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Abstract. We study a granular gas heated by a stochastic thermostat in the dilute
limit. Starting from the kinetic equations governing the evolution of the correlation
functions, a Boltzmann-Langevin equation is constructed. The spectrum of the
corresponding linearized Boltzmann-Fokker-Planck operator is analyzed, and the
equation for the fluctuating transverse velocity is derived in the hydrodynamic
limit. The noise term (Langevin force) is thus known microscopically and contains
two terms: one coming from the thermostat and the other from the fluctuating
pressure tensor. At variance with the free cooling situation, the noise is found to
be white and its amplitude is evaluated.

1 Introduction

Typically, a granular system is defined as an ensemble of macroscopic particles which collide
inelastically, i.e. part of the kinetic energy of the grains is dissipated in a collision. This simple
ingredient gives rise to a very rich phenomenology which is of interest not only from practical or
industrial perspective, but also because of the resulting new theoretical challenges [1–4]. One of
the most widely employed idealized model for granular fluids is a system of smooth hard spheres
(or disks in two dimensions) whose collisions are characterized by a constant coefficient of
normal restitution [5,6]. For this model, and considering that the particles move freely between
collisions, kinetic equations have been derived: starting from the dynamics of the particles, it
is possible to derive the corresponding Liouville equation, and the Boltzmann equation results
in the low density limit [7,8]. This kinetic equation has been extensively used to address many
fundamental questions such as the derivation of the hydrodynamic equations, with explicit
expressions for the transport coefficients, which have been derived by the Chapman-Enskog
method [9,10] and also via the linearized Boltzmann equation [11]. Due to the inelasticity of
the collisions, the total energy of an isolated granular system decays monotonically in time. In
the fast-flow regime, it has been shown numerically that, for a wide class of initial conditions,
the system reaches the so-called Homogeneous Cooling State (HCS), in which all the time
dependence of the one-particle distribution function goes through the granular temperature,
which is defined as the second velocity moment of the distribution [12,13]. This state has been
extensively studied in the literature and very recently the fluctuations of the transverse velocity
have been analyzed [14,15]. It has been found that the transverse velocity fulfills a Langevin
equation but, in contrast to the elastic case, the noise is not white and the second moment of the
fluctuations is not only controlled by the viscosity but also depends on a new coefficient. Similar
results are found for the other hydrodynamic equations [16]. The study of fluctuations in the
HCS is important for the development of a general theory of fluctuations in granular systems
because it defines the reference state from which macroscopic hydrodynamic equations can be
derived [9]. In this sense, the HCS plays, for inelastic gases, a role similar to the equilibrium
state for molecular gases.
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On the other hand, there are situations in which the grains cannot be considered to move
freely between collisions. If, for example, the grains are immersed in a medium which acts as
a thermostat, the system may reach a stationary state in which the energy injected by the
thermostat is compensated by the energy dissipated in collisions. Note that, if the grains are
Brownian particles, the interstitial medium injects energy into the granular system, but also acts
as an energy sink due to frictional forces. One of the simplest mechanism that can be considered
to thermalize the system is a white noise force acting on each grain, which results in the so-called
stochastic thermostat [17–28]. One important point is that the distribution function differs from
that of the HCS [17], and that it is this distribution which plays the role of the “reference state”.
The non-equilibrium steady state that the system reaches in the long time limit exhibits long-
range correlations which are in agreement with the predictions of fluctuating hydrodynamics
[20]. The latter description was introduced phenomenologically, and is expected to be valid in
the vicinity of the elastic limit only. The objective of this work is to derive these equations
from a more fundamental point of view and without the restriction of small inelasticity. More
precisely, we adapt the formalism worked out in [15] for the free cooling, to the present driven
case. Starting from a Boltzmann-Langevin description, we derive a fluctuating equation for
the transverse velocity identifying the noise of this equation. Under certain hypothesis to be
clarified in the text, we obtain that the correlation function of the noise is well approximated by
the one introduced in Ref. [20], where the internal noise contribution (excluding the “external”
noise term directly stemming from the thermostat) fulfilled a fluctuation-dissipation relation as
for conservative fluids [29].
The remainder of the paper is organized as follows. In Section 2 previous results for a

system heated by a stochastic thermostat are presented, such as the equations for one-particle
distribution function and the two-particle correlation function. In Section 3 the Boltzmann-
Langevin equation for this system is derived and the properties of the noise are inferred. The
particular case of the transverse velocity field is analyzed in Section 4 and finally, the conclusions
are presented in Section 5

2 Stochastic thermostat: Preliminary results

The system considered is a dilute gas of N smooth inelastic hard particles of mass m and
diameter σ. The position and velocity of the ith particle at time t will be denoted by Ri(t) and
Vi(t), respectively. The effect of a collision between two particles i and j is to instantaneously
modify their velocities according to the collision rule

V′i = Vi −
1 + α

2
(σ̂ ·Vij)σ̂ , V′j = Vj +

1 + α

2
(σ̂ ·Vij)σ̂ , (1)

where Vij ≡ Vi −Vj is the relative velocity, σ̂ is the unit vector pointing from the center of
particle j to the center of particle i at contact, and α is the coefficient of normal restitution. It
is defined in the interval 0 < α ≤ 1 and it will be considered here as a constant, independent
of the relative velocity. Between collisions, the system is heated uniformly by adding a random
velocity to the velocity of each particle at equal times. The driving is implemented in such a way
that the time between random kicks is small compared to the mean free time. Then, between
collisions, the velocities of the particles undergo a large number of kicks due to the thermostat.
In addition, we will assume that the “jump moments” of the velocities of the particles verify

Bij,βγ ≡ lim
∆t→0

〈∆Vi,β∆Vj,γ〉noise
∆t

= ξ20δijδβγ +
ξ20
N
(δij − 1)δβγ , (2)

i, j = 1, . . . , N and β, γ = 1, . . . , d

where we have introduced ∆Vi,β ≡ Vi,β(t + ∆t) − Vi,β(t), Vi,β(t) being the β component of
the velocity of particle i at time t. We have also introduced the strength of the noise, ξ20 , and〈. . . 〉noise, which denotes average over different realizations of the noise. The non-diagonal terms
(corresponding to i �= j and β = γ) are necessary in order to conserve the total momentum
[32].
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2.1 Kinetic equations

Given a trajectory of the system, one-point and two-point microscopic densities in phase space
at time t are defined by

F1(x1, t) =

N∑
i=1

δ[x1 −Xi(t)], (3)

and

F2(x1, x2, t) =

N∑
i=1

N∑
j �=i
δ[x1 −Xi(t)]δ[x2 −Xj(t)], (4)

respectively. Here Xi(t) ≡ {Ri(t),Vi(t)}, while the xi ≡ {ri,vi} are field variables referring to
the one-particle phase space. The average of F1(x1, t) and F2(x1, x2, t) over the initial probabil-
ity distribution of the system ρ(Γ, 0), where Γ ≡ {X1(t), . . . , XN (t)}, are the usual one-particle
and two-particle distribution functions,

f1(x1, t) = 〈F1(x1, t)〉, f2(x1, x2, t) = 〈F2(x1, x2, t)〉, (5)

with the notation

〈G〉 ≡
∫
dΓG(Γ)ρ(Γ, 0). (6)

In the dilute limit, assuming molecular chaos, i.e. that no correlations exist between colliding
particles, and that the sizes of the jumps due to the thermostat are small compared to the
scale on which the distribution varies, the equation for the one-particle distribution function,
f1(x1, t), is the Boltzmann-Fokker-Planck equation [17]

∂

∂t
f1(x1, t) + v1 · ∂

∂r1
f1(x1, t) = J [f1|f1] + ξ

2
0

2

∂2

∂v21
f1(x1, t), (7)

where

J [f1|f1] =
∫
dx2δ(r12)T̄0(v1,v2)f1(x1, t)f1(x2, t) (8)

and

T̄0(v1,v2) = σ
d−1
∫
dσ̂Θ(σ̂ · v12)(σ̂ · v12)[α−2b−1σ̂ − 1], (9)

is the binary collision operator. The operator b−1σ̂ changes the velocities to its right into the
pre-collisional velocities

v∗1 = v1 −
1 + α

2α
(σ̂ · v12)σ̂ , v∗2 = v2 +

1 + α

2α
(σ̂ · v12)σ̂ . (10)

As can be seen, the last term in (7) does not appear in the free cooling case and depends on
the strength of the heating, ξ0.
Let us introduce the two-particle correlation function through the usual cluster expansion

f2(x1, x2, t) = f1(x1, t)f1(x2, t) + g2(x1, x2, t). (11)

Neglecting three-body correlations, the equation for the correlation function g2(x1, x2, t) was
derived in [32] and reads[

∂

∂t
+ v1 · ∂

∂r1
+ v2 · ∂

∂r2

]
g2(x1, x2, t)

= δ(r12)T̄0(v1,v2)f1(x1, t)f1(x2, t) + [K(x1, t) +K(x2, t)]g2(x1, x2, t)

−ξ
2
0

N

∂

∂v1
· ∂
∂v2
f1(x1, t)f1(x2, t), (12)

where

K(xi, t) =

∫
dx3δ(ri3)T̄0(vi,v3)(1 + Pi3)f1(x3, t) + ξ

2
0

2

∂2

∂v2i
, (13)

with Pab an operator that interchanges the label a and b in the quantities to its right.
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2.2 The stationary state

It has been shown numerically that, for a wide class of initial conditions, the system reaches a
homogeneous stationary state [20] in which the energy input from the thermostat is compensated
by the energy lost in collisions. In this case the Boltzmann-Fokker-Planck equation reads

ξ20
2

∂2

∂v21
fH(v1) + J [fH |fH ] = 0. (14)

For the sake of simplicity, let us introduce the following dimensionless distribution

fH(v1) =
nH

vdH
χH(c), (15)

with χH(c) an isotropic function of the modulus of c, vH = (
2TH
m
)1/2, c = v

vH
and TH the

granular temperature defined as

d

2
nHTH =

∫
dv
1

2
mv2fH(v). (16)

By introducing equation (15) in equation (14), we obtain a closed equation for χH

∫
dc2T̄ (c1, c2)χH(c1)χH(c2) +

ξ̃2

2

∂

∂c21
χH(c1) = 0, (17)

where

T̄ (c1, c2) =

∫
dσ̂Θ(σ̂ · c12)(σ̂ · c12)[α−2b−1σ̂ − 1], (18)

is the dimensionless binary collision operator and ξ̃2 =
ξ20�

v3H
is the dimensionless strength of the

noise with 
 = (nHσ
d−1)−1 proportional to the mean free path. In the case of the correlation

function, it is convenient to introduce its dimensionless counterpart, g̃H , as

g2,H(x1, x2) =
nH


2v2dH
g̃H(l12, c1, c2), (19)

where we have introduced the dimensionless length scale l = r/
 and l12 = l1− l2. The reduced
distribution fulfills[

Λ(c1) + Λ(c2)− c12 · ∂
∂l12

]
g̃H(l12, c1, c2)

= −δ(l12)T̄ (c1, c2)χH(c1)χH(c2) + ξ̃2nH

d

N

∂

∂c1
· ∂
∂c2
χH(c1)χH(c2), (20)

where Λ(ci) is the linearized Boltzmann-Fokker-Planck operator

Λ(ci)h(ci) =

∫
dc3T̄ (ci, c3)(1 + Pi3)χH(c3)h(ci) + ξ̃

2

2

∂2

∂c2i
h(ci). (21)

Equation (20) describes the one-time correlation between fluctuations in the stationary state.
As it can be seen, the correlation function is determined by the properties of the linearized
Boltzmann-Fokker-Planck operator, Λ, and by the one-particle distribution function, χH .
For the purpose of the next section, it is also convenient to define a new function

hH(l12, c1, c2) ≡ χH(c1)δ(l12)δ(c12) + g̃H(l12, c1, c2). (22)
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Taking into account equation (20) and that the term c12 · ∂∂l12χH(c1)δ(l12)δ(c12) vanishes iden-
tically, the equation for this quantity is[

Λ(c1) + Λ(c2)− c12 · ∂
∂l12

]
hH(l12, c1, c2)

= −δ(l12)Γ(c1, c2) + ξ̃2nH

d

N

∂

∂c1
· ∂
∂c2
χH(c1)χH(c2), (23)

where
Γ(c1, c2) = T̄ (c1, c2)χH(c1)χH(c2)− [Λ(c1) + Λ(c2)]χH(c1)δ(c12). (24)

2.3 Linearized Boltzmann-Fokker-Planck equation

In this section we derive the evolution equation for a small perturbation around the homoge-
neous stationary distribution function fH(v). The objective is to evaluate some spectral prop-
erties of the linear operator that controls the dynamics, which turns out to be the linearized
Boltzmann-Fokker-Planck operator introduced above. These properties will be useful in the last
section where we derive hydrodynamic equations.
Let us introduce the small perturbation, δf

δf(x1, t) = f1(x1, t)− fH(v1), δf

f1
� 1. (25)

The linearized equation for δf is obtained from the Boltzmann-Fokker-Planck equation (7) and
equation (14)

∂

∂t
δf(x1, t) + v1 · ∂

∂r1
δf(x1, t) = K(x1, t)δf(x1, t), (26)

where K(x1, t) is defined in (13). Now, let us introduce a dimensionless perturbation and a
dimensionless time scale as

δf(x1, t) =
nH

vdH
δχ(l, c, s), (27)

s =
vH



t, (28)

which is proportional to the number of collisions per particle in the interval (0, t). The equation
for δχ reads

∂

∂s
δχ(l, c1, s) =

[
Λ(c1)− c1 · ∂

∂l

]
δχ(l, c1, s), (29)

where Λ is the linearized Boltzmann-Fokker-Planck operator defined in (21). Equation (29) is
the linearized Boltzmann-Fokker-Planck equation and it describes the dynamics of any small
perturbation around the homogeneous stationary state.
In [32] it was shown that the linearized Boltzmann-Fokker-Planck operator has d+1 eigen-

functions associated to the null eigenvalue (in principle there are not more eigenfunctions asso-
ciated to this eigenvalue). These eigenfunctions are

ξ1(c) =
1

3

∂

∂c
· [cχH(c)] + χH(c), (30)

ξ2(c) = −
∂

∂c
χH(c). (31)

They fulfill Λ(c)ξi(c) = 0 for i = 1, 2. Moreover, as the number of particles and momentum are
conserved in collisions, we have∫

dcΛ(c)h(c) =

∫
dcciΛ(c)h(c) = 0, (32)
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where h is an arbitrary function. Equivalently, it can be said that the functions

ξ̄1(c) = χH(c), ξ̄2(c) = χH(c)c, (33)

are left eigenfunctions of Λ associated to the null eigenvalue with the scalar product

〈f |g〉 =
∫
dcχ−1H (c)f

∗(c)g(c), (34)

with f∗ the complex conjugate of f .

3 The Boltzmann-Langevin equation

The starting point for the study of the fluctuations in this work will be the Boltzmann-Langevin
equation. In this section we derive the corresponding equation and we determine the properties
of the noise in order to obtain consistency with the equations of the correlation functions
presented in the previous section.

As defined in Eq. (5), the one-particle distribution function, f1, is the ensemble average of
the phase function F1, and its dynamics is given by the Boltzmann-Fokker-Planck equation,
Eq. (7). The problem is now to find an evolution equation for the fluctuating quantity

δF (l, c, s) =
vdH
nH
[F1(x, t)− fH(v)]. (35)

As for the velocity of a Brownian particle [30], we expect that the difference between the
equation for the fluctuating quantity δF , and its average, 〈δF 〉 = δχ, is a random force term,
R [31]. Then, the fluctuations δF around χH are described by a Boltzmann equation linearized
around the solution χH with a random force, R, added

∂

∂s
δF (l, c, s) =

[
Λ(c)− c · ∂

∂l

]
δF (l, c, s) +R(l, c, s). (36)

Taking averages in equation (36), we obtain the linearized Boltzmann-Fokker-Planck equation,
Eq. (29), if and only if

〈R(l, c, s)〉 = 0. (37)

Equation (36) is the Boltzmann-Langevin equation. As in the free cooling case [15], we assume
that the noise term, R(l, c, s), is Markovian

〈R(l1, c1, s1)R(l2, c2, s2)〉H = H(l1, l2, c1, c2)δ(s1 − s2), (38)

where 〈. . . 〉H means average in the stationary homogeneous state. In order to evaluate the
function H(l1, l2, c1, c2) explicitely, we will calculate 〈δF (l1, c1, s)δF (l2, c2, s)〉H with the
Boltzmann-Langevin equation and then, we will impose compatibility with the equation of
the correlation function of the previous section. So, let us first write this function as a func-
tional of the distribution and the correlation functions. Using the definitions of the microscopic
densities, Eqs. (3), (4), the distribution and correlation functions, Eqs. (5), (11), (22), and the
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dimensionless distributions, Eqs. (15), (19), we have

〈δF (x1, t)δF (x2, t)〉H = v
2d
H

n2H
〈[F1(x1, t)− fH(v1)][F1(x2, t)− fH(v2)]〉H

=
v2dH
n2H
[〈F1(x1, t)F1(x2, t)〉H − fH(v1)fH(v2)]

=
v2dH
n2H
[f2,H(x1, x2, t) + fH(v1)δ(x1 − x2)− fH(v1)fH(v2)]

=
v2dH
n2H
[g2,H(x1, x2) + fH(v1)δ(x1 − x2)]

=
1

nH
d
[g̃H(l12, c1, c2) + δ(l12)δ(c12)χH(c1)]

=
1

nH
d
hH(l12, c1, c2). (39)

Now, let us solve Eq. (36) as a functional of the noise. In order to do that it is convenient to
define the linear operator

Λ(li, ci) ≡ Λ(ci)− ci · ∂
∂li
, (40)

in terms of which the solution for δF (l, c, s) is

δF (l, c, s) = eΛ(l,c)sδF (l, c, 0) +

∫ s
0

ds′eΛ(l,c)(s−s
′)R(l, c, s′)

s�1→
∫ s
0

ds′eΛ(l,c)(s−s
′)R(l, c, s′), (41)

where we have assumed that the term stemming from the initial conditions vanishes in the long
time limit. This is equivalent to assuming that the spectrum of the linearized Boltzmann-Fokker-
Planck operator is such that any perturbation without component in the subspace associated
to the null eigenvalue decays. With equation (41), we can evaluate

〈δF (l1, c1, s)δF (l2, c2, s)〉H
=

∫ s
0

ds′
∫ s
0

ds′′eΛ(l1,c1)(s−s
′)+Λ(l2,c2)(s−s′′)〈R(l1, c1, s′)R(l2, c2, s′′)〉H

=

∫ s
0

ds′
∫ s
0

ds′′eΛ(l1,c1)(s−s
′)+Λ(l2,c2)(s−s′′)H(l12, c1, c2)δ(s′ − s′′)

=

∫ s
0

ds′e[Λ(l1,c1)+Λ(l2,c2)](s−s
′)H(l12, c1, c2)

= −[Λ(l1, c1) + Λ(l2, c2)]−1
[
e[Λ(l1,c1)+Λ(l2,c2)](s−s

′)
]s′=s
s′=0
H(l12, c1, c2)

s�1→ −[Λ(l1, c1) + Λ(l2, c2)]−1H(l12, c1, c2), (42)

where we have assumed that the term e[Λ(l1,c1)+Λ(l2,c2)]sH(l12, c1, c2)→ 0 in the long time limit.
After identifying the function, we will see that this is, in fact, the case, because H(l12, c1, c2)
does not have components in the subspace associated to the null eigenvalue. Equivalently we
have

[Λ(l1, c1) + Λ(l2, c2)]hH(l12, c1, c2) = −nH
dH(l12, c1, c2). (43)

Finally, comparing equations (43) and (23) we conclude that

H(l12, c1, c2) =
1

nH
d
δ(l12)Γ(c1, c2)− ξ̃

2

N

∂

∂c1
· ∂
∂c2
χH(c1)χH(c2), (44)
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with Γ(c1, c2) given in Eq. (24). With this expression of H we can see that it does not have
components in the subspace associated to the null eigenvalue. Taking into account that ξ̄1 and
ξ̄2 are left eigenfunctions of Λ associated to the null eigenvalue and that [32]∫

dc1

∫
dc2T̄ (c1, c2)χH(c1)χH(c2) = 0,∫

dc1

∫
dc2c1ic2iT̄ (c1, c2)χH(c1)χH(c2) = ξ̃

2, (45)

we can see that ∫
dl12

∫
dc1

∫
dc2H(l12, c1, c2) = 0,∫

dl12

∫
dc1

∫
dc2c1ic2iH(l12, c1, c2) = 0. (46)

In the remaining of this section, we shall write the Boltzmann-Langevin equation together with
noise properties in Fourier space. This will prove useful for the subsequent analysis. Let us
introduce the Fourier component of a function of the position variable as

f̃(k) =

∫
dle−ik·lf(l), f(l) =

1

Ṽ

∑
k

eik·lf̃(k), (47)

where Ṽ = V
�d
is the volume in units of the mean free path. The equation for δF̃ (k, c, s) is then[

∂

∂s
− Λ(k, c)

]
δF̃ (k, c, s) = R̃(k, c, s), (48)

where we have introduced the operator

Λ(k, c) = Λ(c)− ik · c. (49)

The Fourier transform of the noise, R̃(k, c, s), obeys

〈R̃(k, c, s)〉H = 0, (50)

and
〈R̃(k1, c1, s1)R̃(k2, c2, s2)〉H = H(k1,k2, c1, c2)δ(s1 − s2), (51)

where

H(k1,k2, c1, c2) =
Ṽ 2

N

[
Γ(c1, c2)δ(k1 + k2)− ξ̃2 ∂

∂c1
· ∂
∂c2
χH(c1)χH(c2)δ(k1)δ(k2)

]
, (52)

which completes the calculation of the noise variance within the Langevin description, that will
be used to quantify the transverse velocity fluctuations.

4 The fluctuating transverse velocity

The objective in this section is to derive a fluctuating equation for the transverse velocity field,
w⊥(k, s). The reason to consider this field is that its equation is decoupled from the equations
for the other hydrodynamic fields [20], and it can be derived exactly in the hydrodynamic limit
with the knowledge we have about the spectrum of the linearized Boltzmann-Fokker-Planck
operator.
Mathematically, the transverse velocity is defined in the following way: Let us consider the

d-dimensional vector k which belongs to the space �d. This space can be expanded in the base
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{
k̂
}⋃{

k̂i⊥
}d−1
i=1
where k̂ is a unitary vector parallel to k and

{
k̂i⊥
}d−1
i=1
are (d − 1) unitary

vectors orthogonal to k. The transverse velocity is defined as

w⊥i(k, s) =
∫
dc(c · k̂i⊥)δF̃ (k, c, s), i = 1, . . . , d− 1. (53)

For the subsequent analysis, is convenient to introduce the following projectors

P (i)f(c) ≡ 〈ξ̄2⊥i(c)|f(c)〉ξ2⊥i(c), (54)

Q(i)f(c) ≡ (1− P (i))f(c). (55)

Then, if we apply P (i) to δF̃ we obtain

P (i)δF̃ (k, c, s) = w⊥i(k, s)ξ2⊥i(c), (56)

and the transverse velocity is the component of δF̃ (k, c, s) in the subspace generated by ξ2⊥i(c).
In order to obtain an equation for w⊥, we apply the projectors P and Q (for simplicity in

the notation we skip the super-index) to the Langevin equation (48)[
∂

∂s
− PΛ(k, c)

]
PδF̃ (k, c, s) = PR̃(k, c, s)− Pi(k · c)QδF̃ (k, c, s), (57)

[
∂

∂s
−QΛ(k, c)

]
QδF̃ (k, c, s) = QR̃(k, c, s)−Qi(k · c)PδF̃ (k, c, s). (58)

Now, let us solve equation (58) formally

QδF̃ (k, c, s) = eQΛ(k,c)sQδF̃ (k, c, 0)

+

∫ s
0

ds′eQΛ(k,c)(s−s
′)[QR̃(k, c, s′)−Qi(k · c)PδF̃ (k, c, s′)]. (59)

In the time regime in which the system has forgotten the initial condition, i.e. when we can
consider that eQΛ(k,c)sQδF̃ (k, c, 0)→ 0, by substituting Eq. (59) in Eq. (57), we obtain a closed
equation for PδF̃ (k, c, s)[

∂

∂s
− PΛ(k, c)

]
PδF̃ (k, c, s) + P (k · c)

∫ s
0

ds′eQΛ(k,c)(s−s
′)Q(k · c)PδF̃ (k, c, s′)

= PR̃(k, c, s)− Pi(k · c)
∫ s
0

ds′eQΛ(k,c)(s−s
′)QR̃(k, c, s′). (60)

In Appendix A it is shown that, in the hydrodynamic limit, i.e. to second order in k and in the
long time limit, Eq. (60) reduces to the following equation for the transverse velocity[

∂

∂s
+ η̃k2

]
w⊥(k, s) = Rw(k, s). (61)

The coefficient η̃ is the shear viscosity given by

η̃ =

∫ ∞
0

ds

∫
dccxcye

Λ(c)scxξ2,y(c) = −
∫
dccxcyΛ(c)

−1cxξ2,y(c), (62)

which agrees with the expression obtained in [24] by the Chapman-Enskog method, andRw(k, s)
is a noise term which can be decomposed as

Rw(k, s) = S(k, s) + Π(k, s). (63)
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The term S(k, s) comes from the thermostat (which does not conserve momentum locally),
and the second term, Π(k, s), is the fluctuating part of the pressure tensor. Their microscopic
expressions in terms of the noise of the Boltzmann-Langevin equation are

S(k, s) =

∫
dc(k̂⊥ · c)R̃(k, c, s), (64)

and

Π(k, s) = −ik
∫ s
0

ds′
∫
dc(k̂ · c)(k̂⊥ · c)eQΛ(k,c)(s−s′)QR̃(k, c, s′). (65)

Of course, due to the fact that 〈R̃(k, c, s)〉H = 0, the mean value of the noise vanishes
〈Rw(k, s)〉H = 0. (66)

The autocorrelation function of the noise is evaluated in Appendix B. Due to symmetry con-
siderations, there are only correlations between the k and −k components, which yields

〈Rw(k, s1)Rw(−k, s2)〉H = Ṽ
2

N

[
ξ̃2δ(s1 − s2) + k2Cxy(s2 − s1)

]
+ 〈S(k, s1)Π(−k, s2)〉H , s1 < s2. (67)

The first term is the expected zeroth order term which comes from the heating. The Dirac delta
function is an exact consequence of the fact that the external noise (the heating) is white. The
function Cxy(s2 − s1) reads

Cxy(s2 − s1) =
∫
dc1

∫
dc2c1xc1yc2xc2ye

Λ(c2)(s2−s1)φH(c1, c2). (68)

Here, we have introduced the function φH(c1, c2) as the space integral of the correlation function
hH(l, c1, c2)

φH(c1, c2) =

∫
dlhH(l, c1, c2) = χH(c1)δ(c12) + χ2(c1, c2), (69)

where χ2(c1, c2) =
∫
dlg̃H(l, c1, c2) and g̃H is the dimensionless correlation function defined in

(19). The equation for φH can easily be obtained by integration over space variable in Eq. (23),
which gives

[Λ(c1) + Λ(c2)]φH(c1, c2) = −Γ(c1, c2) + ξ̃2 ∂
∂c1
· ∂
∂c2
χH(c1)χH(c2). (70)

As discussed in Appendix B, Cxy can be physically interpreted as the autocorrelation function

of the global quantity
∑N
i=1 Vx(t)Vy(t). In the elastic case, this correlation function is related to

the shear viscosity but it is not the case for granular systems [34]. The formula for the correlation
〈S(k, s1)Π(−k, s2)〉H is given in Appendix B, and it does not seem to admit a direct physical
interpretation. As the two correlation functions, Cxy(s) and 〈S(k, s1)Π(−k, s2)〉H , decay with
the kinetic modes and, in the k → 0 limit, the fluctuating velocity is expected to be frozen
(its time evolution is given by the null eigenvalue, Eq. (61)), we can consider that they are
proportional to a Dirac delta function in time, and we have

Ṽ 2

N
k2Cxy(s2 − s1) + 〈S(k, s1)Π(−k, s2)〉H

→ 2
[
Ṽ 2

N
k2
∫ ∞
0

dsCxy(s) +

∫ ∞
0

ds〈S(k, 0)Π(−k, s)〉H
]
δ(s1 − s2) . (71)

Note that this is in contrast with the free cooling case where the noise can not be considered to
be white [15]. In this case, the equation for the transverse velocity (rescaled with the thermal
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velocity) contains a term of order zero in k which is proportional to the cooling rate. Then, even
in the k → 0 limit, the velocity is not frozen on the kinetic scale. In Appendix C the second
integral of equation (71) is evaluated obtaining

∫ ∞
0

ds〈S(k, 0)Π(−k, s)〉H → Ṽ
2

N
k2
∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yφH(c1, c2), (72)

which is valid in the hydrodynamic limit. If we substitute φH(c1, c2) by its expression in terms
of the one and two-particle distribution function, Eq. (69), we obtain (see Appendix D) that
the one-particle contribution vanishes and the correlation function can be written in terms of
the two-particle velocity correlation function, χ2(c1, c2)

〈Rw(k, s1)Rw(−k, s2)〉H
=
Ṽ 2

N
δ(s1 − s2)

{
ξ̃2 + 2k2

[
−
∫
dc1

∫
dc2c1xc1yc2xc2yΛ(c2)

−1χ2(c1, c2)

+

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yχ2(c1, c2)
]}
. (73)

As Rw(k, s1) is Gaussian, the noise is completely characterized by Equations (66) and (73).
As it can be seen, the k2 term has no relation, a priori, with the shear viscosity, Eq. (62), i.e.
there is a priori no fluctuation-dissipation relation as that assumed in [20]. However, we now
show that, under additional hypothesis (that in principle are not restricted to the elastic limit),
the aforementioned term reduces to the shear viscosity. Let us assume that the most important
contribution of the two particle velocity correlation function, χ2(c1, c2), is the hydrodynamic
part, i.e. we assume

χ2(c1, c2) 	
d+2∑
β=1

d+2∑
β′=1

aβ,β′ξβ(c1)ξβ′(c2). (74)

This assumption was already made in [32] where the coefficients aβ,β′ were evaluated to calculate
the total energy fluctuations. We emphasize that it led to an excellent agreement between
analytical predictions and numerical data (Monte Carlo) for energy fluctuations, for all the
values of the inelasticity [32]. In this approximation, the first integral in (73) vanishes because
cxcyχH(c) is orthogonal to the hydrodynamic modes. The second term is

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2y
d+2∑
β=1

d+2∑
β′=1

aβ,β′ξβ(c1)ξβ′(c2)

= a2x,2x

∫
dc1c1xξ2x(c1)

∫
dc2c2xc2yΛ(c2)

−1c2yξ2x(c2), (75)

where, for symmetry considerations, the only term that remains is the one associated to β =
β′ = 2. If we use now that a2i2i = −1/2 (see the reference [32]), and the formula for the shear
viscosity, Eq. (62), we finally have

〈Rw(k, s1)Rw(−k, s2) = Ṽ
2

N
δ(s1 − s2)(ξ̃2 + η̃k2). (76)

Then, in the hydrodynamic limit and assuming that the two-particle velocity correlation func-
tion, χ2(c1, c2), has only components in the hydrodynamic subspace, the correlation function of
the noise reduces to the one introduced phenomenologically in [20], not only in the elastic limit,
but for arbitrary inelasticity. Although we have no direct proof of the accuracy of approximation
(74), we note that it is backed up by numerical data, see e.g. [32].
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5 Conclusions and outlook

The primary objective of this work was to derive a Boltzmann-Langevin description for a
heated granular gas, in the spirit of the work of Bixon and Zwanzig [31], who considered
conservative systems. The system considered here is on the other hand dissipative, and is
heated by a stochastic force changing the velocity of the particles between collisions. The loss
of energy in collisions is compensated by the energy given to the particles by the thermostat
and a stationary state is thereby reached. Our study is restricted to this stationary state. The
Boltzmann-Langevin equation has been derived and the properties of the noise appearing in this
equation were identified by imposing consistency with the equation for the correlation function
derived in [32].
The Boltzmann-Langevin equation is the starting point for the derivation of fluctuating

hydrodynamic equations. This can be done by projecting the Boltzmann-Langevin equation into
the hydrodynamic subspace. As our knowledge of the spectrum of the linearized Boltzmann-
Fokker-Planck operator is quite limited, we have focused on the equation for the transverse
velocity field, that is decoupled from the rest of the fluctuating hydrodynamic equations. This
specific case was studied in [14,15] for the free cooling state, where it was shown that the
relevant Langevin noise is not white and that there is no fluctuation-dissipation relation. In
other words, the amplitude of the noise is not related to the shear viscosity. On the other
hand, in the stochastically heated system, the behavior that we have reported is different.
First, the noise of the transverse velocity contains two parts: one coming from the thermostat
(which does not conserve momentum locally) together with the more standard fluctuating
pressure tensor. The correlation function of the noise can then be written as a sum of direct
and cross terms made up from the previous two contributions. Moreover, in contrast to the
free cooling scenario, the noise can be considered as white [36], as the dynamics of the velocity
is as slow as desired in the hydrodynamic (low k) limit. As in the free cooling case, in the
hydrodynamic limit, the amplitude of the noise is a priori not related to the shear viscosity
(such a relation, of fluctuation-dissipation type, had been assumed in the approach of Ref [20]).
However, considering that the two-particle velocity correlation function has only hydrodynamic
modes – which seems a reasonable assumption – somehow restores fluctuation-dissipation and
we obtain the expression assumed in [20], with the actual inelastic shear viscosity. In principle,
this rather surprising result – reminiscent of those reported in Refs [37] – is not limited to small
inelasticity.
For future work, remains the extension of the theory to the other hydrodynamic equations

(beyond the transverse velocity), together with a generalization of the scheme presented here
to a more general class of thermostated systems, such as the ones with multiplicative noise [35].

This research was supported by the Ministerio de Educación y Ciencia (Spain) through Grant
No. FIS2008-01339 (partially financed by FEDER funds). We acknowledge financial support from Becas
de la Fundación La Caixa and from Agence Nationale de la Recherche (grant ANR-05-JCJC-44482).

Appendix

A Derivation of the transverse velocity field equation

In this Appendix we derive the equation for the transverse velocity field, w⊥(k, s), in the
hydrodynamic limit. The starting point is equation (60)[

∂

∂s
− PΛ(k, c)

]
PδF̃ (k, c, s) + P (k · c)

∫ s
0

ds′eQΛ(k,c)(s−s
′)Q(k · c)PδF̃ (k, c, s′)

= PR̃(k, c, s)− Pi(k · c)
∫ s
0

ds′eQΛ(k,c)(s−s
′)QR̃(k, c, s′). (77)

Let us first consider the term PΛ(k, c)PδF̃ (k, c, s). As Λ(c)ξ2⊥(c) = 0 and
∫
dc(k̂⊥ · c)(k̂ ·

c)ξ2⊥(c) = 0, we easily have
PΛ(k, c)PδF̃ (k, c, s) = 0. (78)
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Let us evaluate the last term of the left hand side of Eq. (77). To second order in k, we have

P (k · c)
∫ s
0

ds′eQΛ(k,c)(s−s
′)Q(k · c)PδF̃ (k, c, s′)

	 k2ξ2⊥(c)
∫ s
0

ds′w⊥(k, s′)
∫
dc(k̂ · c)(k̂⊥ · c)eΛ(c)(s−s′)k̂ · cξ2⊥(c)

= k2ξ2⊥(c)
∫ s
0

ds′w⊥(k, s′)Gxy(s− s′) (79)

where we have introduced

Gxy(s) ≡
∫
dc(k̂⊥ · c)(k̂ · c)eΛ(c)s(k̂ · c)ξ2⊥(c) =

∫
dccxcye

Λ(c)scxξ2y(c), (80)

and use has been made of the fact that the operator Λ(c) is isotropic. In the hydrodynamic
limit, the velocity evolves in a scale much slower that the scale in which the function Gxy(s)
decays. We then have ∫ s

0

ds′w⊥(k, s′)Gxy(s− s′)→ η̃w⊥(k, s), (81)

where η̃ is the dimensionless shear viscosity

η̃ =

∫ ∞
0

dsGxy(s). (82)

The noise terms are the last two terms of Eq. (77)

PR̃(k, c, s) = ξ2⊥(c)
∫
dc(k̂⊥ · c)R̃(k, c, s) = ξ2⊥(c)S(k, s), (83)

and

P (ik · c)
∫ s
0

ds′eQΛ(k,c)(s−s
′)QR̃(k, c, s′)

= ξ2⊥(c)ik
∫
dc(k̂⊥ · c)(k̂ · c)

∫ s
0

ds′eQΛ(k,c)(s−s
′)QR̃(k, c, s′)

= −ξ2⊥(c)Π(k, s), (84)

where we have used the definitions of S(k, s) and the fluctuating pressure tensor, Π(k, s), Eqs.

(64) and (65). Finally, by multiplying Eq. (77) by k̂⊥ · c and further integrating over velocities,
we obtain the equation of the transverse velocity of the main text.

B Autocorrelation function of Rw(k, s)

In this Appendix we evaluate the correlation function of the noise of the transverse velocity
field, Rw(k, s). We consider k �= 0, s1 < s2 with s1 large. It is convenient to introduce the
following notation for the transverse and parallel components of the vector c

k̂⊥ · c = c⊥, k̂ · c = c‖. (85)

The autocorrelation function of Rw(k, s) reads, in terms of S(k, s) and Π(k, s),

〈Rw(k, s1)Rw(−k, s2)〉H = 〈(S(k, s1) + Π(k, s1))(S(−k, s2) + Π(−k, s2))〉H
= 〈S(k, s1)S(−k, s2)〉H + 〈S(k, s1)Π(−k, s2)〉H
+〈Π(k, s1)S(−k, s2)〉H + 〈Π(k, s1)Π(−k, s2)〉H . (86)
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We now calculate each correlation function taking into account the microscopic expressions
of S(k, s) and Π(k, s), Eqs. (64) and (65), and the correlation function of the noise of the
Boltzmann-Langevin equation, Eqs. (51) and (52).
The first term is

〈S(k, s1)S(−k, s2)〉H =
∫
dc1

∫
dc2c1⊥c2⊥〈R̃(k, c1, s1)R̃(−k, c2, s2)〉H

=
Ṽ 2

N
δ(s1 − s2)

∫
dc1

∫
dc2c1⊥c2⊥Γ(c1, c2)

=
Ṽ 2

N
δ(s1 − s2)

∫
dc1

∫
dc2c1⊥c2⊥T̄ (c1, c2)χH(c1)χH(c2)

= ξ̃2
Ṽ 2

N
δ(s1 − s2). (87)

where we have used the relation
∫
dc1
∫
dc2c1⊥c2⊥T̄ (c1, c2)χH(c1)χH(c2) = ξ̃2, that is proved

in [32].
The second correlation function is

〈S(k, s1)Π(−k, s2)〉H
=

∫
dc1c1⊥ik

∫ s2
0

ds

∫
dc2c2‖c2⊥eQ2Λ(−k,c2)(s2−s)〈R̃(k, c1, s1)Q2R̃(−k, c2, s)〉H

= ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥eQ2Λ(−k,c2)(s2−s1)Q2Γ(c1, c2). (88)

Here, we have changed the sign of Π(−k, s) because we are dealing with the −k component
and then k̂→ −k̂ (we do not change k̂⊥ → −k̂⊥, because this vector comes from the projector
P and it is fixed).
The third term vanishes

〈Π(k, s1)S(−k, s2)〉H = −ik
∫ s1
o

ds′
∫
dc1c1‖c1⊥

∫
dc2c2⊥

×eQ1Λ(k,c1)(s−s′)Q1〈R̃(k, c1, s′)R̃(−k, c2, s2)〉H = 0, (89)

because 〈R̃(s′)R̃(s2)〉H = 0 for s′ ∈ (0, s1) with s1 < s2.
Finally, we evaluate the last term to second order in k

〈Π(k, s1)Π(−k, s2)〉H
	 k2

∫ s1
0

ds′1

∫ s2
0

ds′2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c1)(s1−s

′
1)+Λ(c2)(s2−s′2)

×〈R̃(k, c1, s′1)R̃(−k, c2, s′2)〉H
=
Ṽ 2

N
k2
∫ s1
0

ds′1

∫ s2
0

ds′2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c1)(s1−s

′
1)+Λ(c2)(s2−s′2)Γ(c1, c2)δ(s′1 − s′2)

=
Ṽ 2

N
k2
∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥

∫ s1
0

dseΛ(c1)(s1−s)+Λ(c2)(s2−s)Γ(c1, c2)

=
Ṽ 2

N
k2
∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c1)s1+Λ(c2)s2

∫ s1
0

dse−s[Λ(c1)+Λ(c2)]Γ(c1, c2)

	 Ṽ
2

N
k2
∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c2)(s2−s1)

×[Λ(c1) + Λ(c2)]−1
[
−Γ(c1, c2) + ξ̃2 ∂

∂c1
· ∂
∂c2
χH(c1)χH(c2)

]
, (90)
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where, in the last step, we have taken into account that s1 is large and we have introduced
the term ∂

∂c1
· ∂
∂c2
χH(c1)χH(c2). This term does not contribute to the integral, but is writ-

ten for convenience, to make a connection with the global correlation function φH(c1, c2) ≡∫
dlhH(l, c1, c2) which fulfills Eq. (70). In doing so, we find that the autocorrelation function
of Π(k, s) reads

〈Π(k, s1)Π(−k, s2)〉H 	 Ṽ
2

N
k2Cxy(s2 − s1), (91)

where

Cxy(s2 − s1) =
∫
dc1

∫
dc2c1xc1yc2xc2ye

Λ2(s2−s1)φH(c1, c2). (92)

As φH(c1, c2) is the integral of the correlation function hH(l, c1, c2), Cxy can be identified as

the correlation function of the global quantity
∑N
i=1 Vx(t)Vy(t).

C Time integral of the correlation function

In this Appendix we evaluate the time integral of the correlation function 〈S(k, 0)Π(−k, s)〉H
in the hydrodynamic limit. Using the notation of the previous Appendix, we have∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉H

= ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥

[
eQ2Λ(−k,c2)s

Q2Λ(−k, c2)
]∞
0

Q2Γ(c1, c2)

= −ik Ṽ
2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥

1

Q2Λ(−k, c2)Q2Γ(c1, c2)

= ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥

Q2[Λ(k, c1) + Λ(−k, c2)]
Q2Λ(−k, c2) φH(k, c1, c2), (93)

where we have introduced the function

φH(k, c1, c2) =

∫
dle−ik·lhH(l, c1, c2), (94)

that fulfills the Fourier transform of Eq. (23)

[Λ(k, c1) + Λ(−k, c2)]φH(k, c1, c2) = −Γ(c1, c2) + ξ̃2 ∂
∂c1
· ∂
∂c2
χH(c1)χH(c2)δ(k). (95)

Note that the last term in the previous equation only appears for k = 0. Taking into account
that c⊥χH(c) is left eigenfunction associated to the null eigenvalue and after some algebra we
obtain ∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉H

=
Ṽ 2

N
k2
∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥

1

Q2Λ(−k, c2)φH(k, c1, c2)

+
Ṽ 2

N
ik

∫
dc1

∫
dc2c1⊥c2‖c2⊥φH(k, c1, c2). (96)

Now, let us consider the hydrodynamic limit of (96). The first term gives

Ṽ 2

N
k2
∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥

1

Q2Λ(−k, c2)φH(k, c1, c2)→ −
Ṽ 2

N
k2
∫ ∞
0

dsCxy(s). (97)
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The second term can be evaluated by using the following expansion in powers of k

[Λ(c)− ik · c]−1 	 Λ(c)−1 + Λ(c)−1(ik · c)Λ(c)−1, (98)

which yields

Ṽ 2

N
ik

∫
dc1

∫
dc2c1⊥c2‖c2⊥φH(k, c1, c2)

→ Ṽ
2

N
k2
∫ ∞
0

dsCxy(s)− Ṽ
2

N
k2
∫
dc1

∫
dc2c1xc2xc2y

∫ ∞
0

dseΛ(c2)sc2yφH(c1, c2). (99)

Taking into account (97) and (99), we obtain

∫ ∞
0

ds〈S(k, 0)Π(−k, s)〉 → − Ṽ
2

N
k2
∫
dc1

∫
dc2c1xc2xc2y

∫ ∞
0

dseΛ(c2)sc2yφH(c1, c2)

=
Ṽ 2

N
k2
∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yφH(c1, c2). (100)

D k2 Component of the correlation function of Rw

In this Appendix we evaluate the k2 component of the correlation function of Rw in terms of
the one and two-particle distribution functions, χH and χ2

φH(c1, c2) = χH(c1)δ(c12) + χ2(c1, c2). (101)

The first term is∫ ∞
0

dsCxy(s) =

∫ ∞
0

ds

∫
dc1

∫
dc2c1xc1yc2xc2ye

sΛ(c2)φH(c1, c2)

= −
∫
dc1

∫
dc2c1xc1yc2xc2yΛ(c2)

−1φH(c1, c2)

= −
∫
dccxcyΛ(c)

−1cxcyχH(c)

−
∫
dc1

∫
dc2c1xc1yc2xc2yΛ(c2)

−1χ2(c1, c2). (102)

If we do the same in the second term, we have

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yφH(c1, c2)

=

∫
dccxcyΛ(c)

−1cxcyχH(c) +
∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yχ2(c1, c2). (103)

It can be seen that the sum of the two terms only depends on the two-particle correlation
function and we obtain the k2 part of Eq. (73).

References

1. J.W. Dufty, J. Phys.: Condens. Matter 12, A47 (2000)
2. I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003)
3. A. Barrat, E. Trizac, M.H. Ernst, J. Phys.: Condens. Matter 17, S2429 (2005)
4. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)



Granular Gases 2008: Beyond the Dilute Limit 139

5. I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993)
6. S. McNamara, W.R. Young, Phys. Rev. E 53, 5089 (1996)
7. J.J. Brey, J.W. Dufty, A. Santos, J. Stat. Phys. 87, 1051 (1997)
8. T.P.C. van Noije, M.H. Ernst, R. Brito, Physica A 251, 266 (1998)
9. J.J. Brey, J.W. Dufty, C.S. Kim, A. Santos, Phys. Rev. E 58, 4638 (1998)
10. N. Sela, I. Goldhirsch, J. Fluid Mech. 361, 41 (1998)
11. J.J. Brey, J.W. Dufty, M.J. Ruiz-Montero, in Granular Gas Dynamics, edited by T. Poeschel, N.
Brilliantov (Springer, Berlin, 2003)

12. A. Goldshtein, M. Shapiro, J. Fluid. Mech. 282, 75 (1995)
13. P.K. Haff, J. Fluid. Mech. 134, 401 (1983)
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