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Abstract. We study equilibrium statistical mechanics of classical point counter-ions, formulated on 2D
Euclidean space with logarithmic Coulomb interactions (infinite number of particles) or on the cylinder
surface (finite particle numbers), in the vicinity of a single uniformly charged line (one single double layer),
or between two such lines (interacting double layers). The weak-coupling Poisson-Boltzmann theory, which
applies when the coupling constant Γ is small, is briefly recapitulated (the coupling constant is defined as
Γ ≡ βe2, where β is the inverse temperature, and e the counter-ion charge). The opposite limit (Γ → ∞)
is treated by using a recent method based on an exact expansion around the ground-state Wigner crystal
of counter-ions. These two limiting results are compared at intermediary values of the coupling constant
Γ = 2γ (γ = 1, 2, 3), to exact results derived within a 1D lattice representation of 2D Coulomb systems
in terms of anti-commuting field variables. The models (density profile, pressure) are solved exactly for
any particles numbers N at Γ = 2 and up to relatively large finite N at Γ = 4 and 6. For the one-line
geometry, the decay of the density profile at asymptotic distance from the line undergoes a fundamental
change with respect to the mean-field behavior at Γ = 6. The like-charge attraction regime, possible for
large Γ but precluded at mean-field level, survives for Γ = 4 and 6, but disappears at Γ = 2.

1 Introduction

Most mesoscopic objects, when dissolved in a polar sol-
vent such as water, acquire an electric charge through
the dissociation of functional surface groups [1]. Counter-
ions are then released in the solution, and form, together
with the charged object, the so-called electric double layer.
Since the pioneering work of Gouy and Chapman a cen-
tury ago [2,3], the study of these charge density clouds has
formed an active line of research, in particular from a the-
oretical perspective [4–7]. Electric double layers are indeed
pivotal in affecting single mesoscopic “particle” properties,
together with inter-particle interactions.

The present paper concerns the equilibrium statistical
mechanics of charged particles in the vicinity of charged
walls (planar double layers). The general problem of mo-
bile ions confined by uniformly charged interfaces can be
formulated in two ways. In the case of “counter-ions only”,
there is just one species of equally charged ions neutraliz-
ing the surface charge on walls. In the case of “added elec-
trolyte”, the system is in contact with an infinite reservoir
of ± electrolyte charges. Here, we shall restrict ourselves to
the former class of models (no salt case). The most stud-
ied 3D geometries are one planar wall with counter-ions
localized in the complementary half-space and two parallel
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planar walls with counter-ions being localized in between.
The high-temperature (weak-coupling) limit of general
Coulomb systems is described by the Poisson-Boltzmann
(PB) mean-field theory [8] which basically does not de-
pend on dimension. Formulating the Coulomb system as
a field theory, the PB equation can be viewed as a first-
order term of a systematic expansion in loops [9–13].

A relevant progress has been made in the last decade
in the opposite strong-coupling limit [7,14–30]. Within a
field-theoretical treatment [17,18], the leading behavior
stems from a single-particle picture and next-correction
orders correspond to a virial/fugacity expansion in inverse
powers of the coupling constant. The method requires a
renormalization of infrared divergences via the electroneu-
trality condition. A comparison with the Monte Carlo
simulations [19,20,26,27,29–32] confirmed the adequacy
of the leading single-particle theory, but the predictions
for the first correction turn out to be incorrect. Recently,
a different method based on an exact expansion around
the ground state (the 2D Wigner crystal of counter-ions
formed on the surface of charged walls) was proposed in
ref. [33] to overcome such shortcomings. This method is
a low-T expansion, that bears some resemblance with the
plasmon approach of Lau, Pincus and collaborators [21,
22]. The difference with refs. [21,22] lies in the excitations
considered, as will appear below. The procedure is sys-
tematic and free of divergences. It provides the correct
correction to leading strong-coupling behaviour, and the
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Fig. 1. Considered geometries: a) one infinite charged line;
b) two parallel charged lines; c) the semi-infinite cylinder of
circumference W ; d) finite cylinder. Hatched domains are ac-
cessible to particles, σe is the uniform charge density of lines.

obtained results are in excellent agreement with available
data of Monte Carlo simulations under large coupling pa-
rameters [33].

The majority of previous studies has been restricted
to 3D which is the dimension of practical interest. Among
notable exceptions are refs. [31,32,34], dealing with 2D
Coulomb systems of counter-ions with logarithmic pair-
wise interactions, mainly in the context of Manning con-
densation. Here, we shall concentrate on 2D systems of
counter-ions, with charged lines on boundary walls. The
homogeneous line charge density is σe (e is the elementary
charge and σ > 0); point-like counter-ions are for simplic-
ity monovalent with charge −e. The studied geometries
are pictured in fig. 1; white walls are impenetrable to par-
ticles, domains accessible to particles are hatched. The
geometries of one (infinite) charged line and two parallel
charged lines at distance d are presented in figs. 1a and b,
respectively. The semi-infinite and finite cylinder surface
area of circumference W with charged circle boundaries
are pictured in figs. 1c and d, respectively. These cylindric
geometries will enable us to mimic the former ones, ob-
tained as the infinite-particle-number limit Wσ → ∞, for
finite numbers of counter-ions. The walls and the confining
domains are assumed to possess, for simplicity, the same
(vacuum) dielectric constant ε = 1, so that there are no
image charges. The relevant dimensionless coupling con-
stant is Γ = βe2, where β is the inverse temperature.

Interactions of counter-ions with each other and with
charged surfaces are determined by 2D electrostatics de-
fined as follows. In ν spatial dimensions, the electrostatic
potential v at a point r ∈ Rν , induced by a unit charge at
the origin 0, is the solution of Poisson’s equation

Δv(r) = −sνδ(r), (1.1)

where sν is the surface area of the ν-dimensional unit
sphere; s2 = 2π, s3 = 4π, etc. This definition of the ν-
dimensional Coulomb potential maintains generic proper-
ties —such as screening sum rules— of “real” 3D Coulomb
systems with the interaction potential v(r) = 1/r, r ∈ R3

and r = |r|. In an infinite 2D Euclidean space, the solution
of (1.1), subject to the boundary condition ∇v(r) → 0 as
r → ∞, reads

v(r) = − ln
( r

L

)
, r ∈ R2, (1.2)

where the free-length scale L will be set for simplicity to
unity. Such potential is created by infinitely long charged
lines in 3D which are perpendicular to the given 2D plane;
the corresponding systems occurring in nature are the
so-called polyelectrolytes. The Coulomb potential (1.2) is
used for the geometries in figs. 1a and b. For cylindric ge-
ometries in figs. 1c and d, the requirement of periodicity
along the y-axis, with period W , leads to the Coulomb
potential [35]

v(r) = − ln
∣∣∣2 sinh

(πz

W

)∣∣∣ , (1.3)

where the complex notation z = x+iy is used for point r =
(x, y). At small distances r � W , this potential behaves
like the logarithmic one (1.2) with L = W/(2π). At large
distances along the cylinder x � W , it behaves like the
1D Coulomb potential −(π/W )|x|.

Maintaining basic features of physical phenomena, 2D
models with one type of charges have interesting advan-
tages in comparison with 3D ones: They are less laborious
and some of the concepts can be often verified by explicit
calculations. 2D Coulomb systems are even exactly solv-
able at a special coupling Γ = 2, in infinite space as well
as in inhomogeneous semi-infinite or finite domains; for a
review, see [36]. Such exactly solvable models can serve as
an adequacy test of weak- and strong-coupling series ex-
pansions for finite temperatures. It was shown in ref. [37]
that for the sequence of couplings Γ = 2γ (γ = 1, 2, 3, . . .)
statistical averages in 2D Coulomb models can be treated
within a 1D lattice theory of interacting fields of anti-
commuting (Grassmann) variables. This 1D representa-
tion enables one to treat exactly one-component Coulomb
systems with relatively large numbers of particles also for
Γ = 4, 6. The technique of anti-commuting variables was
applied to the general problem of integrability of the 2D
jellium [38] and to the translational symmetry breaking of
the jellium formulated on the cylinder surface [39].

The present work was motivated by the need to have a
control over weak- and strong-coupling theories. The exact
results for density profiles and pressures at intermediary
values of Γ provide valuable tests of small- and large-Γ
analysis. Among the results obtained in this paper, two
deserve special attention. For the one-line geometry, the
asymptotic decay of the density profile from the line un-
dergoes a fundamental change from the mean-field behav-
ior at Γ = 6. This means that the long-distance predic-
tions of the PB theory have a restricted validity, which is
relevant from the point of view of the renormalized-charge



L. Šamaj and E. Trizac: Counter-ions at charged walls: Two-dimensional systems Page 3 of 14

concept (for a review, see [16]). This also invalidates the
hypothesis that a strongly coupled double layer, at large
distances, behaves in a (suitably renormalized) mean-field
fashion [40,41]. For two-line geometry, there is evidence
about attraction between like-charged lines at relatively
small couplings Γ = 4, 6. The attraction is observed even
in the N = 2 particle systems.

The paper is organized as follows. For completeness, it
starts with a short recapitulation of the weak-coupling PB
theory for the straight-line(s) geometries in figs. 1a and b.
The models are subsequently studied in the large-Γ limit,
by using the new method [33], in sect. 3. Intermediary val-
ues of the coupling constant Γ are investigated within the
technique of 1D Grassmann variables in sect. 4. The mod-
els, formulated on the cylinder surface in figs. 1c and d, are
solved exactly (density profile, pressure) for any particles
numbers N at Γ = 2 and for (relatively large) finite N at
Γ = 4, 6. The results are compared with those obtained
in the weak- and strong-coupling limits. Conclusions are
finally drawn in sect. 5.

2 Weak-coupling limit

We begin with a brief reminder of the weak-coupling PB
theory, adapted for the geometries pictured in figs. 1a
and b. More details can be found in, e.g., [8].

2.1 Single charged line

We first consider the case of a single infinite line at x = 0,
carrying positive charge density σe (fig. 1a). Let the den-
sity of counter-ions in the half-plane x > 0 be denoted by
n(x); the corresponding charge density is ρ(x) = −en(x).
The contact theorem for planar wall surfaces [42–46] re-
lates the total contact density of particles to the surface
charge density on the wall and the bulk pressure of the
fluid P . For 2D systems of identical particles, it reads

βP = n(0) − πΓσ2, (2.1)

where Γ = βe2 is the coupling constant. Since in the
present case of a single isolated double layer the pressure
vanishes (P = 0), we have n(0) = πΓσ2.

The induced average electrostatic potential φ(x) is de-
termined by the Poisson equation

d2φ(x)
dx2

= −2πρ(x). (2.2)

The condition of electroneutrality σe +
∫∞
0

dx ρ(x) = 0 is
equivalent to the boundary condition

−dφ(x)
dx

∣∣∣∣
x=0

= 2πσe. (2.3)

Within the mean-field approach, valid for Γ → 0 (“high
temperatures”), the average particle density is approxi-
mated by replacing the potential of mean force by the

average electrostatic potential, n(x) = n0 exp[β eφ(x)].
Equation (2.2) then reduces to the nonlinear PB equation

d2φ(x)
dx2

= 2πen0 exp[βeφ(x)]. (2.4)

This second-order differential equation, supplemented by
the boundary condition (2.3), can be integrated explicitly.
The solution for the counter-ion density profile reads

n(x) =
1

πΓ

1
(x + μ)2

. (2.5)

Here, μ = 1/(πΓσ) is the Gouy-Chapman length, i.e.
the distance from the charged wall at which an isolated
counter-ion has potential energy equal to thermal energy
kBT = 1/β. In what follows, all lengths will be expressed
in units of μ, x̃ = x/μ. Note that at asymptotically large
distances from the wall x̃ → ∞, the density profile (2.5)
does not depend on the line charge density magnitude σe,
n(x) ∼ 1/(πΓx2). We shall see that this interesting phe-
nomenon takes place also at finite temperature (Γ = 2 and
Γ = 4), while another asymptotic decay seems to hold at
Γ = 6.

The density profile will be considered also in the
rescaled form ñ(x̃) = n(μx̃)/(πΓσ2). Thus, the solu-
tion (2.5) can be expressed as

ñ(x̃) =
1

(1 + x̃)2
∼

x̃→∞

1
x̃2

. (2.6)

This density profile satisfies both the electroneutrality
condition (2.3), written in the rescaled form as

∫ ∞

0

dx̃ ñ(x̃) = 1, (2.7)

and the contact theorem (2.1) with P = 0, written as

ñ(0) = 1. (2.8)

It is worth emphasising that as an approximate approach,
PB could a priori violate the contact theorem. This is not
the case, as follows from arguments that can be found in
ref. [47].

2.2 Two charged lines

The system of two lines at distance d in fig. 1b has the
x → d − x symmetry, so it is sufficient to consider the
interval x ∈ [0, d/2]. Because of the mentioned symmetry,
the electrostatic potential satisfies the additional bound-
ary condition at the mid-point x = d/2

dφ(x)
dx

∣∣∣∣
x=d/2

= 0. (2.9)

Let us denote by nm the value of the particle density
at x = d/2. The PB equation (2.2), supplemented with
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the boundary condition (2.9), can be solved explicitly

βeφ(x) = − ln cos2
[
K

(
x − d

2

)]
,

n(x) =
nm

cos2[K(x − d/2)]
, (2.10)

where the inverse length K is related to nm via

K2 = πΓnm. (2.11)

The boundary condition at x = 0 (2.3) implies the follow-
ing transcendental equation for the real K

(Kd) tan(Kd/2) =
d

μ
≡ d̃. (2.12)

According to the contact theorem (2.1), the (rescaled)
pressure between the charged lines is given by

P̃ ≡ βP

πΓσ2
= (μK)2. (2.13)

Note that in the PB approximation, the pressure between
two equivalently charged lines is always positive. This re-
pulsive behaviour is in agreement with general results [48].

Two limiting cases of the dimensionless distance be-
tween the lines d̃ are of special interest. For small distances
d̃ → 0, we have

P̃ =
2
d̃
− 1

3
+

2
45

d̃ + O(d̃ 2), (2.14)

while for large distances d̃ → ∞, Kd → π and

βP ∼ π

Γ

1
d2

. (2.15)

We see that the asymptotic decay of P to zero does not
depend on σ; this behavior is analogous to that of the den-
sity profile in the one-line problem. Note that d and 1/σ
(or equivalently, the Gouy length) being the two relevant
length scales in the problem, an algebraic decay of P in
1/d2 at large distances cannot involve any σ dependence,
for dimensional reasons. A similar remark holds for the
density profile of the single plate problem, eq. (2.5).

3 Large coupling limit

3.1 Single charged line

At zero temperature, i.e. for Γ → ∞, the counter-ions
collapse on the charged line, see fig. 2a. They create a
1D Wigner crystal, with vertices Rj = (0, j/σ) (j =
0,±1,±2, . . .); the nearest-neighbor distance a = 1/σ en-
sures the local neutrality on the line. It is essential here
to bear in mind that the large-Γ limit corresponds to the
regime in which a is much larger than the characteristic
Gouy distance μ between the counter-ions and the charged
line [14], ã ≡ a/μ ∝ Γ → ∞. In the asymptotic limit

x

b)y

0 d

−e

−e

−e

−e

−e

−e
y a)

x

y

0

1/σ

Fig. 2. Ground-state Wigner crystal of counter-ions (shown by
the black dots) in a) one-line geometry; b) two-lines geometry.
Panel a) also introduces the notation (x, y) for the position
shift of a tagged counter-ion, that will be used in our analytical
calculation.

Γ → ∞, each vertex Rj is occupied by a counter-ion j.
The ground-state energy of the discrete particle system
plus the homogeneous background charge density will be
denoted by E0. For Γ large but finite, the fluctuations
of counter-ions around their vertex positions become im-
portant. Our approach consists in a systematic account of
these fluctuations, and provides an expansion in inverse
powers of Γ . It is the exact adaptation to the 2D case
of the procedure discussed in [33] for three-dimensional
systems. It differs from the approach of Netz and col-
laborators [7,18–20], that is a virial-like procedure. It is
closer in spirit to the approach of Lau, Pincus, and collab-
orators [21,22], that also amounts to a low-T expansion
around the ground state. There is an important differ-
ence, however, in that the latter authors impose that the
counter-ions stick to the charged interfaces, so that the
counter-ions degrees of freedom are “in-plane” only (along
the interface). This precludes the possibility to study the
phenomenon of like-charge attraction at small distances,
see below. Indeed, it is essential to include in the anal-
ysis the excitations where the counter-ions can unbind
from the charged interface (displacements perpendicular
to the interface). Consequently, the results of refs. [21,22]
should be viewed as an implicit large-distance expansion,
and in this respect, complementary to our short-distance
analysis.

As depicted in fig. 2a, let us first shift one of the par-
ticles, say j = 0, from its lattice position R0 = (0, 0) by a
small vector δR0 = (x > 0, y), δR0 � a. The correspond-
ing change in the total energy δE(x, y) = E(x, y)−E0 ≥ 0
consists of two contributions. The first one is due to the
interaction of the shifted counter-ion with the uniform line
charge density

δE(1)(x) = πe2σx. (3.1)

The second contribution δE(2)(x, y) comes from the inter-
action of the shifted particle with all other ions on the 1D
Wigner crystal. For the special case of the y = 0 shift,
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we find

δE(2)(x, 0) = −e2
∞∑

j=−∞
(j �=0)

⎡
⎣ln

√
x2 +

(
j

σ

)2

− ln
(
|j|
σ

)⎤
⎦

= −e2 ln
∞∏

j=1

[
1 +
(

σx

j

)2
]

= −e2 ln
[
sinh(πσx)

πσx

]
. (3.2)

This function has a small-x expansion of the form

δE(2)(x, 0) = −e2

6
(πσx)2 +

e2

180
(πσx)4 + O(x6). (3.3)

Note that the interaction with counter-ions does not im-
ply any contribution linear in x. The corresponding elec-
tric field indeed vanishes, by symmetry. The negative sign
of the leading x2 term does not represent any problem:
The sum of δE(2)(x, 0) and the linear term (3.1) is a
monotonously increasing function of x, as it should be.
For the special case of the x = 0 shift, we find

δE(2)(0, y) = −e2 ln
∞∏

j=1

[
1 −
(

σy

j

)2
]

= −e2 ln
[
sin(πσy)

πσy

]

=
e2

6
(πσy)2 +

e2

180
(πσy)4 + O(y6). (3.4)

The calculation of the whole function δE(2)(x, y) for the
particle shift simultaneously along both directions is com-
plicated. For our purpose, it is sufficient to derive its ex-
pansion in x, y up to harmonic terms:

δE(2)(x, y) = −e2

2

∞∑
j=1

ln

{[
1 +
(

σx

j

)2

+
(

σy

j

)2
]2

−4
(

σy

j

)2
}

∼ e2(πσ)2

6
(y2 − x2). (3.5)

where use was made of
∑∞

j=1 1/j2 = π2/6 [49]. Note the
absence of the mixed harmonic term xy. The total energy
change, up to harmonic terms and in dimensionless form,
is finally given by

−βδE(x, y) ∼ −x̃ +
1

6Γ
(x̃2 − ỹ2). (3.6)

This formula reveals a relationship between the order of
the expansion of −βE(x, y) in the dimensionless lengths
x̃, ỹ and its expansion in 1/Γ . The linear term −x̃ is the
only one which does not vanish in the limit Γ → ∞. This
leading term reflects the single-particle character of the
system close to zero temperature: Each particle behaves
independently from the others, exposed only to the field

of the line charge density. A similar conclusion is reached
within the original approach of Netz and collaborators [7,
18–20,26,27,29–32]. Terms of the p-th order in x, y have
prefactors proportional to Γσp, i.e. passing to x̃, ỹ they
become of the order 1/Γ p−1. This is why the first 1/Γ
correction to the single-particle regime is determined ex-
clusively by the terms harmonic in space.

Let us now consider a shift of all particles from their
lattice positions Rj (j = 0,±1,±2, . . .) by small vectors
δRj = (xj , yj). To determine the corresponding increase
in the total energy δE({xj , yj}), we proceed as above and
obtain

−βδE({xj , yj}) ∼ −
∑

j

x̃j +
1

2π2Γ

∑
j<k

(x̃j − x̃k)2

(j − k)2

− 1
2π2Γ

∑
j<k

(ỹj − ỹk)2

(j − k)2
. (3.7)

The x-dependent density profile of counter-ions is de-
fined as the average n(x) = 〈

∑N
j=1 δ(r − rj)〉. The mean-

value calculation with the energy (3.7) is simplified in two
ways. Firstly, since the y-coordinates do not mix with x-
coordinates, they can be neglected in the considered order.
Secondly, since all (identical) particles are exposed to the
same one-body potential of the charged line, a summation
over particle degrees of freedom can be represented by just
one auxiliary coordinate. We find

ñ(x̃) = Ce−x̃

∫ ∞

0

dx̃′ e−x̃′

⎡
⎣1 +

1
2π2Γ

∞∑
j=−∞

(x̃ − x̃′)2

j2

⎤
⎦

+O
(

1
Γ 2

)
, (3.8)

where C is determined by the normalization condi-
tion (2.7). Simple algebra yields

ñ(x̃) = e−x̃

[
1 +

1
3Γ

(
x̃2

2
− x̃

)]
+ O

(
1

Γ 2

)
. (3.9)

The contact theorem (2.8) is fulfilled by this profile.

3.2 Two charged lines

In the problem of two lines at distance d, carrying the
same charge density σe, the electric field between the lines
vanishes. At zero temperature Γ → ∞, the counter-ions
collapse on the lines, see fig. 2b. The Wigner crystal is thus
composed of two one-dimensional arrays of sites with the
lattice constant a = 1/σ, shifted with respect to one an-
other by half-period a/2. The vertices of the Wigner lattice
will be denoted as R(0)

j = (0, j/σ) (j = 0,±1,±2, . . .) if

they belong to the line at x = 0 and as R(d)
j = (d, j/σ)

(j = ±1
2 ,± 3

2 , . . .) if they belong to the line at x = d. The
regime of large Γ lends itself to analytic progress when
the inequality d � a, or equivalently

dσ � 1 (3.10)
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is obeyed. As before, the shifts of particles from their
Wigner positions along the y-direction have no effects on
statistical averages in the leading large-Γ order and in the
first 1/Γ correction, so we shall not consider them. Let the
first one of the particles, say the one localized on the x = 0
line at R(0)

0 = (0, 0), be shifted along the x-direction by
a small amount x > 0. The corresponding energy change,
up to harmonic terms, is given by

−βδE(x) ∼ 1
6Γ

x̃2 − 1
2Γ

[
d̃ 2 − (d̃ − x̃)2

]
, (3.11)

where we used the formula
∑

j= 1
2 , 3

2 ,... 1/j2 = π2/2. When
all particles are shifted in the x-direction within the
area limited by the two lines, R(0)

j → (x(0)
j , j/σ) (j =

0,±1,±2, . . .) and R(d)
j → (x(d)

j , j/σ) (j = ± 1
2 ,± 2

2 , . . .),
the energy change is given by

−βδE({xj}) ∼
1

2π2Γ

∑
j<k

[x̃(0)
j − x̃

(0)
k ]2

(j − k)2

+
1

2π2Γ

∑
j<k

[x̃(d)
j − x̃

(d)
k ]2

(j − k)2

− 1
2π2Γ

∑
j,k

d̃ 2 − [x̃(0)
j − x̃

(d)
k ]2

(j − k)2
. (3.12)

The density of counter-ions at x (0 ≤ x ≤ d) is calcu-
lated with the energy (3.12)

ñ(x̃) = C

∫ d̃

0

dx̃′

⎡
⎣1 +

1
2π2Γ

∑
j=±1,±2,...

(x̃ − x̃′)2

j2

+
1

2π2Γ

∑

j=± 1
2 ,± 3

2 ,...

(x̃ − x̃′)2

j2

⎤
⎦+ O

(
1

Γ 2

)
,

(3.13)

where C is determined by the normalization condition
∫ d̃

0

dx̃ ñ(x̃) = 2. (3.14)

After simple algebra, we arrive at

ñ(x̃) =
2
d̃

⎧
⎨
⎩1 +

2
3Γ

⎡
⎣
(

x̃ − d̃

2

)2

− d̃ 2

12

⎤
⎦
⎫
⎬
⎭+ O

(
1

Γ 2

)
.

(3.15)
This expression has the needed x → d − x symmetry.

To derive the pressure between the lines, we apply the
contact theorem (2.1) to obtain, in the Γ → ∞ limit,

P̃ =
2
d̃
− 1 +

2d̃

9Γ
+ O

(
d̃ 2

Γ 2

)
. (3.16)

Note that the small-d̃ pressure expression (2.14), obtained
in the weak-coupling limit, and (3.16) obtained in the

0 2 4 6 8
Γ

0

5

10

15

20

d ~

repulsion

attraction?

Fig. 3. Phase boundaries following from the equation of
state (3.16). The solid curve corresponds to P̃ = 0, and dis-
criminates the repulsive region on the left-hand side from the
attractive one. The dashed curve corresponds to the maximum
attraction, given by ∂P̃ /∂d̃ = 0. The dashed-dotted line stands
for the phase boundary following from the refined equation of
state (4.47), where the function of coupling AN is given by
its infinite N extrapolation (4.50). The two circles stand for
the exact location of the P = 0 points for Γ = 4 and 6,
obtained in sect. 4. Likewise, the two squares are the corre-
sponding exact maximum attraction points at Γ = 4 and 6
(see text). We stress that such diagrams are obtained from
large Γ in conjunction with short-distance expansions. Conse-
quently, for the range of Γ values plotted, a qualitative picture
only can be expected. The question mark is a reminder of the
fact that d̃ should be much smaller than Γ to allow for our
expansion.

large-Γ limit, coincide only in the leading 2/d̃ term. The
sub-leading constant terms differ. It should be kept in
mind here that the present expansion makes sense pro-
vided eq. (3.10) is fulfilled, which means that d̃ � Γ .
Given that (3.16) exhibits an attractive regime, for large
enough Γ , for values of d̃ slightly above 2, it can be con-
cluded that eq. (3.16) is able to capture the possibility of
like-charge attraction, a phenomenon first reported some
30 years ago [50–52]. It is also interesting to comment on
the mean-field failure to capture such an effect, in spite
of a small d expansion of the pressure, eq. (2.14), that is
very close to its large-Γ counterpart (3.16). The require-
ment for the validity of expansion (2.14) is that d̃ � 1,
outside the regime of d̃ > 6 where eq. (2.14), taken without
particular precaution, would lead to a negative pressure.
The requirement d̃ � 1 stands in the strongly confined
regime, where the entropic cost of confining the counter-
ions is overwhelming, and leads to a dominant repulsive
pressure P̃ ∼ 2/d̃.

Taking the expansion order as indicated in for-
mula (3.16), the attractive (P < 0) and repulsive (P > 0)
regions in the (Γ, d̃) plane are split by the solid curve in
fig. 3. The maximum attraction, given by ∂P̃ /∂d̃ = 0,
is obtained for d̃max = 3

√
Γ , see the dashed line. Open

symbols for Γ = 4, 6 are the results obtained in the next
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section from an analysis of finite particle numbers. It is im-
portant here to emphasize that the equation of state lead-
ing to fig. 3 is trustworthy for d̃ � Γ . As a consequence,
the dashed line showing the locus of maximal attraction
becomes asymptotically exact (since d̃max/Γ ∝ Γ−1/2

vanishes at large Coulombic couplings), but the upper part
of that diagram in fig. 3 is only indicative, as the question
mark indicates. It will in particular be shown in the next
section that the re-entrance of the repulsive regime at fixed
Γ , i.e. the fact there exist two distances d̃ where the pres-
sure vanishes, does not take place at Γ = 4 nor at Γ = 6.
For such couplings, the first zero of P only (with d̃ slightly
above 2) is observed. Consequently, while the re-entrance
phenomenon is a feature backed by Monte Carlo simula-
tions for three-dimensional systems [19,20], its existence
in the present two-dimensional situation is still an open
question, that is difficult to address with analytical tools.

4 “Intermediary” fluid regime

4.1 General formalism

We consider N identical particles of charge −e, con-
strained to a 2D domain Λ; points of the domain will
be specified by the complex coordinates z = x + iy,
z̄ = x − iy. The particles interact pair-wisely through the
2D Coulomb potential v(z, z′) = − ln |z − z′| and are ex-
posed to a one-body potential eψ(z, z̄) due to the uniform
charge density σe on the line walls forming the domain
boundary ∂Λ. The partition function at coupling Γ is de-
fined as

ZN =
1

N !

∫

Λ

N∏
j=1

[
d2zj w(zj , z̄j)

]∏
j<k

|zj − zk|Γ , (4.1)

where w(z, z̄) = exp[Γψ(z, z̄)] is the one-body Boltzmann
factor. ln ZN is the generator for the particle density in
the following sense:

n(z, z̄) = w(z, z̄)
δ

δw(z, z̄)
ln ZN . (4.2)

For the couplings Γ = 2γ with γ a positive integer,
a 1D Grassmann representation of the 2D partition func-
tion (4.1) was derived and further developed in a series of
works [37–39]. Let us introduce on a discrete chain of N
sites j = 0, 1, . . . , N − 1 two sets of Grassmann variables
{ξ(α)

j , ψ
(α)
j }, each with γ components α = 1, . . . , γ. The

Grassmann variables satisfy the ordinary anti-commuting
algebra [53]. The partition function (4.1) is expressible as
an integral over the Grassmann variables in the following
way:

ZN (γ) =
∫

DψDξ eS(ξ,ψ),

S(ξ, ψ) =
γ(N−1)∑
j,k=0

ΞjwjkΨk. (4.3)

Here, DψDξ =
∏N−1

j=0 dψ
(γ)
j . . . dψ

(1)
j dξ

(γ)
j . . . dξ

(1)
j and the

action S involves pair interactions of composite operators

Ξj =
∑

j1,...,jγ=0
(j1+...+jγ=j)

ξ
(1)
j1

· · · ξ(γ)
jγ

,

Ψk =
∑

k1,...,kγ=0
(k1+...+kγ=k)

ψ
(1)
k1

· · ·ψ(γ)
kγ

, (4.4)

i.e. the products of all γ anti-commuting-field compo-
nents, belonging to either ξ-set or ψ-set, with the fixed
sum of site indices. The interaction matrix has the ele-
ments

wjk =
∫

Λ

d2z w(z, z̄)zj z̄k; j, k = 0, 1, . . . , γ(N − 1).

(4.5)
The representation (4.3) provides ZN (γ) as a function of
interaction elements {wjk}. The particle density (4.2) is
given by

n(z, z̄) = w(z, z̄)
γ(N−1)∑
j,k=0

〈ΞjΨk〉zj z̄k, (4.6)

where the two-correlators

〈ΞjΨk〉 ≡
1

ZN (γ)

∫
DψDξ eS(ξ,ψ)ΞjΨk

=
∂

∂wjk
ln ZN (γ). (4.7)

The above Grassmann formalism is straightforwardly
applicable to the case of the cylinder surface with the
Coulomb potential (1.3). Due to the periodicity along the
y-axis, both the one-body Boltzmann factor w and the
particle density n are only x-dependent. The interaction
Boltzmann weight for two particles at the points z = x+iy
and z′ = x′ + iy′ is expressible as
∣∣∣∣2 sinh

π(z − z′)
W

∣∣∣∣
Γ

= eπΓ (x+x′)/W

×
∣∣∣e−2πz/W − e−2πz′/W

∣∣∣
Γ

. (4.8)

For each particle of the N -particle system, the prefactors
from N−1 pairwise interaction Boltzmann weights and the
multiplication by the constant 4π/W 2 (which is irrelevant
from the point of view of the particle density) renormalize
the one-body w(x) in the following way:

wren(x) =
4π

W 2
w(x) exp

[
2πγ

W
(N − 1)x

]
. (4.9)

The partition function is again given by (4.1), with the
substitutions w → wren and z → exp(−2πz/W ). Due to
the orthogonality relation

∫ W

0

dy exp
[
2π

W
i(j − k)y

]
= Wδjk, (4.10)
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the interaction matrix (4.5) becomes diagonal, wjk =
wjδjk, with

wj = W

∫

Λ

dxwren(x) exp
(
−4π

W
jx

)
. (4.11)

Due to the “diagonalized” form of the partition function

ZN (γ) =
∫

DψDξ

γ(N−1)∏
j=0

exp (ΞjwjΨj) , (4.12)

only two-correlators

〈ΞjΨj〉 =
∂

∂wj
ln ZN (γ) (4.13)

will be nonzero. The density is thus given by

n(x) = wren(x)
γ(N−1)∑

j=0

〈ΞjΨj〉 exp
(
−4π

W
jx

)
. (4.14)

We see that the original problem reduces to finding
the explicit dependence of ZN (γ) on the set of weights
{wj}γ(N−1)

j=0 , say by using the anti-commuting integral
in (4.12).

ZN (γ) can be found trivially for γ = 1 (Γ = 2) when
the composite operators are the standard anti-commuting
variables Ξj = ξj , Ψj = ψj . The partition function con-
tains the only term

ZN (1) = w0w1 · · ·wN−1. (4.15)

Consequently,

〈ΞjΨj〉 =
1
wj

for all j = 0, 1, . . . , N − 1. (4.16)

In the case of higher integer γ’s, the number of (al-
ways positive) terms increases quickly with N . For N = 2
particles and arbitrary integer γ, we have

Z2(γ) =
1
2

γ∑
j=0

(
γ
j

)2

wjwγ−j . (4.17)

For N = 3 particles, we have

Z3(2) = w0w2w4 + 2w0w
2
3 + 2w2

1w4

+4w1w2w3 + 6w3
2, (4.18)

Z3(3) = w0w3w6 + 32w0w4w5 + 32w1w2w6

+62w1w3w5 + 152w2w3w4, (4.19)

etc. To document the number of terms in ZN (γ), we men-
tion that when all wj = 1, then ZN (γ) = (γN)!/[(γ!)NN !].
The methods for systematic generation of ZN (γ), realized
in practice through computer language Fortran, are sum-
marized in ref. [38]. We were able to go up to N = 10
particles for γ = 2 and up to N = 9 particles for γ = 3.
For the sake of completeness, we mention that the number

of terms in ZN (γ) is on the order of 108 for 10 particles
at γ = 2.

For γ being an odd positive integer, the composite
operators Ξ and Ψ are products of an odd number of
anti-commuting variables. This is why they satisfy the
usual anti-commutation rules {Ξj , Ξk} = {Ψj , Ψk} =
{Ξj , Ψk} = 0 and, in particular, we have Ξ2

j = Ψ2
j =

0. Each exponential in (4.12) is then expanded as
exp(ΞjwjΨj) = 1 + ΞjwjΨj . We conclude that, for odd
γ, a given wj can occur in a summand of ZN (γ) at most
once. In view of (4.13), this property implies the inequality

wj〈ΞjΨj〉 ≤ 1 for γ = 1, 3, 5, . . . . (4.20)

On the other hand, if γ is an even positive integer, the
composite operators are products of an even number of
anti-commuting variables and therefore commute with
each other: [Ξj , Ξk] = [Ψj , Ψk] = [Ξj , Ψk] = 0. Higher
powers of wj are then allowed in summands of ZN (γ) and
the inequality (4.20) has no counterpart for even γ’s.

4.2 Cylinder: Single charged line

We consider the periodic strip of circumference W , semi-
infinite in the x-direction, x ∈ [0,∞], see fig. 1c. The
charge density σe at line x = 0 is neutralized by N = σW
particles of charge −e. The potential induced by the line
charge is −πσex, so that w(x) = exp(−Γπσx). The renor-
malized one-body Boltzmann factor (4.9) and the interac-
tion strengths (4.11) take the form

wren(x) =
4π

W 2
exp
(
−2πγ

W
x

)
, wj =

1
j + (γ/2)

.

(4.21)
The particle density (4.14) reads

n(x) =
4π

W 2

γ(N−1)∑
j=0

〈ΞjΨj〉 exp
[
−4π

W

(
j +

γ

2

)
x

]
. (4.22)

For finite N (or, equivalently, finite W ), the particle den-
sity exhibits at asymptotically large distances an expo-
nential decay to zero, limx→∞ n(x) ∝ exp(−2πγx/W ).

Our aim is to continualize the formula (4.22) in the
thermodynamic limit N,W → ∞, at the fixed ratio
N/W = σ; this makes the semi-infinite cylinder surface
equivalent to the system of the charged straight line in
contact with half-space occupied by counter-ions. For a
given finite N , we define a set of discrete values f

(γ)
j,N =

γwj〈ΞjΨj〉 with j = 0, 1, . . . , γ(N − 1). As the continu-
ous variable, we choose t = j/[γ(N − 1)], taking values
in the interval [0, 1]. In the continuum limit N → ∞, the
set of discrete values f

(γ)
j,N tends to a continuous positive

function

f (γ)(t) = lim
N→∞

f
(γ)
j,N ,

t = j/[γ(N − 1)],

j = 0, 1, . . . , γ(N − 1).
(4.23)
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The continualization of (4.22) results in

ñ(x̃) = 2
∫ 1

0

dt tf (γ)(t) exp(−2tx̃). (4.24)

We see that the original problem reduces to the one of
finding the function f (γ)(t). The electroneutrality condi-
tion (2.7) and the contact theorem (2.8) hold provided
that the function f (γ)(t) is constrained by

∫ 1

0

dt f (γ)(t) = 1,

∫ 1

0

dt tf (γ)(t) =
1
2

, (4.25)

respectively.
Let us first perform a brief analysis of the general den-

sity formula (4.24), without knowing explicitly f (γ)(t). For
odd γ, the inequality (4.20) implies that f

(γ)
j,N ≤ γ for all

j, and so f (γ)(t) ≤ γ in the whole interval t ∈ [0, 1]. Con-
sequently,

ñ(x̃) ≤ γ

2x̃2

[
1 − (1 + 2x̃)e−2x̃

]
for odd γ. (4.26)

In particular, ñ(x̃) ≤ γ/(2x̃2) at large x̃. This already pro-
vides a non-trivial bound. Note that this relation teaches
us that the present analysis, valid for integer values of γ,
cannot be continualized to small couplings to encompass
the mean-field limit γ → 0, since at mean-field level, one
has ñ ∼ x̃−2. It is furthermore clear that the asymptotic
decay of the particle density is determined by the behavior
of f (γ)(t) in the limit t → 0. Let us assume that f (γ)(t) has
a power law behavior f (γ)(t) ∼t→0 ctν , where the positive-
ness and the boundedness of f (γ)(t) are ensured by c > 0
and ν ≥ 0, respectively. The special case of ν = 0 corre-
sponds to the situation when f (γ)(t) approaches a positive
number as t → 0. Inserting our assumption into (4.24), we
get

ñ(x̃) ∼ (1 + ν)!
c

21+ν

1
x̃2+ν

, x̃ → ∞. (4.27)

This means that if ν > 0 for larger couplings, the asymp-
totic decay of the particle density is faster than the weak-
coupling prediction (2.6).

For γ = 1, we have the exact result f
(1)
j,N = 1 for all j =

0, 1, . . . , N − 1 and particle numbers N , so that f (1)(t) =
1. This function fulfils the normalization relations (4.25).
The formula (4.24) for the density profile becomes

ñ(x̃) =
1

2x̃2

[
1 − (1 + 2x̃)e−2x̃

]
. (4.28)

At large x̃,

ñ(x̃) ∼ 1
2x̃2

, x̃ → ∞. (4.29)

This behavior resembles, up to the renormalization factor
1/2, the weak-coupling decay (2.6). The independence of
the counter-ion density on the line charge density σe is
present also at the considered finite temperature.
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Fig. 4. Discrete representations of the functions f (2)(t) (Γ ≡
2γ = 4) and f (3)(t) (Γ = 6) for increasing number of parti-
cles N .

For γ = 2 and γ = 3 (i.e., Γ = 4 and 6), we performed
exact calculations up to N = 10 and N = 9 particles, re-

spectively. The discrete representations {f (2)
j,N}2(N−1)

j=0 and

{f (3)
j,N}3(N−1)

j=0 of the corresponding functions f (2)(t) and

f (3)(t) are presented in fig. 4. It is seen that data converge
rather quickly when increasing particle numbers. The con-
tinuous functions f (2)(t) and f (3)(t) are well approximated
by the corresponding discrete plots obtained for N = 10
and N = 9 particles (dashed lines). Although the plots,
at first sight, look like symmetric with respect to t = 1/2,
they are not.

In view of the above discussion about the large-
distance decay of the particle density (4.27), the behavior
of the functions f (2)(t) and f (3)(t) in the limit t → 0
is of primary importance. The first relevant question is
whether f (2)(0) and f (3)(0) are positive or equal to 0.
Since t = 0 for j = 0, we have f (2)(0) = limN→∞ f

(2)
0,N and

f (3)(0) = limN→∞ f
(3)
0,N . Given that the “natural” variable

in the finite-N analysis is x = 1/(N−1), the dependence of
the sequences {f (2)

0,N} and {f (3)
0,N} on 1/(N − 1) is pictured

in fig. 5. For γ = 2, the sequence is well fitted by the linear
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Fig. 5. The N dependence of discrete sequences f
(γ)
0,N , f

(γ)
1,N for

γ = 2, 3; their relation to the small-t behavior of the functions
f (2)(t) and f (3)(t) is explained in the text. The symbols are for

the exact results at finite N . For γ = Γ/2 = 2, both f
(2)
1 and

f
(2)
0 extrapolate to the same limiting value (0.195) for N → ∞

(in other words, ν = 0 in eq. (4.27)). On the other hand, for
γ = 3, a similar analysis provides a vanishing limit, i.e. ν �= 0.
In the main graph, the dashed lines are linear fits while the
continuous curve corresponds to a power law with exponent

1.45. The inset shows f
(3)
1 on a log-log scale, to evidence power

law behaviour. The dashed line has slope 1.45 while the dotted
line, given as a guide to the eye, has slope 1.6.

form f
(2)
0,N ∼ 0.195 + 0.85x with x = 1/(N − 1) (dashed

line), i.e. f (2)(0) ∼ 0.195 is apparently positive and ν = 0
in (4.27). We note that this value is fully corroborated by
the analysis of the behaviour of f

(2)
1 , that is well fitted by

f
(2)
1,N ∼ 0.195 + 1.70x (dashed line in fig. 5). We conclude

that at γ = 2, the large-distance behavior of the density
exhibits the mean-field behavior 1/x̃2, with a renormal-
ized prefactor f (2)(0)/2 � 0.1, significantly smaller than
its mean-field value of 1, or the 1/2 value which holds
at Γ = 2. This illustrates enhanced screening at larger
Coulombic coupling Γ .

For γ = 3, the sequence is well fitted by the quadratic

form f
(3)
0,N ∼ 0.2x + 0.32x2 (dashed line), i.e. f (3)(0) ∼

0 and ν > 0 in the large distance behavior (4.27). The
sequence {f (3)

0,N} does not provide any information about
the value of ν. The index ν can instead be deduced from
the subsequent sequence {f (3)

1,N} with the coordinate t =
1/[3(N − 1)] which, as N increases, mimics the plot of
the function f (3)(t) for small t. In the limit N → ∞ (t =
0), the sequence {f (3)

1,N} must converge to the previously
obtained f (3)(0) = 0. The sequence is well fitted by a
power law f

(3)
1,N ∝ xν with ν � 1.45, see the solid line in

fig. 5, indicating that ν � 1.45. The stability of the fit is
documented in the inset, that shows the sequence {f (3)

1,N}

on log-log plot; the dashed line has slope 1.45 and the
dotted line has slope 1.6. A similar value of ν is obtained
from the sequence {f (3)

2,N}, and also from a complementary
direct plot of the data of fig. 3 for Γ = 6 on a log-log
scale (not shown). We therefore see that at γ = 3 the
density behaves like ∼ 1/x̃a at large distances with an
exponent a = 2 + ν close to 3.5, in contrast to the mean-
field prediction. For this coupling, the asymptotic density
decay depends on the line charge σe. Indeed, returning to
original variables, one has in general

n(x) ∝ σ−νx−2−ν .

4.3 Cylinder: Two charged lines

We now consider the periodic strip of circumference W ,
finite in the x-direction, x ∈ [0, d], see fig. 1d. The equiv-
alent charge densities σe at lines x = 0 and x = d are
neutralized by N = 2σW particles of charge −e. The elec-
tric field generated by the line charges vanishes, so that
w(x) = 1 and

wren(x) =
4π

W 2
exp
[
2πγ

W
(N − 1)x

]
. (4.30)

With respect to the equality d/W = d̃/(πγN), the inter-
action strengths (4.11) take the form

wj =
1

j − γ
2 (N − 1)

{
1 − e−

4d̃
γN [j− γ

2 (N−1)]
}

, (4.31)

for j �= γ(N −1)/2 and wj = 4d̃/(γN) for j = γ(N −1)/2.
The density profile is given by

n(x) =
4π

W 2

γ(N−1)∑
j=0

〈ΞjΨj〉e−
4π
W [j− γ

2 (N−1)]x. (4.32)

The reflection symmetry n(x) = n(d − x) implies the re-
lation

wj〈ΞjΨj〉 = wγ(N−1)−j〈Ξγ(N−1)−jΨγ(N−1)−j〉, (4.33)

which is valid for all j = 0, 1, . . . , γ(N − 1).
The continualization of the formula (4.32), in the limit

N,W → ∞ while keeping the ratio N/W = 2σ, pro-
ceeds along the above lines. As the continuous variable, we
choose t = 2[j−γ(N−1)/2]/[γ(N−1)], taking values in the
interval [−1, 1]. In the continuum limit, the discrete values
f

(γ)
j,N (d̃) = γwj〈ΞjΨj〉 tend to a positive bounded function

f (γ)(t, d̃). The continualization of (4.32) results in

ñ(x̃) = 2
∫ 1

−1

dt tf (γ)(t, d̃)
e−2t
(
x̃− d̃

2

)

etd̃ − e−td̃
. (4.34)

The symmetry n(x) = n(d − x) implies

f (γ)(t, d̃) = f (γ)(−t, d̃), (4.35)
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which enables us to rewrite (4.34) into a more convenient
form

ñ(x̃) = 2
∫ 1

0

dt tf (γ)(t, d̃)
cosh

[
2t
(
x̃ − d̃

2

)]

sinh(td̃)
. (4.36)

The electroneutrality condition (3.14) leads to the con-
straint ∫ 1

0

dt f (γ)(t, d̃) = 1. (4.37)

According to the contact theorem (2.1), the (renormal-
ized) pressure is given by

P̃ = ñ(0) − 1, (4.38)

i.e.

P̃ = 2
∫ 1

0

dt t
[
f (γ)(t, d̃) coth(td̃) − 1

]
. (4.39)

For Γ = 2, we have the exact result f
(1)
j,N (d̃) = 1 for all

j = 0, 1, . . . , N −1 and particle numbers N , which implies
f (1)(t, d̃) = 1 in the whole interval t ∈ [0, 1]. The pressure

P̃ = 2
∫ 1

0

dt t
exp(−td̃)
sinh(td̃)

(4.40)

is positive for every distance d, so there is always the re-
pulsion between two equivalently charged lines at Γ = 2.
For small distances d̃, we have

P̃ =
2
d̃
− 1 +

2d̃

9
+ O

(
d̃ 2
)
. (4.41)

This expansion resembles the large Γ one (3.16), up to the
renormalization factor 2 ahead of the d̃ term. For large
distances between the lines, the formula (4.40) yields

βP ∼ π

12
1
d2

, d̃ → ∞. (4.42)

This result coincides, up to a renormalized prefactor, with
the PB prediction (2.15). The asymptotic decay of the
pressure is universal in the sense that it does not depend
on the magnitude of the charge density σe on the lines.

It is instructive to compare the exact solution (4.40),
obtained in the thermodynamic N → ∞ limit, with the
finite-N results. For finite N , equations (4.32) and (4.38)
imply

P̃ =
8

γN2

γ(N−1)∑
j=0

〈ΞjΨj〉 − 1. (4.43)

For γ = 1, we have 〈ΞjΨj〉 = 1/wj for all j = 0, 1, . . . , N−
1. To derive the asymptotic d̃ → ∞ behavior of P̃ , we note
from (4.31) that, for γ = 1

lim
d̃→∞

1
wj

=

{
j − 1

2 (N − 1), if j − 1
2 (N − 1) > 0,

0, if j − 1
2 (N − 1) ≤ 0.

(4.44)
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Fig. 6. Pressure curves for Γ = 2. In the main graph, the
pressure is shifted by 1/N2 for odd values of particle numbers
N . For the asymptotic N → ∞ result shown by the thick line,
see formula (4.40).

Consequently, for even particle numbers N , we have

lim
d̃→∞

P̃ =
8

N2

N−1∑
j=N/2

[
j − 1

2
(N − 1)

]
− 1 = 0, (4.45)

while for odd N

lim
d̃→∞

P̃ =
8

N2

N−1∑
j=(N+1)/2

[
j − 1

2
(N − 1)

]
− 1 = − 1

N2
.

(4.46)
The above results can be understood intuitively by the dis-
creteness of particles. If the number of particles is even,
i.e. N = 2N∗, at asymptotically large distance each of
the charged lines attracts just N∗ particles. The whole
system thus consists of two neutral subsystems which do
not interact with one another. On the other hand, if the
number of particles is odd, N = 2N∗ +1, one of the parti-
cles is shared by both lines, so that the two double-layers
can never strictly decouple. This “misfit” particle is re-
sponsible for the asymptotic attraction −1/N2 between
the charged lines in (4.46). The asymptotic attraction dis-
appears in the thermodynamic limit N → ∞. It is inter-
esting that exactly the same asymptotic relations (4.45)
and (4.46) can be found for higher values of γ, as was ver-
ified on finite-N calculations for γ = 2, 3. A detailed dis-
cussion about this interesting finite-N phenomenon will
be published elsewhere [54].

The Γ = 2 results for the pressure dependence on the
distance between two lines in the case of finite N are com-
pared with the asymptotic N → ∞ result (4.40) in fig. 6.
In the main graph, the pressure is shifted by 1/N2 for odd
values of N (so that it vanishes at large distances) while
curves with even N are not shifted. The decay of the pres-
sure is always monotonous. We see that curves with even
N lie below and the shifted ones with odd N lie above
the asymptotic N → ∞ line; the odd and even curves
systematically “sandwich” the asymptotic one. The inset,
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where only even N are considered, shows a quick conver-
gence of the pressure plots for finite particle numbers to
the asymptotic one. To our surprise, relatively small num-
bers of particles are sufficient to have realistic estimates
of the pressure in the thermodynamic limit, at least up to
“reasonable” distances d̃ ∼ 5.

The results for the pressure dependence on the dis-
tance in the case of the smallest particle number N = 2
and Γ = 2, 4, . . . , 12 are depicted in fig. 7. For Γ = 2,
we have the already discussed monotonous decay of the
pressure to 0. For Γ ≥ 4, the pressure becomes negative
at a Γ -dependent distance and remains negative up to
d̃ → ∞, i.e. there is no further intersection of the curve
with the P̃ = 0 axis. We learn that the attraction between
equivalently charged lines is not associated only with the
thermodynamic limit, but manifests itself (at sufficiently
large Γ ) even for N = 2 particles.

Pressure curves for Γ = 4 and Γ = 6 in fig. 8 are
presented separately for even N = 2, 4, 8 (the main graph)
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A
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Fig. 9. The procedure of fitting the coefficient A∞(Γ = 6),
defined by the expansion (4.47). AN corresponds to the slopes
of the N = 6, 7, 8 data sets in the main graph. In the inset,
AN values are fitted linearly against 1/N to obtain A∞(Γ =
6) ∼ 0.045. Note the vertical scale in the inset that indicates
that the thermodynamic limit is already closely approached by
systems with N = 6 particles. Very similar results were found
at Γ = 4, with different numerical constants.

and odd N = 3, 5, 7 (the inset). We see that by increasing
N the difference between plots becomes very small and
so they are probably very close to the asymptotic line, at
least for d̃ ≤ 5. As in the N = 2 case, the pressure crosses
the P̃ = 0 line at some distance. This distance, evaluated
at N = 8, is indicated for Γ = 4, 6 by open circles in fig. 3;
we see a good agreement with the corresponding phase
diagram (solid line). On the other hand, the distance of the
maximum attraction (open squares) is relatively far away
from the corresponding dashed line; this might be caused
by an extended plateau around the minimum point. As
before, after crossing the P̃ = 0 line, the curves remain
in the attraction region up to d̃ → ∞. This fact sheds
doubts on the existence of the upper branch of the phase
diagram (for N → ∞) in fig. 3. We cannot answer this
question because the finite-N calculations do not reflect
adequately the pressure in the thermodynamic limit just
in the region of large d̃.

We end up this section by an analysis of the small-
distance expansion of the pressure; see formula (2.14) for
the weak-coupling regime, (3.16) for the large-Γ regime
(strong coupling) and (4.41) for Γ = 2. The leading small-
distance term is always 2/d̃ as a consequence of the spatial
homogeneity of the particle density ñ(x̃) ∼ 2/d̃ in the
limit d̃ → 0. The next (constant) term is equal to −1/3
in the weak-coupling limit and to −1 in the large Γ limit
and for Γ = 2. The value −1 was detected also in finite-
N calculations for Γ = 4, 6 —as fig. 9 shows— and is
expected to persist up to Γ → ∞. From the point of view
of the contact theorem (4.38), this means that in the limit
Γ → 0 the contact density behaves like ñ(0) ∼ 2/d̃ +
2/3+O(d̃), while for Γ = 2, 4, 6, . . . it behaves like ñ(0) ∼
2/d̃+O(d̃). It is not clear at which Γ < 2 the fundamental
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change in the short-distance behavior of ñ(0) starts; in
the subsequent analysis, we shall restrict ourselves to the
region Γ ≥ 2, where

P̃ =
2
d̃
− 1 + AN (Γ )d̃ + O(d̃ 2). (4.47)

We have at our disposal the exact information about the
Γ → ∞ limit of the prefactor

lim
Γ→∞

9Γ

2
A∞(Γ ) = 1. (4.48)

The simplest Padé approximant corresponding to this
asymptotic formula is

A∞(Γ ) =
2

9Γ

Γ + a

Γ + b
, (4.49)

where the free coefficients a, b should be fixed by the
known (exact or approximate) values of A∞(Γ ) at some
Γ -points. We know the exact result at Γ = 2: A∞(Γ =
2) = 2/9. We were able to evaluate accurately A∞(Γ ) for
Γ = 4, 6; the analysis for Γ = 6 is presented in fig. 9. Con-
sidering P̃ −2/d̃+1 as the function of d̃ in the main graph,
AN is nothing but the slope y/x of the N = 6, 7, 8 data
curves, taken in the small-x limit. In the inset, the slopes
AN (N = 6, 7, 8) are fitted against 1/N with the function
y = 0.0454 − 0.013x, hence the value A∞(Γ = 6) � 0.045
for large N . The same scenario applies to Γ = 4, where
the limiting slope is A∞(Γ = 4) � 0.075. The three re-
sults at Γ = 2, 4, 6 are perfectly matched by the two-
parameter Padé approximant (4.49) if we choose a = 1/4
and b = −7/8, i.e.

A∞(Γ ) =
2

9Γ

Γ + 1/4
Γ − 7/8

, Γ ≥ 2. (4.50)

It is quite remarkable that this simple form accounts for
the exactly known results at Γ = 2 and Γ → ∞, together
with the numerically accurate data in the thermodynamic
limit obtained at Γ = 4 and Γ = 6. It is however inappli-
cable to the mean-field limit Γ → 0.

The result (4.50), when substituted into the expan-
sion (4.47), can be used to improve the phase diagram
in fig. 3, that follows from the equation of state (3.16).
The problem of our original “large Γ” phase diagram of
fig. 3 is that it includes Γ = 2 in the attractive regime (for
some distances d̃ around 4), while we have shown that for
N → ∞, there is no attraction between lines at the exactly
solvable Γ = 2 case (see, e.g., fig. 6). It can be seen in fig. 3
that, making use of the improved equation of state (4.47)
together with (4.50), leads to a shift of the attraction bor-
der towards higher couplings (see the dashed-dotted line).
More precisely, the critical Γ below which no attraction is
possible is changed from a value 1.77 with (3.16), to 2.81
with (4.50). Since our exact results indicate the possibil-
ity of attraction at Γ = 4 and 6, but none at Γ = 2, the
second estimation seems more reliable.

5 Conclusion

In this paper, we have studied 2D models of counter-
ions at and between charged lines. Since only one type
of counter-ions was considered (no salt), these ions can be
considered as point-like without any ensuing pathology.
2D models, while maintaining the essence of 3D Coulomb
models, are simpler to handle analytically as well as nu-
merically. In the one-line geometry, we focused on the
large-distance decay of the particle density. In the two-
line geometry, the small-distance behavior of the pressure
was the center of interest (although of particular signifi-
cance, the large-distance behaviour is more difficult to ob-
tain, and could only be addressed in particular cases). The
possibility of an attraction (negative pressure) for some
distances between equivalently charged lines, mediated by
counterions, was investigated.

The weak-coupling limit (defined by a small-coupling
parameter Γ � 1) has basically the same mean-field
Poisson-Boltzmann (PB) form in any dimension. For one-
line geometry, the counter-ion density falls at asymptoti-
cally large distances like the inverse power law 1/x2, which
does not depend on the magnitude of the line charge σe.
The same phenomenon is observed in the two-line geome-
try: The asymptotic decay of the pressure does not depend
on σe. This phenomenon occurs in both 2D and 3D. The
pressure is always positive: the attraction phenomenon is
absent for weak couplings.

The low-temperature regime corresponds to Γ � 1.
The analysis of this regime is the 2D adaptation of the
method [33] based on the harmonic expansion of the in-
teraction energy around the ground state Wigner crystal
formed by counter-ions. The method is applicable to small
distances. The small-distance expansion of the pressure
between two lines provides a phase diagram —in fig. 3—
which includes the attraction region. Our low-temperature
expansion differs from the previously introduced virial
strong-coupling approach [7,17,18] and also —although
close in spirit— differs from the approach of refs. [21,22]
where the excitations considered (counter-ions displace-
ments restricted to the charged interface) are not those
that turn relevant at short distances. As a consequence,
the predictions of refs. [21,22] do not cover the short-range
phenomena that we have studied here for large Γ .

The intermediary (i.e. between weak- and strong-
coupling regimes) values of Γ = 2, 4, 6 are studied by
using a previously developed Grassmann variables formal-
ism [37–39]. As a constraining domain for counter-ions, we
choose the surface of a cylinder; this enables us to mimic
infinite systems by finite ones containing finite numbers
of particles N . We systematically observed that a system
with as little as N = 5 to 10 particles may be considered as
“large”, in that it is already close to the thermodynamic
limit.

The case Γ = 2 is solved exactly, for finite as well as
infinite N . It shares many features with the PB theory:
The particle density decay in 1/x2 does not depend on
σe, the pressure is always repulsive and its large-distance
asymptotic is independent of σe.
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The couplings Γ = 4, 6 are investigated for finite parti-
cle numbers N . In the one-line problem, the particle den-
sity decay is still of the PB type 1/x2 for Γ = 4. For Γ = 6,
there are strong indications that the counter-ion density
behaves like 1/xa for large x where the exponent a is close
to 1.5 (we found 1.4 < a < 1.6). This signals the break-
ing down of the large-distance PB theory and the depen-
dence of the asymptotic density on σe. It has been argued,
on the contrary, that a strongly coupled double-layer be-
haves, at large distances where counter-ions correlations
should be less important, as predicted by a suitably renor-
malized mean-field approach [40,41]. The data reported
here provide evidence, for two-dimensional systems, that
this is not always the case. The corresponding question
for 3D systems that are the main objects of interest in
refs. [40,41] (i.e. with 1/r interactions instead of log r)
remains open. As concerns the pressure between equiva-
lently charged lines, it is highly non-trivial even for N = 2
particles (see fig. 7). The monotonous decay at Γ = 2
changes for Γ ≥ 4 and turns into a profile with an attrac-
tive regime, starting from a certain distance. Increasing
N , the results converge quickly for intermediate distances
of interest. We see that the attraction phenomenon is not
restricted to the thermodynamic limit, but takes place for
small particle numbers and relatively small values of Γ
(4 and 6). The finite-N analysis of the equation of state
enabled us to improve the phase diagram evaluated in the
strong-coupling regime.

Many questions are still open. Among interesting per-
spectives is the question about the effective interaction be-
tween arbitrarily shaped objects. Another relevant prob-
lem lies in the generalization of the present ideas and
methods to system where not only one type of micro-ions
is present, such as electrolytes.

L.Š. is grateful to LPTMS for hospitality. The support received
from Grant VEGA No. 2/0113/2009 and CE-SAS QUTE is
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