a small d expansion of the pressure, eq. (2.14), that is
very close to its large-I" counterpart (3.16). The require-
ment for the validity of expansion (2.14) is that d < 1,
outside the regime of d > 6 where eq. (2.14), taken without
particular precaution, would lead to a negative pressure.
The requirement d < 1 stands in the strongly confined
regime, where the entropic cost of confining the counter-
ions is overwhelming, and leads to a dominant repulsive
pressure P ~ 2/d.

Taking the expansion order as indicated in for-
mula (3.16), the attractive (P < 0) and repulsive (P > 0)
regions in the (I cZ) plane are split by the solid curve in
fig. 3. The maximum attraction, given by dP/dd = 0,
is obtained for dpax = 3vT , see the dashed line. Open
symbols for I' = 4,6 are the results obtained in the next
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section from an analysis of finite particle numbers. It is im-
portant here to emphasize that the equation of state lead-
ing to fig. 3 is trustworthy for d < I'. As a consequence,
the dashed line showing the locus of maximal attraction
becomes asymptotically exact (since Amax /I x r-1/z
vanishes at large Coulombic couplings), but the upper part
of that diagram in fig. 3 is only indicative, as the question
mark indicates. It will in particular be shown in the next
section that the re-entrance of the repulsive regime at fixed
I, i.e. the fact there exist two distances d where the pres-
sure vanishes, does not take place at I" = 4 nor at I" = 6.
For such couplings, the first zero of P only (with d slightly
above 2) is observed. Consequently, while the re-entrance
phenomenon is a feature backed by Monte Carlo simula-
tions for three-dimensional systems [19,20], its existence
in the present two-dimensional situation is still an open
question, that is difficult to address with analytical tools.

4 “Intermediary” fluid regime
4.1 General formalism

We consider N identical particles of charge —e, con-
strained to a 2D domain A; points of the domain will
be specified by the complex coordinates z = = + iy,
z = x — iy. The particles interact pair-wisely through the
2D Coulomb potential v(z,z’) = —In|z — 2/| and are ex-
posed to a one-body potential ei)(z, Z) due to the uniform
charge density oe on the line walls forming the domain
boundary dA. The partition function at coupling I" is de-
fined as

N
1
IN =N /A 1T (@22 wiz, )] T[] 125 — 2"
A=t

j<k

(4.1)

where w(z, z) = exp[I'Y(z, )] is the one-body Boltzmann
factor. In Zy is the generator for the particle density in
the following sense:

n(z,z) = w(z,Z)L_ln ZN. (4.2)

ow(z, Z)
For the couplings I' = 2v with v a positive integer,
a 1D Grassmann representation of the 2D partition func-
tion (4.1) was derived and further developed in a series of
works [37-39]. Let us introduce on a discrete chain of N
sites j = 0,1,..., N — 1 two sets of Grassmann variables
{5§“>,w§“)}, each with v components o = 1,...,v. The
Grassmann variables satisfy the ordinary anti-commuting
algebra [53]. The partition function (4.1) is expressible as
an integral over the Grassmann variables in the following
way:

Zn(y) = / DyYDESED),

Y(N-1)

S ) = Z ZjwikP.

4,k=0
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Here, DyD¢ = [ duf™ . dyiPdgl™ .. de" and the
action S involves pair interactions of composite operators

= o— (1) (v

= D> &gl
J1yeeesJy=0

o= > oy, (4.4)
E1yeeky=0

(k1. +ky=k)

i.e. the products of all v anti-commuting-field compo-
nents, belonging to either ¢-set or w-set, with the fixed
sum of site indices. The interaction matrix has the ele-
ments
Wik = / d®zw(z,2)27 2% jk=0,1,...,9(N —1).
A

(4.5)
The representation (4.3) provides Zy(7) as a function of
interaction elements {w;x}. The particle density (4.2) is
given by

Y(N-1) 4

n(z,z) = w(z, 2) Z (E;W) 27 2, (4.6)
3,k=0
where the two-correlators
1

20 = DyYDESEV)I Zw,

(£ = 715 | DDES V20
= InZ . 4.7
G M Zv0) (47)

The above Grassmann formalism is straightforwardly
applicable to the case of the cylinder surface with the
Coulomb potential (1.3). Due to the periodicity along the
y-axis, both the one-body Boltzmann factor w and the
particle density n are only x-dependent. The interaction
Boltzmann weight for two particles at the points z = x+iy
and 2z’ = 2’ + iy’ is expressible as

(z—2)|"

W

2sinh T = e[ (a+a)/W

r
—27z/W e—27rz'/W

x ‘e (4.8)
For each particle of the N-particle system, the prefactors
from N —1 pairwise interaction Boltzmann weights and the
multiplication by the constant 47 /W? (which is irrelevant
from the point of view of the particle density) renormalize
the one-body w(zx) in the following way:

4 2
Wren () = sz(x) exp H/V(N - 1)4 . (4.9)
The partition function is again given by (4.1), with the

substitutions w — wyen and z — exp(—27z/W). Due to
the orthogonality relation

w
| e {2% - k)y] — Wiy, (4.10)
0 w
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the interaction matrix (4.5) becomes diagonal, wj, =
wjéjk, with

w; = W/Adx Wyen (T) €XP (—?/;jx) .

Due to the “diagonalized” form of the partition function

(4.11)

¥(N-1)

ZN(V):/Dwa [T e (Eww), (4.12)
j=0

only two-correlators

(E9) = 500 Zn () (113)
will be nonzero. The density is thus given by
y(N-1) _ An
n(x) = Wren (T) jzz:o (Z,%,) exp (—W]x> . (4.14)

We see that the original problem reduces to finding
the explicit dependence of Zx(v) on the set of weights
{wj};(:]g_l)7 say by using the anti-commuting integral
in (4.12).

Zn(7) can be found trivially for v = 1 (I" = 2) when
the composite operators are the standard anti-commuting
variables =; = &;, ¥; = ;. The partition function con-
tains the only term

ZN(l) = WoWq1 - " "WN-1- (415)

Consequently,

_ 1
(Z395) = wj

forall j =0,1,...,N — 1. (4.16)

In the case of higher integer 7’s, the number of (al-
ways positive) terms increases quickly with N. For N = 2
particles and arbitrary integer 7, we have

(4.17)

For N = 3 particles, we have

Z3(2) = wowawy + 2w0w§ + 2w%w4
4w waws + 6w3, (4.18)
23(3) = Wwow3zWe + 3210011/4’[05 + 32w1w2w6

+62w1w3w5 + 15210210311)4, (419)
etc. To document the number of terms in Zy (), we men-
tion that when all w; = 1, then Zy () = (yN)!/[(v)N N1].
The methods for systematic generation of Zy(7), realized
in practice through computer language Fortran, are sum-
marized in ref. [38]. We were able to go up to N = 10
particles for v = 2 and up to N = 9 particles for v = 3.
For the sake of completeness, we mention that the number
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of terms in Zy(7) is on the order of 108 for 10 particles
at v = 2.

For v being an odd positive integer, the composite
operators = and ¥ are products of an odd number of
anti-commuting variables. This is why they satisfy the

usual anti-commutation rules {Z;, 23} = {¥;, ¥} =
{Z;,%} = 0 and, in particular, we have EJZ = WJQ =

0. Each exponential in (4.12) is then expanded as
exp(Zjw;¥;) = 1+ Zjw;¥;. We conclude that, for odd
7, a given w; can occur in a summand of Zy(vy) at most
once. In view of (4.13), this property implies the inequality

w; (=) <1 fory=1,3,5,.... (4.20)
On the other hand, if v is an even positive integer, the
composite operators are products of an even number of
anti-commuting variables and therefore commute with
each other: [=Z;, %] = [¥;, %] = [5;,¥] = 0. Higher
powers of w; are then allowed in summands of Zy(y) and
the inequality (4.20) has no counterpart for even ~’s.

4.2 Cylinder: Single charged line

We consider the periodic strip of circumference W, semi-
infinite in the z-direction, = € [0,00], see fig. lc. The
charge density oe at line = 0 is neutralized by N = oW
particles of charge —e. The potential induced by the line
charge is —moex, so that w(x) = exp(—I'woz). The renor-
malized one-body Boltzmann factor (4.9) and the interac-
tion strengths (4.11) take the form

e () e
(4.21)
The particle density (4.14) reads

y(N-1)
n(x):% %: (5;7;) exp [—4W7T(j+;> x] (4.22)
j=0

For finite N (or, equivalently, finite W), the particle den-
sity exhibits at asymptotically large distances an expo-
nential decay to zero, limy,_, o n(x) o exp(—2myx/W).

Our aim is to continualize the formula (4.22) in the
thermodynamic limit N,W — oo, at the fixed ratio
N/W = o; this makes the semi-infinite cylinder surface
equivalent to the system of the charged straight line in
contact with half-space occupied by counter-ions. For a
given finite N, we define a set of discrete values f;j) =
yw;(E;%;) with j = 0,1,...,7(N — 1). As the continu-
ous variable, we choose t = j/[y(N — 1)], taking values
in the interval [0, 1]. In the continuum limit N — oo, the
set of discrete values fj(yj\), tends to a continuous positive
function

t=j/[y(N —1)],
(4.23)

FO@) = Tim £,
N—oo "I j=0,1,...,4(N - 1).
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The continualization of (4.22) results in

(z) =2 / 1dtt FO(t) exp(—2tz). (4.24)

0

We see that the original problem reduces to the one of
finding the function f(*)(¢). The electroneutrality condi-
tion (2.7) and the contact theorem (2.8) hold provided
that the function f(¥)(t) is constrained by

1 1
) (a My - L
/Odtfv(t)fl, /Odttf”(t)ff

respectively.
Let us first perform a brief analysis of the general den-

sity formula (4.24), without knowing explicitly f(¥)(¢). For
odd 7, the inequality (4.20) implies that fj(z\), < ~ for all
4, and so fO)(t) < v in the whole interval ¢ € [0,1]. Con-
sequently,

(4.25)

n(E) < [1—(142%)e *"] forodd~y.  (4.26)

2:1:

In particular, 7(Z) < /(2%?) at large . This already pro-
vides a non-trivial bound. Note that this relation teaches
us that the present analysis, valid for integer values of -,
cannot be continualized to small couplings to encompass
the mean-field limit v — 0, since at mean-field level, one
has 71 ~ 2. It is furthermore clear that the asymptotic
decay of the particle density is determined by the behavior
of f)(t) in the limit ¢ — 0. Let us assume that f(7)(¢) has
a power law behavior () (t) ~; .o ct”, where the positive-

ness and the boundedness of f(*)(t) are ensured by ¢ > 0
and v > 0, respectively. The special case of v = 0 corre-
sponds to the situation when f(7) (t) approaches a positive
number as ¢t — 0. Inserting our assumption into (4.24), we
get

c 1

ST £ oo (4.27)

n(z) ~ (1 +v)!
This means that if v > 0 for larger couplings, the asymp-
totic decay of the particle density is faster than the weak-
coupling prediction (2.6).

For v = 1, we have the exact result fj(ljz, =1forall j =
0,1,...,N — 1 and particle numbers N, so that f((t) =
1. This function fulfils the normalization relati