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Abstract. A mixture of dissipative hard grains generically exhibits a breakdown of kinetic energy equipar-
tition. The undriven and thus freely cooling binary problem, in the tracer limit where the density of
one species becomes minute, may exhibit an extreme form of this breakdown, with the minority species
carrying a finite fraction of the total kinetic energy of the system. We investigate the fingerprint of this non-
equilibrium phase transition, akin to an ordering process, on transport properties. The analysis, performed
by solving the Boltzmann kinetic equation from a combination of analytical and Monte Carlo techniques,
hints at the possible failure of hydrodynamics in the ordered region. As a relevant byproduct of the study,
the behaviour of the second- and fourth-degree velocity moments is also worked out.

1 Introduction

The application of kinetic theory for granular gases (sparse
granular systems where the dynamics is dominated by par-
ticle collisions) has been shown to be a powerful theoret-
ical and computational tool to describe granular flows in
conditions of practical interest. The simplest model corre-
sponds to a gas constituted by smooth (i.e., frictionless)
inelastic hard spheres (IHS) where the inelasticity in colli-
sions is characterized by a constant (positive) coefficient of
normal restitution α ≤ 1 [1,2]. In the low-density regime,
the conventional Boltzmann equation for the one-particle
distribution function can be conveniently adapted to dis-
sipative dynamics by changing the collision rules to ac-
count for the inelastic character of collisions [3,4]. On the
other hand, the complex mathematical structure of the
Boltzmann collision operator for IHS prevents one from
obtaining exact results and hence, most of the analytical
results obtained for IHS requires the use of approximate
methods and/or simple kinetic models [5–7]. For instance,
the explicit expressions of the Navier-Stokes transport co-
efficients have been obtained by considering the so-called
first Sonine approximation [8–12].

The difficulties of solving the (inelastic) Boltzmann
equation increase considerably when one considers the
most realistic case of multicomponent granular gases
(namely, a mixture of grains with different masses, sizes
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and coefficients of restitution) since the kinetic descrip-
tion involves a set of coupled Boltzmann equations for the
one-particle distribution function of each species. As for
ordinary (elastic) mixtures [13], a possible way of circum-
venting the above difficulties is to consider a mean-field
version of the hard-sphere system where randomly chosen
pairs of particles collide with a random impact direction.
This assumption leads to a Boltzmann collision operator
where the collision rate of the two colliding spheres is in-
dependent of their relative velocity. This model is usually
referred to as the inelastic Maxwell model (IMM) [14–20]
and can be seen as defining the kinetic theorist’s Ising
model. We stress that the relevance and sometimes quan-
titative accuracy of this simplification has been assessed
for both elastic (see e.g. chapt. 3 in ref. [13]) together with
inelastic gases [21]. Apart from the academic interest of
IMM, it must be also remarked that some experiments [22]
for magnetic grains with dipolar interactions are qualita-
tively well described by IMM. Therefore, by virtue of the
analytical tractability of its collision kernel, the IMM has
been widely employed in the last few years as a toy model
to unveil in a crisp way the role of collisional dissipation
in granular flows, especially in situations involving poly-
disperse systems where simple intuition is not enough.

In particular, a non-equilibrium phase transition has
been recently [23–25] identified from an exact solution of
the inelastic Boltzmann equation for a granular binary
mixture in the tracer limit (i.e., when the concentration
of one of the species becomes negligible). A region where
the contribution of impurities to the total kinetic energy
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of the system is finite was uncovered, and coined the or-
dered phase. This surprising behavior is present when the
system is driven by a shear field [23, 24] and/or when it
is freely cooling (the so-called homogeneous cooling state
(HCS)) [25]. The existence of this phenomenon is espe-
cially relevant in the undriven situation since the HCS
distributions of each species are chosen as the reference
states of the Chapman-Enskog expansion [26] for obtain-
ing the Navier-Stokes (NS) transport coefficients [27].

The aim of this paper is twofold. First, we want to
extend our previous study [23, 25] for the energy ratio
(which is directly related to the second-degree velocity
moments of the velocity distribution functions) to higher
degree velocity moments. This will provide us with indi-
rect information on the form of the distribution function of
impurities in the high velocity region. A second goal is to
assess the impact of the non-equilibrium transition on the
form of the NS coefficients. As expected, a careful analy-
sis shows that in the tracer limit the transport coefficients
present a different dependence on the mass ratios and the
coefficients of restitution in both disordered and ordered
phases. To achieve the above goals, we will combine ana-
lytical exact results with numerical solutions of the Boltz-
mann equation by means of the direct simulation Monte
Carlo (DSMC) method [28]. While the comparison be-
tween simulation and theory is carried out for the second-
and fourth-degree velocity moments in the HCS, only the
diffusion coefficient is studied in numerical simulations of
transport properties. The inclusion of Monte Carlo simula-
tions of IMM is an added value of the present contribution
with respect to our previous works [23–25] where only an-
alytical results were provided. In addition, the numerical
solutions constitute a test of the theoretical calculations
(which are obtained from an algebraic analysis involving a
delicate limit) since the former are obtained at small but
non-zero concentration of the minority species while the
latter are strictly derived in the limit of zero concentra-
tion. The excellent agreement found here between theory
and simulation in the HCS confirms the reality and ac-
curacy of the scenario brought to bear in refs. [23–25] on
purely analytical grounds, and show that a clear signature
of the non-equilibrium phase transition can be found for
vanishing concentration. On the other hand, in the case of
the tracer diffusion coefficient, the agreement is only very
good in the disordered phase while significant qualitative
discrepancies between kinetic theory and simulation are
found in the ordered phase. The possible origin of this
discrepancy is discussed along the paper.

The plan of the paper is as follows. The Boltzmann
equation for IMM is introduced in sect. 2 and some colli-
sional moments are explicitly provided. The HCS is con-
sidered in sect. 3 and the second- and fourth-degree veloc-
ity moments are determined in the tracer limit in terms of
the masses and the coefficients of restitution. Section 4
deals with the NS transport coefficients. Starting from
their exact expressions for general concentration we de-
rive their forms in the ordered and disordered phases when
the tracer limit is considered. The analysis of the effect of
the phase transition on transport is likely one of the most

significant results of the present paper. To test the relia-
bility of the theory, the tracer diffusion coefficient is com-
pared against Monte Carlo simulations in sect. 5. Finally,
we conclude the paper in sect. 6 with a brief discussion of
the main findings reported.

2 The Boltzmann equation for inelastic

Maxwell mixtures

Let us consider a granular binary mixture at low density.
At a kinetic level, all the relevant information on the state
of the mixture is provided by the knowledge of the one-
particle distribution functions fi(r,v; t) (i = 1, 2) of each
species. They are defined so that fi(r,v; t)drdv is the
average number of particles of species i which at time t
are located in the element of volume dr centered at the
point r and moving with velocities in the range dv around
v. In the absence of external forces, the time evolutions of
the distributions fi obey the set of two-coupled Boltzmann
kinetic equations

(
∂

∂t
+ v · ∇

)
fi(r,v; t) =

∑

j

Jij [v|fi(t), fj(t)] , (1)

where Jij [v|fi, fj ] is the Boltzmann collision operator
characterizing the rate of change of fi due to collisions
among particles of species i and j. In the case of IMM,
the form of the operator Jij [fi, fj ] is

Jij [v1|fi, fj ] =
ωij

njΩd

∫
dv2

∫
dσ̂

[
α−1

ij fi(v
′
1)fj(v

′
2)

−fi(v1)fj(v2)
]
. (2)

Here,

ni =

∫
dvfi(v) (3)

is the number density of species i, ωij is an effective col-
lision frequency (to be chosen later) for collisions of type
i − j, Ωd = 2πd/2/Γ (d/2) is the total solid angle in d di-
mensions, and αij ≤ 1 refers to the constant coefficient
of restitution for collisions between particles of species i
with j. In addition, the primes on the velocities denote
the initial values {v′

1,v
′
2} that lead to {v1,v2} following

a binary collision:

v′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g12)σ̂, (4)

v′
2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g12)σ̂, (5)

where g12 = v1−v2 is the relative velocity of the colliding
pair, σ̂ is a unit vector directed along the centers of the
two colliding spheres, and µij = mi/(mi + mj).

Apart from the partial densities ni, at a hydrodynamic
level, the relevant quantities in a binary granular mixture
are the flow velocity u, and the “granular” temperature
T . They are defined as

ρu =
∑

i

ρiui =
∑

i

∫
dvmivfi(v), (6)

nT = p =
∑

i

niTi =
∑

i

∫
dv

mi

d
V 2fi(v), (7)
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where ρi = mini is the mass density of species i, ρ =
ρ1 + ρ2 is the total mass density, and V = v − u is
the peculiar velocity. Equations (6) and (7) also define
the flow velocity ui and the partial temperature Ti of
species i. The latter quantity measures the mean kinetic
energy of species i. As confirmed by computer simula-
tions [29–35], experiments [36, 37] and kinetic theory cal-
culations [38,39], the granular temperature T is in general
different from the partial temperatures Ti and hence, there
is a breakdown of kinetic energy equipartition.

The collision operators conserve the particle number
of each species, the total momentum but the total energy
is not conserved due to inelasticity:

∫
dvJij [fi, fj ] = 0, (8)

∑

i,j

∫
dvmivJij [fi, fj ] = 0, (9)

∑

i,j

∫
dv

mi

2
V 2Jij [fi, fj ] = −d

2
ζnT, (10)

where ζ is the so-called cooling rate due to inelastic colli-
sions among all the species. At a kinetic level, it is conve-
nient to introduce the partial cooling rates ζi associated
with the partial temperatures Ti. They are given by

ζi =
∑

j

ζij = −
∑

j

1

dniTi

∫
dvmiV

2Jij [fi, fj ], (11)

where the second identity defines the quantities ζij . Ac-
cording to eqs. (10) and (11), the total cooling rate ζ can
be written as

ζ =
∑

i

xiγiζi, (12)

where xi = ni/n is the concentration (or mole fraction) of
species i and γi ≡ Ti/T .

The macroscopic balance equations for the mixture can
be easily derived when one takes into account eqs. (8)–
(10). They are given by

Dtni + ni∇ · u +
∇ · ji
mi

= 0, (13)

Dtu + ρ−1∇ · P = 0, (14)

DtT − T

n

∑

i

∇ · ji
mi

+
2

dn
(∇ · q + P : ∇u) = −ζT. (15)

In the above equations, Dt = ∂t + u · ∇ is the material
derivative,

ji = mi

∫
dvV fi(v) (16)

is the mass flux for species i relative to the local flow,

P =
∑

i

∫
dv miVV fi(v) (17)

is the total pressure tensor, and

q =
∑

i

∫
dv

1

2
miV

2V fi(v) (18)

is the total heat flux. It must be remarked that the form of
the balance equations (13)–(15) apply regardless of the de-
tails of the model for inelastic collisions considered. How-
ever, the influence of the collision model appears through
the dependence of the cooling rate and the hydrodynamic
fluxes on the coefficients of restitution and the parameters
of the mixture.

As happens for elastic collisions [13, 40], the (colli-
sional) moments of Jij [fi, fj ] of IMM can be exactly evalu-
ated in terms of the velocity moments of fi and fj without
the explicit knowledge of both distribution functions. This
property has been exploited [41] to obtain the detailed ex-
pressions for all the second-, third- and fourth-degree col-
lisional moments for a monodisperse granular gas. In the
case of a binary mixture, all the first- and second-degree
collisional moments [21] as well as some isotropic third-
and fourth-degree collisional moments [27] have been also
explicitly obtained. For the sake of convenience, we pro-
vide here the collisional moments needed to evaluate the
temperature ratio and the isotropic fourth-degree moment
in a granular binary mixture under HCS:
∫

dvmiV
2 Jij [fi, fj ] = −1

4

ωij

nj
(1 + βij)

[
(3 − βij)njpi

−(1 + βji)nipj

]
, (19)

∫
dvV 4Jij [fi, fj ] =

ωij

nj
(1 + βij)

[
3

16

(1 + βij)
3

d(d + 2)
ni〈V 4〉j

−
(3 − βij)(3β

2
ij − 6βij + 8d + 7)

16d(d + 2)
nj〈V 4〉i +

(1 + βij)

8

×(3β2
ij − 6βij + 4d − 1)

pipj

mimj

]
, (20)

where pi = niTi is the partial pressure of species i,

βij = 2µji(1 + αij) − 1, (21)

and

〈V 4〉i =

∫
dvV 4fi(V). (22)

So far, the results derived in this section apply regard-
less of the specific form of the collision frequencies ωij .
Needless to say, in order to get explicit results one has
to fix these quantities to optimize the agreement with the
IHS results. In previous works on multicomponent granu-
lar systems [21, 27, 42], ωij was chosen to guarantee that
the cooling rate for IMM be the same as that of the IHS.
In this model (“improved Maxwell model”), the collision
rates ωij are (intricate) functions of the temperature ratio
γ ≡ T1/T2. A consequence of this choice is that one has
to numerically solve a sixth-degree polynomial equation
to get the dependence of the temperature ratio [21,27,42]
on the coefficients of restitution. Thus, the most realis-
tic choice for ωij made in refs. [21, 27, 42] precludes the
possibility of getting exact results for arbitrary spatial di-
mensions in a problem that involves a delicate tracer limit.
For this reason, here we will consider a simpler version of
IMM (“plain vanilla Maxwell model”) than the one con-
sidered before [21, 27, 42] where ωij is independent of the
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partial temperatures of each species but depend on the
global temperature T . Thus, ωij is defined as

ωij = xjν, ν = An
√

T , (23)

where the value of the constant A is irrelevant for our
purposes. The plain vanilla Maxwell model has been pre-
viously used by several authors [43–46] in some problems
of granular mixtures.

3 Homogeneous cooling state. Tracer limit

Before considering inhomogeneous states, let us study first
the HCS. In this case (spatially isotropic homogeneous
states), the set of Boltzmann equations (1) for f1 and f2

becomes

∂tf1(v, t) = J11[f1, f1] + J12[f1, f2], (24)

and a similar equation for f2. Since the collisions are in-
elastic, the granular temperature T (t) monotonically de-
cays in time and so a steady state does not exist, unless an
external energy input is introduced in the system. From
eq. (15), the time evolution of the granular temperature
T (t) is

∂tT = −ζT. (25)

Although the form of the velocity distributions fi is
not known, their first velocity moments can be exactly
determined for IMM. In particular, the (reduced) partial
pressures p∗i ≡ niTi/p of each species are given by [25]

p∗1 =
A12

A12 − A11 − dλ
, p∗2 = 1 − x1p

∗
1, (26)

where

A11 =
x1

2
(1 − α2

11) +
x2

4
(1 + β12)(3 − β12), (27)

A12 = −x1

4
µ(1 + β12)

2, (28)

λ ≡ −ζ∗ =
−(A11 + A22) +

√
(A11 − A22)2 + 4A12A21

2d
.

(29)

Here, µ = m1/m2 is the mass ratio, ζ∗ ≡ ζ/ν, and the co-
efficients A22 and A21 can be easily obtained from eqs. (27)
and (28) by setting 1 ↔ 2. Moreover, in the long-time limit
of interest here, the temperature T behaves as

T (t) = T (0)eλτ , (30)

where

τ =

∫ t

0

ν(T (t′))dt′ (31)

is a dimensionless time variable related to the average
number of collisions suffered per particle.

The dependence of the temperature ratio γ ≡ T1/T2 =
(x2p

∗
1/x1p

∗
2) on the (common) coefficient of restitution

α ≡ α11 = α22 = α12 is plotted in fig. 1 for x1 = 0.5,

Fig. 1. Plot of the temperature ratio γ ≡ T1/T2 versus the
(common) coefficient of restitution α ≡ αij for d = 3, x1 =
0.5, and three different values of the mass ratio µ ≡ m1/m2:
(a) µ = 0.5, (b) µ = 4, and (c) µ = 10. The solid lines are the
results derived here for the Inelastic Maxwell Model (IMM)
while the dashed lines are for Inelastic Hard Spheres (IHS).

a three-dimensional system (d = 3) and three different
values of the mass ratio µ. We also include the results ob-
tained for IHS [39]. A quite good agreement between IMM
and IHS is found, especially for µ < 1 where both an-
alytical results are practically indistinguishable. We also
observe that the extent of the equipartition violation is
greater when the mass disparity is large. In particular,
the temperature of the heavier species is larger than that
of the lighter species.

The next non-trivial velocity moment in the HCS is the
isotropic fourth degree moment 〈v4〉i defined by eq. (22).
We consider here its dimensionless form

Λ
(i)
4 =

〈v4〉i
nv4

0

, (32)

where v0(t) =
√

2T/m is the thermal velocity and m =
m1m2/(m1 + m2). The time evolution of the moments

Λ
(i)
4 can be obtained by multiplying both sides of eq. (24)

by v4 and integrating over velocity. In matrix form, the

equations for Λ
(1)
4 and Λ

(2)
4 can be written as

∂τMσ = Lσσ′Mσ′ + Dσ, (33)

where M is the column matrix defined by the set

{
Λ

(1)
4 , Λ

(2)
4

}
, (34)

L is the square matrix

L =

⎛

⎝
ω

(11)
4|0 ν

(12)
4|0

ν
(21)
4|0 ω

(22)
4|0

⎞

⎠ , (35)

and the column matrix D is

D =

(
D1

D2

)
. (36)
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In eqs. (35)–(36), we have introduced the quantities

ω
(11)
4|0 = 2ζ∗ − ν

(11)
4|0 , ω

(22)
4|0 = 2ζ∗ − ν

(22)
4|0 , (37)

ν
(11)
4|0 = x1

(1 + α11)

8d(d + 2)

[
9 − 4d(α11 − 3) − 17α11

+ 3α2
11 − 3α3

11

]
+ x2

(1 + β12)(3 − β12)

16d(d + 2)

×
(
3β2

12 − 6β12 + 8d + 7
)
, (38)

ν
(12)
4|0 = x1

3(1 + β12)
4

16d(d + 2)
, (39)

D1 =
(1 + α11)

2

32
(3α2

11 − 6α11 + 4d − 1)µ2
21p

∗2
1

+
(1 + β12)

2

32
(3β2

12 − 6β12 + 4d − 1)µ12µ21p
∗
1p

∗
2.

(40)

The expressions of ν
(22)
4|0 , ν

(21)
4|0 and D2 can be obtained

from eqs. (38)–(40), respectively, by changing 1 ↔ 2.
Moreover, upon deriving eq. (33) use has been made of
eq. (20).

The solution to eq. (33) can be written as

M(τ) = eLτ · [M(0) − M(∞)] + M(∞), (41)

where

M(∞) = L
−1 · D. (42)

The long time behavior of Mσ (σ = 1, 2) is governed by
the largest eigenvalue ξ of the matrix L. It is given by

ξ =
ω

(11)
4|0 + ω

(22)
4|0

2

+

√(
ω

(11)
4|0 + ω

(22)
4|0

)2

− 4
(
ω

(11)
4|0 ω

(22)
4|0 − ν

(12)
4|0 ν

(21)
4|0

)

2
.

(43)

If ξ < 0, then the scaled fourth degree moments Λ
(i)
4

tend asymptotically to their steady values Λ
(i)
4 (∞). On

the other hand, if ξ > 0, those moments exponentially
grow in time and hence, they diverge.

3.1 Tracer limit

Let us study now the behavior of the second- and the
fourth-degree moment of the HCS in the tracer limit
(x1 → 0). In the case of the partial pressure p∗1 (or equiv-
alently, the energy ratio E1/E), for given values of the
coefficients of restitution, eq. (29) shows that the param-
eter

λ ≡ λ
(0)
2 = − (1 − α2

22)

2d
(44)

when the mass ratio µ lies in the range µ
(−)
HCS < µ < µ

(+)
HCS,

where the critical mass ratios are given by

µ
(−)
HCS =

α12 −
√

1+α2
22

2

1 +

√
1+α2

22

2

, µ
(+)
HCS =

α12 +

√
1+α2

22

2

1 −
√

1+α2
22

2

.

(45)
On the other hand, if the mass ratio µ is smaller (larger)

than µ
(−)
HCS (µ

(+)
HCS) then

λ ≡ λ
(0)
1 = − (1 + β12)(3 − β12)

4d
. (46)

As expected, the energy ratio E1/E = x1T1/T vanishes

(disordered phase) when µ
(−)
HCS < µ < µ

(+)
HCS (which implies

that λ
(0)
2 > λ

(0)
1 ) and (according to eq. (26)) the temper-

ature ratio γ achieves the asymptotic steady value

γ =
(1 + β12)(1 + β21)

(1 + β12)(3 − β12) + 2(α2
22 − 1)

. (47)

However, and this is more unanticipated, E1/E �= 0 (or-

dered phase) when µ < µ
(−)
HCS or µ > µ

(+)
HCS (which implies

that λ
(0)
1 > λ

(0)
2 ) and hence γ diverges. The expression of

E1/E is [23, 25]

E1

E
=

α2
22 − 1 + 1

2 (1 + β12)(3 − β12)

α2
22 − 1 + (1 + β12)(1 − α12)

. (48)

Note that the temperature ratio diverges at the critical

points µ = µ
(±)
HCS since at this point λ

(0)
1 = λ

(0)
2 , i.e., (1 +

β12)(3 − β12) = 2(1 − α2
22). Equations (47) and (48) were

already obtained in ref. [25]. The existence of the second-

ordered phase (µ > µ
(+)
HCS, heavy impurities) was found

by Ben-Naim and Krapivsky [45] when they analyzed the
dynamics of an impurity immersed in a granular gas in the
HCS. In addition, a similar non-equilibrium transition has
been also reported for inelastic hard spheres where in the
ordered phase the ratio γ/µ is finite for extremely large
mass ratios (µ → ∞) [47].

To put the above predictions to the test and appreciate
how small x1 has to be to observe tracer phenomenology,
we have performed simulations of the kinetic Boltzmann
equation for IMM by means of the DSMC method [28].
Figure 2 shows the dependence of the temperature ratio γ
on the mass ratio µ for a three-dimensional system (d = 3)
with a (very small) concentration x1 = 5×10−5 thus close
to the tracer limit. We have typically used 105 simulated

particles. For this system, µ
(−)
HCS < 0 and µ

(+)
HCS ≃ 18.05 and

so, there is only heavy-impurity phase. We observe in fig. 2
an excellent agreement between theory and simulation for
the whole range of µ values studied. Regarding the energy
ratio, fig. 3 shows E1/E versus µ for a two-dimensional
system in the case α11 = α12 = 0.9 and α22 = 0.6, for

which µ
(−)
HCS ≃ 0.041 and µ

(+)
HCS ≃ 9.833. The theory again

fares remarkably against simulation data, even for some-
what extreme values of the mass ratio.
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Fig. 2. (Color online) Plot of the temperature ratio γ ≡ T1/T2

versus the mass ratio µ ≡ m1/m2 for a three-dimensional
system (d = 3) in the case α11 = α22 = α12 = 0.8. The
solid line is the theoretical result given by eq. (47) while the
symbols refer to Monte Carlo simulations for a concentration
x1 = 5 × 10−5. The arrow denotes the location of the critical
point µ

(+)
HCS ≃ 18.05.
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Fig. 3. (Color online) Plot of the energy ratio E1/E versus the
mass ratio µ ≡ m1/m2 for a two-dimensional system (d = 2)
in the case α11 = α12 = 0.9, α22 = 0.6. The solid line is the
theoretical result given by eq. (48) while the symbols refer to
Monte Carlo simulations for a concentration x1 = 10−4.

An interesting question is whether the above behav-
ior of the energy ratio (which is defined through the
second-degree velocity moment of f1) is also present in the

(scaled) fourth-degree velocity moment Λ
(1)
4 . In the tracer

limit eq. (39) yields ν
(12)
4|0 → 0 and so, eq. (43) reduces to

ξ =
ω

(11)
4|0 + ω

(22)
4|0 + |ω(11)

4|0 − ω
(22)
4|0 |

2
. (49)

An inspection to eq. (49) shows that in general in the

disordered phase ξ = −(2λ
(0)
2 + ν

(22)
40 ) < 0, while in the

ordered phase the relaxation rate ξ is

ξ = −(2λ
(0)
1 + ν

(11)
40 ) =

3(1 + β12)
2(3 − β12)

2

16d(d + 2)
> 0. (50)

10
-5
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-3
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-1
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1
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3

 1  10

Λ
4
(1

,2
)

µ

α11=α12=0.9

α22=0.6

Fig. 4. (Color online) Plot of the (scaled) fourth-degree mo-

ments Λ
(1)
4 and Λ

(2)
4 versus the mass ratio µ ≡ m1/m2 for the

same system as in fig. 3. Symbols denote Monte Carlo simu-

lations: circles for Λ
(1)
4 and triangles for Λ

(2)
4 . The solid line is

the analytical result given by eq. (51).

Upon deriving the second identity in eq. (50) use has been

made of the form of ν
(11)
40 in the tracer limit. Thus, in the

long-time limit, as expected Λ
(1)
4 → 0 in the disordered

phase while Λ
(1)
4 exponentially grows in time in the or-

dered phase. The form of the scaled moment Λ
(2)
4 for the

excess component (granular gas) in the ordered phase can
be easily determined from eq. (42) by taking the limit
x1 → 0.

As for monocomponent granular gases [48–51], the fact
that the scaled fourth-degree moment diverges in time im-
plies that the velocity distribution function f1(v) devel-
ops an algebraic tail in the long time limit of the form
f1(v) ∼ v−d−s where s is an unknown quantity, the de-
termination of which is beyond the scope of this paper.
To support the above theoretical result, fig. 4 compares
the analytical results for the scaled fourth-degree moments

Λ
(1)
4 and Λ

(2)
4 for impurities and gas particles, respectively,

with those obtained from Monte Carlo simulations for the
same system as in fig. 3. Note that the light-impurity or-
dered phase (µ � 0.041) has not been studied in fig. 4.

The expression of Λ
(2)
4 in the disordered phase is

Λ
(2)
4 =

d(d + 2)

4
µ2

12

3α2
22 − 6α22 + 4d − 1

6α22 − 3α2
22 + 4d − 7

. (51)

Figure 4 supports the theoretical results since in the

disordered phase (µ � 9.833), Λ
(1)
4 ∝ x1 → 0 while

Λ
(2)
4 ≡ finite. Moreover, the expression (51) for Λ

(2)
4 agrees

very well with computer simulations. On the other hand,
in the ordered phase (µ � 9.833), we observe that simula-

tion data for both moments Λ
(1)
4 and Λ

(2)
4 seem to diverge

(roughly speaking, they behave like x−1
1 ). We expect that

the corresponding (scaled) moments of degree higher than
four also diverge in the disordered phase.
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Fig. 5. Plot of the reduced diffusion coefficient D(α)/D(1)
as a function of the (common) coefficient of restitution α in
the three-dimensional case for x1 = 0.2 and several values of
the mass ratio. The solid lines correspond to the exact results
obtained here for IMM while the dashed lines are the results
derived for IHS in the first Sonine approximation.

4 Navier-Stokes transport coefficients

After having spelled out the behavior of the velocity mo-
ments of impurities in the HCS, we turn to our main
objective pertaining to the signature of the above non-
equilibrium transition on transport properties. Our inter-
est consequently goes to the NS transport coefficients of a
binary mixture where one of the species is in tracer con-
centration. As said in the Introduction, the HCS distribu-
tion functions of each species (impurities and granular gas)
play an important role in the derivation of the transport
coefficients from the Chapman-Enskog route [26] since
both distributions are taken as the reference states in the
above expansion method [27].

In order to assess the impact of the transition, we have
to start from the x1 �= 0 general description of the mix-
ture [27]. To first order in the spatial gradients of the hy-
drodynamic fields, the mass flux j1, the momentum flux
(or pressure tensor) Pij and the heat flux q are given by

j1 = −m1m2n

ρ
D∇x1 −

ρ

p
Dp∇p − ρ

T
D′∇T, j2 = −j1,

(52)

Pij = nTδij − η

(
∇jui + ∇iuj −

2

d
δij∇ · u

)
, (53)

q = −T 2D′′∇x1 − L∇p − κ∇T. (54)

The transport coefficients are the diffusion coefficient D,
the thermal diffusion coefficient D′, the pressure diffusion
coefficient Dp, the shear viscosity η, the Dufour coefficient
D′′, the thermal conductivity λ, and the pressure energy
coefficient L. Their explicit expressions for arbitrary con-
centration x1 are given in appendix A.

Before considering the behavior of the NS transport
coefficients in the tracer limit, it is interesting to compare
some results for x1 �= 0 obtained from the vanilla IMM

Fig. 6. Same as fig. 5 for the reduced pressure diffusion coef-
ficient, Dp(α)/Dp(1).

Fig. 7. Same as fig. 5 for the reduced shear viscosity coefficient
η(α)/η(1).

considered here with those derived from IHS in the first
Sonine approximation [10, 52]. Figures 5–7 show the de-
pendence of the diffusion coefficients D and Dp and the
shear viscosity η on the (common) coefficient of restitu-
tion α ≡ α11 = α22 = α12 for d = 3, x1 = 0.2 and several
values of the mass ratio. All the NS coefficients have been
reduced with respect to their corresponding elastic values.
It is apparent that while the agreement between IMM and
IHS is in general good for the shear viscosity, significant
discrepancies appear for the diffusion and pressure diffu-
sion coefficients when the solute particles (species 1) are
heavier than the solvent particles (species 2). In this case,
the qualitative trends are completely different for both in-
teraction models. On the other hand, a quantitative agree-
ment for D and Dp is found when m1 < m2, specially in
the case of the diffusion coefficient D.

We now address the tracer limit (x1 → 0) for those ex-
pressions of NS coefficients. The analysis is somewhat del-
icate and shows that the transport coefficients exhibit in
general a different behavior in the disordered and ordered
phases, as may have been anticipated. Let us consider each
group of transport coefficients separately.
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4.1 Mass flux transport coefficients in the tracer limit

The diffusion transport coefficients D, Dp, and D′ are
given by eqs. (A.1)–(A.3), respectively. In the tracer limit
(x1 → 0), the temperature ratio γ is finite in the dis-
ordered phase while the energy ratio E1/E ≡ p∗1 van-

ishes and λ → λ
(0)
2 . Thus Dp,dis = D′

dis = 0 since both
coefficients are proportional to x1 and

Ddis =
p

m1ν

γ

νD + 1
2λ

(0)
2

, (55)

where νD = (1 + β12)/(2d). The calculations in the or-
dered phase are more intricate. In particular, in order to
obtain the diffusion coefficient D one has to evaluate the
derivative (

∂p∗1
∂x1

)

p,T

= p
(1)
1 , (56)

where p
(1)
1 is the first-order contribution to the expansion

of p∗1 in powers of the concentration x1, i.e.,

p∗1 = p
(0)
1 + p

(1)
1 x1 + · · · , (57)

where p
(0)
1 ≡ E1/E is given by eq. (48). The quantity p

(1)
1

can be obtained from eq. (26) with the result

p
(1)
1 = −4d

(E1/E)2λ
(2)
1

(1 + β12)(1 + β21)
, (58)

where

λ
(2)
1 = −d2λ

(1)2
1 + dλ

(1)
1 (X + Y ) + XY + Z

d2(λ
(0)
1 − λ

(0)
2 )

. (59)

Here, we have introduced the quantities

λ
(1)
1 =

Z

d2(λ
(0)
1 − λ

(0)
2 )

− X

d
, (60)

X = dλ
(0)
1 +

1 − α2
11

2
, (61)

Y = dλ
(0)
2 +

(1 + β21)(3 − β21)

4
, (62)

and
Z = µ2

12µ
2
21(1 + α12)

4. (63)

With these results, the diffusion coefficients in the ordered
phase are given by

Dord =
p

m1ν

p
(1)
1 − ρν

p λ
(1)
1 (Dp,ord + D′

ord)

νD + 1
2λ

(0)
1

, (64)

Dp,ord =
p

ρν

E1/E

νD + 3
2λ

(0)
1 +

λ
(0)
1

2

2νD

, (65)

D′
ord =

λ
(0)
1

2νD
Dp,ord . (66)

Equations (65) and (66) show that the coefficients Dp

and D′ are different from zero in the ordered phase while
eqs. (55) and (64) indicate that the diffusion coefficient D

in the disordered phase diverges at the critical point but
remains finite in the ordered phase.

4.2 Shear viscosity coefficient in the tracer limit

The expression of the shear viscosity η is given by
eqs. (A.5)–(A.8). In the disordered phase, p∗1 = 0, p∗2 = 1,
and eq. (A.6) yields

ηdis =
p

ν

4d(d + 2)

2(1 − α2
22) + d(1 + α22)(3 + α22)

. (67)

As expected, the expression (67) for η coincides with that
of the excess gas [53].

On the other hand, in the ordered phase, there is a fi-
nite contribution to the (total) shear viscosity of the mix-
ture coming from impurities. In this phase, p∗1 ≡ E1/E
is given by eq. (48), p∗2 = 1 − p∗1 and hence, in the tracer
limit eqs. (A.5)–(A.8) lead to the expression ηord = η1+η2

where

η1 =
2p

ν

(E1/E)(2τ22 + λ
(0)
1 )

λ
(0)
1

2
+ 2λ

(0)
1 (τ11 + τ22) + 4τ11τ22

, (68)

η2 =
2p

ν

λ
(0)
1 + 2τ11 − (E1/E)(λ

(0)
1 + 2τ11 + 2τ21)

λ
(0)
1

2
+ 2λ

(0)
1 (τ11 + τ22) + 4τ11τ22

. (69)

The tracer limit forms of the (reduced) collision frequen-
cies τij (defined by eqs. (A.7)–(A.8)) are

τ11 =
(1 + β12)(2d + 3 − β12)

2d(d + 2)
, (70)

τ22 =
(1 + α12)(d + 1 − α22)

d(d + 2)
, (71)

τ21 = − (1 + β12)(1 + β21)

2d(d + 2)
. (72)

4.3 Heat flux transport coefficients in the tracer limit

The expressions of the transport coefficients D′′, L and κ
can be obtained from eqs. (A.9)–(A.19). These coefficients
are given in terms of the quantities Yi (i = 1, · · · , 6) de-
fined by eqs. (A.13)–(A.18). In the tracer limit, a careful
inspection of the form of Yi shows that the latter terms

diverge in the ordered phase since Yi ∝ p
(0)2
1 /x1. Conse-

quently, the transport coefficients D′′, L and κ tend to
infinity in the ordered phase.

On the other hand, D′′, L and κ are finite in the dis-
ordered phase. First, it is easy to show that the tracer
particles do not contribute to the coefficients L and κ so
that, the partial contributions L1 = κ1 = 0. In this case,
as expected, when x1 → 0 then L → L2 and κ → κ2

where L2 and κ2 are the pressure energy coefficient and
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the thermal conductivity, respectively, of the excess gas.
These coefficients are given by

L2 = −d + 2

2

T

m2ν

λ
(0)
2

(λ
(0)
2 + χ22)

(
5
2λ

(0)
2 + χ22

)
+ 1

2λ
(0)2
2

,

(73)

κ2 =
d + 2

2

p

m2ν

5
2λ

(0)
2 + χ22

(λ
(0)
2 + χ22)

(
5
2λ

(0)
2 + χ22

)
+ 1

2λ
(0)2
2

,

(74)

where

χ22 = − (1 + α22)

4d(d + 2)
[(d + 8)α22 − 5d − 4] . (75)

Equations (73) and (74) are consistent with the results
derived for a single inelastic Maxwell gas [53]. Finally, the
Dufour coefficient D′′ = D′′

1 + D′′
2 where

D′′
1 =

d + 2

2

p

m1Tν

γ2 − 2µ
d+2B∗

12D
∗
dis

3
2λ

(0)
2 + χ11

, (76)

D′′
2 = − p

m2Tν

(
3

2
λ

(0)
2 + χ22

)−1 [
d + 2

2
+

m2Tν

p
χ21D

′′
1

+
m2ν

pT
(pL2 + Tκ2)λ

(1)
2 − B∗

21D
∗
dis

]
. (77)

Here, D∗
dis ≡ (m1ν/p)Ddis,

B∗
12 = − (1 + β12)

2

16d
(2d + 1 − 3β12) , (78)

B∗
21 = − (1 + α12)

8d(d + 2)

[
α22(d

2 − 2d − 8) + 3d(d + 2)
]

+
(1 + β21)

16µd

(
4d − 1 − 6β21 + 3β2

21

)
, (79)

χ11 = − (1 + β12)
2

8d(d + 2)

[
2d + 16 − 3(1 + β12) −

12(d + 2)

1 + β12

]
,

(80)

χ21 = − 3

8d(d + 2)
(1 + β12)(1 + β21)

2, (81)

λ
(1)
2 =

Z

d2(λ
(0)
2 − λ

(0)
1 )

− Y

d
, (82)

where Y and Z are given by eqs. (62) and (63), respec-
tively. The expression (76) for D′′

1 coincides with previous
results [54] derived from the Boltzmann-Lorentz equation.

To illustrate the behavior of the NS transport coef-
ficients in both phases, fig. 8 shows the dependence of
the (dimensionless) coefficients Dp/Dp0 and η/ηdis on the
mass ratio µ. The pressure diffusion coefficient Dp has
been reduced with respect to its elastic value Dp0 in
the disordered phase, i.e., Dp = x1Dp,0, where Dp0 =
d(1−µ2)T/(2m2ν). While the pressure coefficient Dp van-
ishes in the disordered phase, it increases with the mass

Fig. 8. Plots of the (reduced) pressure diffusion coefficient
Dp/Dp0 and the (reduced) shear viscosity coefficient η/ηdis as
functions of the mass ratio µ ≡ m1/m2 for the same system as
in fig. 2.

ratio in the ordered region according to the first panel of
fig. 8. Regarding the shear viscosity, it appears that traces
of impurities in the ordered phase have a compelling im-
pact on the total shear viscosity of the mixture η, since
the latter is larger than that of the excess gas ηdis.

5 Tracer diffusion coefficient: Comparison

between theory and DSMC simulations

Among the different transport coefficients involved in a
binary mixture in tracer concentration, the diffusion coef-
ficient D is presumably the most accessible from the com-
putational point of view. In the simulations, this quantity
is computed from the mean-square displacement of impu-
rities immersed in a granular system in the HCS [55, 56].
Although the problem is time-dependent, a transforma-
tion to a convenient set of dimensionless time and space
variables [55] allows one to get a steady diffusion equation
where the diffusion coefficient D can be measured for suf-
ficiently long times (meaning large compared to the char-
acteristic mean free time ν−1). This procedure has been
followed here to obtain D from Monte Carlo simulations.

The dependence of D/D0 on the mass ratio µ is plot-
ted in fig. 9 for the same parameter set as in previous
figures (d = 2, α11 = α12 = 0.9 and α22 = 0.6), for which

we recall that µ
(−)
HCS ≃ 0.041 and µ

(+)
HCS ≃ 9.833. The coef-

ficient

D0 =
dp

2mν
(83)

is the elastic disordered phase result. We have consid-
ered two different systems with minute concentrations:
x1 = 10−4 (filled circles) and x1 = 5×10−5 (filled squares).
We observe first that eq. (64) for the diffusion coefficient
could lead to unphysical values (D < 0) in the ordered
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Fig. 9. (Color online) Tracer diffusion. Plot of D/D0 as a
function of the mass ratio m1/m2 for the same system as in
fig. 2. The solid lines are the theoretical results for the disor-
dered and ordered phases given by eqs. (55) and (64), respec-
tively. Symbols denote Monte Carlo simulations: filled circles
for x1 = 10−4 and filled squares for x1 = 5 × 10−5. Empty
circles and squares correspond to the heuristic extension em-
bodied in eq. (84), to cover ordered phases (see text).

phase for rather extreme values of the mass ratio µ. In ad-
dition, in the disordered region (0.041 � µ � 9.833), the
theoretical prediction for Ddis given by eq. (55) shows an
excellent agreement with Monte Carlo simulations. How-
ever, while the theory predicts finite values of D (except

at the critical points µ = µ
(±)
HCS where D → ∞), simula-

tion data indicate that D likely diverges as x1 → 0 in the
ordered phase, be it in the light- or in the heavy-impurity
region. Indeed, the two-fold decrease from x1 = 10−4 to
x1 = 5 × 10−5 leads to about a two-fold increase in D,
in both ordered regions. Consequently, simulation results
point at a divergent diffusion coefficient, not only at the
critical points but also in the ordered phases.

The discrepancies observed between theory and simu-
lation in the ordered phase hints at the possible relevance
of extending the disordered Chapman-Enskog form (55) to
both ordered regions and hence, to suggest the empirical
expression

Dord

D0
=

2µ21

d

γsim

νD + 1
2λ

(0)
1

(84)

to match the simulation data. Here, γsim denotes the value
of the temperature ratio extracted from simulations. The
theoretical predictions obtained from this ansatz are the
empty circles (x1 = 10−4) and squares (x1 = 5× 10−5) of
fig. 9. We observe a relative good agreement between the-
ory and simulation in the heavy-impurity ordered phase
although there are discrepancies in the light ordered
phase, at smaller mass ratios.

Since the temperature ratio diverges in the ordered
phase, the velocities of the gas particles are asymptotically
negligible compared with those of impurities, so that the

latter essentially scatter off an ensemble of frozen (static)
gas particles. This picture on the diffusion process of the
impurity is somewhat analogous to a Lorentz gas [57], ex-
cept for the fact that in the latter system the scatters are
infinitely massive.

6 Discussion

The main objective of this paper has been to gauge the ef-
fect of a recent dynamic transition [23–25] found for IMM
in the tracer limit on the NS transport coefficients. In
this transition, at given values of the mass ratio and the
coefficients of restitution, there is a region (coined as or-
dered phase) where the contribution of tracer particles or
impurities to the total energy of the mixture is not negli-
gible. Before analyzing transport properties of impurities,
we have confirmed first the existence of the above tran-
sition by numerically solving the (inelastic) Boltzmann
equation for IMM in the HCS for very small but non-zero
concentration of the tracer species. As figs. 2 and 3 clearly
show, Monte Carlo simulations have confirmed the transi-
tion previously found [23–25] from theoretical calculations
in the limit of zero concentration. In addition, we have also
studied the impact of transition on higher degree velocity
moments (like the isotropic fourth degree moment) show-
ing that those moments diverge in the ordered phase (see
fig. 4).

Given that the HCS is considered as the reference state
to determine the NS transport coefficients by means of the
Chapman-Enskog expansion [26], the forms of those coef-
ficients have been explicitly obtained in both disordered
and ordered phases starting from the exact expressions of
the seven NS transport coefficients derived before for fi-
nite concentration [27]. As expected, the dependence of
the transport coefficients on the parameter space of the
problem is clearly different in both phases. Thus, eq. (55)
gives the expression of the tracer diffusion transport coef-
ficient in the disordered phase while eqs. (64)–(66) provide
their forms in the ordered phase. In the case of the shear
viscosity η, this coefficient coincides with that of the excess
gas in the disordered phase (see eq. (67)) while the con-
tribution of impurities to the total shear viscosity of the
mixture can be significant (see eqs. (68) and (69)) in the
ordered phase. With respect to the heat flux coefficients,
our results show that those coefficients are finite in the
disordered phase (see eqs. (73)–(77)) while they diverge
in the ordered phase.

A comparison with Monte Carlo simulations for the
tracer diffusion coefficient D (see fig. 9) shows excellent
agreement in the disordered phase in the complete range
of values of the mass ratio studied. On the other hand,
significant discrepancies between theory and simulation
appear in the ordered phase, not only from a quantitative
point of view but also from a more qualitative view since
while the theory predicts a finite value for D, simulation
data point to a divergent D in both ordered regions (the
light- and the heavy-impurity region).
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There are in principle several scenarios to explain the
disagreement observed between theory and simulations for
tracer diffusion coefficient in the ordered phase. Thus, it
is important first to recall that the expressions of the
NS transport coefficients have been derived by assum-
ing the existence of a hydrodynamic or normal solution
to the Boltzmann equation where all space and time de-
pendence of the velocity distributions of each species can
be subsumed in the hydrodynamic fields. The existence
of hydrodynamics requires that, even for finite collisional
dissipation, there is a time scale separation between the
hydrodynamic and the pure kinetic excitations such that
aging to hydrodynamics ensues, or, in the language of ki-
netic theory, a normal solution to the (inelastic) Boltz-
mann equation eventually emerges. In this case, the gran-
ular temperature can still be considered as a slow hydro-
dynamic variable in the same sense as in the conventional
hydrodynamic description. Given that the spectrum of
the linearized Boltzmann collision operator is not known
(its knowledge would allow us to see if the hydrodynamic
modes decay more slowly than the remaining kinetic ex-
citations at large times), an indirect way to test the exis-
tence or not of a normal solution is to compare the results
obtained from the Chapman-Enskog method with numer-
ical solutions to the inelastic Boltzmann equation via the
DSMC method. In this context, the disagreement between
theory and simulation in the ordered phase for the diffu-
sion coefficient can be a consequence of the breakdown of
hydrodynamics in the latter phase. The failure of hydrody-
namics has been also found in the coefficients associated
with the heat flux of a monodisperse inelastic Maxwell
gas [58].

On the other hand, given that the coefficient D is the
only coefficient that diverges at the critical point (apart
from turning out negative for extreme values of the mass
ratio), another possibility might be that hydrodynamics
still holds for the transport coefficients Dp, D′ and η since
they are well behaved in the complete parameter space of
the system. The answer to this question would require
additional simulations to measure some of the above coef-
ficients. The shear viscosity coefficient η could be a good
candidate to clarify the above conundrum. We plan to de-
sign a sheared problem where η could be measured from
Monte Carlo simulations in both phases. Work along this
line is in progress.

The research of V.G. has been supported by the Spanish Gov-
ernment through Grant No. FIS2013-42840-P and by the Junta
de Extremadura (Spain) through Grant No. GR 15104, both
partially financed by FEDER funds.

Appendix A. Expressions of the

Navier-Stokes transport coefficients

In this appendix we display the explicit expressions for the
Navier-Stokes (NS) transport coefficients of a granular bi-
nary mixture with finite concentration. They were already

obtained in ref. [27] for IMM. The three first coefficients
are associated with the mass flux. They are given by

D =
ρT

m1m2ν

(
νD +

1

2
λ

)−1
[(

∂p∗1
∂x1

)

p,T

−ρν

p

(
∂λ

∂x1

)

p,T

(Dp + D′)

]
, (A.1)

Dp =
n1T1

ρν

(
1 − m1nT

ρT1

)(
νD +

3

2
λ +

λ2

2νD

)−1

, (A.2)

D′ =
λ

2νD
Dp , (A.3)

where
νD =

ρx2

dρ2
µ21(1 + α12). (A.4)

In eqs. (A.1)–(A.3), p∗1 and λ are given by eqs. (26)
and (29), respectively. In the tracer limit (x1 → 0), the
(reduced) collision frequency νD = (1+β12)/2d, where βij

is defined by eq. (21).
The shear viscosity coefficient is given by

η = η1 + η2, (A.5)

where the partial contributions ηi are

η1 =
p

ν

2p∗1(2τ22 + λ) − 4p∗2τ12

λ2 + 2λ(τ11 + τ22) + 4(τ11τ22 − τ12τ21)
, (A.6)

where

τ11 =
x1

d(d + 2)
(1 + α11)(d + 1 − α11)

+ 2
x2

d
(1 + β12)

[
1 − 1 + β12

2(d + 2)

]
, (A.7)

τ12 = − x1µ

2d(d + 2)
(1 + β12)

2. (A.8)

A similar expression can be obtained for η2 by just making
the changes 1 ↔ 2.

The expressions for the transport coefficients associ-
ated with the heat flux are more involved. They are given
by

D′′ = D′′
1 +D′′

2 , L = L1+L2, κ = κ1+κ2. (A.9)

The partial contributions D′′
i , Li and κi are the solution of

a coupled set of six equations. By using matrix notation,
these coefficients can be written as [27]

Xσ =
(
Σ−1

)
σσ′

Yσ′ , (A.10)

where Xσ′ is the column matrix

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

D′′
1

D′′
2

L1

L2

κ1

κ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (A.11)
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The expression of the square matrix Σσσ′ is given by
eq. (73) of ref. [27]. Since its explicit form is not rele-
vant for our discussion in the tracer limit (their elements
are finite in both disordered and ordered phases), we will
omit it here for the sake of brevity. The column matrix Y

is

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

Y3

Y4

Y5

Y6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.12)

where

Y1 =
m1m2n

ρ
B12D − d + 2

2

nT 2

m1

∂

∂x1

(
p∗21

x1

)
, (A.13)

Y2 = −m1m2n

ρ
B21D − d + 2

2

nT 2

m2

∂

∂x1

(
p∗22

x2

)
, (A.14)

Y3 =
ρ

p
B12Dp − d + 2

2

n1T
2
1

m1p

(
1 − m1p

ρT1

)
, (A.15)

Y4 = −ρ

p
B21Dp − d + 2

2

n2T
2
2

m2p

(
1 − m2p

ρT2

)
, (A.16)

Y5 =
ρ

T
B12D

′ − d + 2

2

n1T
2
1

m1T
, (A.17)

Y6 = − ρ

T
B21D

′ − d + 2

2

n2T
2
2

m2T
. (A.18)

Upon writing eqs. (A.13)–(A.18), for the sake of simplicity,
non-Gaussian corrections to the HCS have been neglected.
In addition, the quantities Bij are given by

B12 = −ω11

8

(1 + α11)

d(d + 2)

[
α11(d

2 − 2d − 8) + 3d(d + 2)
] T1

m1

−ω12

2
µ21

(1 + α12)

d

{
µ21(1 + α12)

× [d − 3µ21(1 + α12) + 2]
T2

m2
− x1

x2

[
d

+ 3µ2
21(1 + α12)

2 − 6µ21(1 + α12) + 2

]
T1

m2

}
.

(A.19)

The quantity B21 can be obtained from eq. (A.19) by set-
ting 1 ↔ 2. Note that, in the tracer limit, the quantities
Bij are finite in the ordered phase.
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