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Ground state of classical bilayer Wigner crystals

Ladislav Šamaj1,2 and Emmanuel Trizac2

1 Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia, EU
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Abstract – We study the ground-state structure of electronic-like bilayers, where different phases
compete upon changing the inter-layer separation or particle density. New series representa-
tions with exceptional convergence properties are derived for the exact Coulombic energies under
scrutiny. The complete phase transition scenario —including critical phenomena— can subse-
quently be worked out in detail, thereby unifying a rather scattered or contradictory body of
literature, hitherto plagued by the inaccuracies inherent to long-range interaction potentials.

Copyright c© EPLA, 2012

The prediction by Wigner that strongly correlated
charge carriers in a uniform compensating background
could crystallize [1], was first realized experimentally with
electrons at the surface of liquid helium [2], which form a
two-dimensional structure. Since then, the study of low-
dimensional electronic systems has shown no abating and
in particular, the bilayer geometry singles out. It appears
significantly richer than its monolayer counterpart and
has been investigated in different settings: GaAs quantum
wells [3] or other semiconductors [4], quantum dots [5],
graphene [6], boron nitride [7], laser-cooled trapped ion
plasmas [8], dusty plasmas [9] and colloids [10]1. In light
of these applications, it is essential to understand the
ground-state features of Coulombic bilayers, starting with
the classical limit. This problem has received signifi-
cant attention in the last 20 years, as such [13–17] or
supplemented with finite temperature analysis [18–20].
In addition, ground-state ordering impinges on strong-
coupling expansions describing counterintuitive yet ubiq-
uitous electrostatic phenomena, such as like-charge attrac-
tion [11,21–23] or charge reversal [12,24]. This body of
work has revealed the main features of ground-state struc-
ture, but there exist surprising discrepancies in the liter-
ature, especially on the respective domains of existence
of the different phases possible. The reason lies in the
long-range nature of Coulombic interactions, a common

1Note though that in the soft matter realm, the charge carriers
need to be multivalent in order to reach, at room temperature and
in an aqueous dispersion, the strong couplings required for Wigner
crystallization [11,12].

bane for such analysis. Our goal here is to resolve exist-
ing controversies, precisely locate all phases and discuss
the critical behavior associated. All results reported are
exact; they are obtained from new series representations
of lattice sums for Coulomb law.
We consider an ensemble of identical classical point

charges q, interacting through a 1/r pair potential, and
confined between two symmetric parallel charged walls.
These boundaries both bear a uniform surface charge of
density −σq, so that global electroneutrality holds. At
finite temperature T , the charges do populate the interior
of the slab. For T = 0 though, the charges evenly condense
on the opposing walls, thereby forming a bilayer ground
state [25]2 the structure of which depends on a single
dimensionless parameter η= d

√
σ, where d is the inter-

plate distance (see fig. 1). It is known that five structures
can be realized upon increasing η; they will be referred
to following standard terminology, common to the clas-
sical [15] and quantum contexts [28]. To begin with, the
limits of small and large η are both straightforward. For
η→ 0, a genuine two-dimensional one-component plasma
is produced [21], where the strong mutual repulsion
between charges leads to a hexagonal Wigner crystal [29],
the so-called structure I. Conversely, for η→∞, the two
layers decouple and a hexagonal crystal forms on each
plate (structure V). These two crystals adopt a stag-

2Clearly, the ground-state structure does not depend on the
precise value of the confining plates surface charge, as long as they
are symmetric objects, thereby producing a vanishing electric field
in the interstitial slab [27].
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d

Fig. 1: Side view of the two parallel plates at a separation d.
From their common uniform surface charge density −σq, we
define the dimensionless distance as η= d

√
σ. Ions, which bear

charge q, are shown as black or white disks for visual ease, but
they are point-like in the present study.

gered configuration, to minimize inter-layer repulsion. For
intermediate reduced distances η, three other structures
are met, see fig. 2: a staggered rectangular lattice (struc-
ture II), a staggered square lattice (structure III), and a
staggered rhombic lattice (structure IV). Note that while
one can evolve continuously through the sequence I →
II → III → IV, no continuous deformation allows to
create structure V from one of the others. The transi-
tions between phases will therefore be of different orders,
with characteristics and critical exponent (in the contin-
uous cases) that will be worked out explicitly below.
A goal of our analysis is to precisely locate the tran-
sition points between phases: indeed, a dispersion of
about 20% exists for the hitherto reported threshold ηIV
between structures IV and V, see [14,15,17,19]. In addi-
tion, controversial results have been reported for the tran-
sition point ηI between structures I and II: ηI ≃ 0.006
from Ewald summation technique [15], ηI ≃ 0.028 from
Monte Carlo simulations [19], whereas lattice sum mini-
mization of Yukawa systems in the unscreened limit hints
at ηI = 0 [16], meaning that structure I could possibly only
exist at precisely η= 0.
We start by addressing the question whether ηI = 0 or
�= 0, and to this end, we compute the energy E(Δ, η) of
structure II. For a given layer, the 2D lattice points are
indexed by ja1+ ka2 where j and k are integers and
the lattice vectors a1 = a(1, 0), a2 = a(0,Δ) are shown
in bold in fig. 2. The global electroneutrality requires
that a2σΔ=1. The aspect ratio Δ fulfills 1≤Δ≤

√
3

with Δ=
√
3 for structure I and Δ= 1 for the (square)

structure III. The dielectric constant of the medium is set
to unity for the sake of simplicity, and the total energy
per ion E(Δ, η) is written as the sum of intra- and inter-
layers contributions. We first restrict ourselves to a disk
of finite radius R around a given reference ion located at
(0, 0). Considering ion-ion and ion-plate interactions, we
have the intra-layer energy

Eintra =
q2

2a

∑

j,k

(j,k) �=(0,0)

1
√

j2+ k2Δ2
− σq

2

2

∫ R

0

dr
1

|r| (1)

with the restriction j2+ k2Δ2 � (R/a)2. It is expedient
and common procedure [20,30] to use the gamma iden-
tity (π/z)1/2 =

∫∞

0
t−1/2 exp(−zt) dt valid for z > 0, which

ϕ

Structure IIIStructure I

Structure IV Structure V

Fig. 2: Schematic representation of the different ground states
encountered when the dimensionless distance η increases. The
open and filled symbols show the locations of ions on the
opposite surfaces (see fig. 1). The arrows are for lattice vectors
a1 and a2, from which we define the aspect ratio Δ= |a2|/|a1|:
Δ=

√
3 and 1 for structures I and III, respectively, while

structure II interpolates between I and III with 1<Δ<
√
3.

For structure IV, the order parameter is the angle ϕ between
a1 and a2. We have ϕ= π/2 for structure III whereas ϕ= π/3
for structure V, and in general, π/3�ϕ� π/2. Structures I,
III and V are rigid, as opposed to the soft cases II and IV
where the unit cell geometry depends on inter-plate separation,
through Δ and ϕ, respectively. Note that the shift between the
two opposite crystals materialized by open and filled symbols
is (a1+a2)/2 for structures I, II, III, IV but (a1+a2)/3 for
structure V.

provides us with a simple expression where the limit
R→∞ can be readily taken:

√
πEintra
q2
√
σ
=

1

2a
√
σ

∫ ∞

0

dt√
t

⎡

⎣

∑

j,k

e−tj
2

e−tk
2∆2 − 1− π

tΔ

⎤

⎦

=
1

2

∫ ∞

0

dt√
t

⎡

⎣

∑

j,k

e−tj
2/∆e−tk

2

Δ− 1− π
t

⎤

⎦

=

∫ π

0

dt
π

t3/2

⎡

⎣

∑

j,k �=(0,0)

e−(πj)
2/(∆t)e−(πk)

2∆/t

⎤

⎦− 2
√
π.

(2)

Here, the second line is obtained from the substitution
tΔ→ t and the condition a2σΔ=1; the third line stems
from considering separately the domains t∈ [0, π] and
t∈ [π,∞] in the integral, substituting π2/t→ t and subse-
quently using Poisson summation formula

∞
∑

j=−∞

e−(j+φ)
2t =

√

π

t

∞
∑

j=−∞

e2πijφe−(πj)
2/t. (3)

The inter-layer energy contribution Einter is amenable to
a similar treatment [31], and the last step of the procedure
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consists in introducing the function

zν(x, y) =

∫ 1/π

0

dt

tν
e−xte−y/t, for y > 0. (4)

We finally end up with the series representation for the
total energy E(Δ, η) =Eintra+Einter:

E(Δ, η)
√
π

q2
√
σ

= 2

∞
∑

j=1

[

z3/2(0, j
2/Δ)+ z3/2(0, j

2Δ)
]

+4

∞
∑

j,k=1

z3/2(0, j
2/Δ+ k2Δ)

+
∞
∑

j=1

(−1)j
[

z3/2((πη)
2, j2/Δ)+ z3/2((πη)

2, j2Δ)
]

+2

∞
∑

j,k=1

(−1)j(−1)kz3/2((πη)2, j2/Δ+ k2Δ)

+2

∞
∑

j,k=1

z3/2(0, η
2+(j− 1/2)2/Δ+(k− 1/2)2Δ)

−2
√
π− π
2
z1/2(0, η

2). (5)

The function zν generalizes to two-layer problems the
so-called Misra function [32] used extensively in single-
layer lattice summation [33,34]. Our use of (5) will be
three-pronged: it allows to show analytically that ηI = 0,
to calculate explicitly the singular behavior near critical
points and is moreover particularly suited for numerical
evaluations. From an operational point of view, the series
(5) is indeed endowed with remarkable properties: it is free
of singular terms, and importantly, converges extremely
quickly. The error made upon truncating the series in
the energy expression (5) at order j = k=M behaves like
exp(−cM2)/M , where c is a constant of order unity. We
first document the convergence property on the single-
layer case of structure I, for which the exact energy
is E(

√
3, 0)/(q2

√
2σ) =−1.96051578931989165 . . . , which

is directly the Madelung constant of the 2D hexagonal
Wigner crystal. Cutting the series (5) at M , we obtain
the exact value with a precision of 2, 5, 10, 17 digits
with notably small cutoffsM = 1, 2, 3, 4, respectively. This
makes numerical calculations extremely fast and efficient
on any workstation. A similar accuracy is met for all other
structures and parameter values reported here, and all
numerical results quoted below have been obtained with
the cutoff M = 5.
We now turn our attention to the threshold ηI which

defines the stability window of structure I. For a given
distance η, we proceed by calculating the Taylor expansion
of (5) in the small parameter ǫ=

√
3−Δ, which yields

E(
√
3− ǫ, η)
q2
√
2σ

=
E(
√
3, η)

q2
√
2σ
+ f1(η) ǫ+ f2(η) ǫ

2+O(ǫ3),
(6)

where

f1(η)=
1

23/2
√
π

{

4

∞
∑

j=1

j2
[

z5/2(0, j
2
√
3)−1
3
z5/2(0, j

2/
√
3)

]

+8
∞
∑

j,k=1

(

k2− j
3

3

)

z5/2(0, j
2/
√
3+ k2

√
3)

+2

∞
∑

j=1

(−1)jj2
[

z5/2((πη)
2, j2
√
3)−1
3
z5/2((πη)

2, j2/
√
3)

]

+4
∞
∑

j,k=1

(−1)j+k
[

k2− j
2

3

]

z5/2((πη)
2,
j2√
3
+ k2
√
3)

+4

∞
∑

j,k=1

[

(

k− 1
2

)2

− 1
3

(

j− 1
2

)2
]

×z5/2(0, η2+(j− 1/2)2/
√
3+ (k− 1/2)2

√
3)

}

, (7)

and the function f2 is also explicitly known [31]. To
investigate the stability of structure I, it is sufficient
to study the sign of f1, which is worked out from a
Taylor expansion for small η. The first two derivatives
of this function f1 vanish at η= 0 and we have f1(η) =
−0.5833059875 . . . η2+O(η4), hence an energy decrease
upon increasing ǫ as compared to the ǫ= 0 case (struc-
ture I). This implies that ηI = 0: at finite but small
distances η, the optimal phase is not structure I. To
obtain the optimal value of ǫ selected and that we denote
ǫ∗, we further Taylor expand f2(η) which yields f2(η) =
0.0408440789 . . .+O(η2). As a consequence,
√
3−Δ∗ ≡ ǫ∗ =− f1(η)

2f2(η)
= 7.14064 . . . η2+O(η4), (8)

which entails that the energy change scales like η4. For the
thresholds ηI reported in refs. [15,19], a relative accuracy
of 10−9 was therefore required to answer the finite or
vanishing ηI question. The accuracy of our findings is
illustrated in fig. 3.
The above analysis shows that the evolution from

structure I to structure II is not a phase transition in the
common sense. The situation differs between structures II
and III. To inspect the corresponding transition, we note
that E(Δ, η) enjoys the symmetry Δ→Δ−1, as is clear
from fig. 2 where a global rotation of π/2 does not affect
the energy but interchanges lattice vectors a1 and a2. The
value Δ= 1 characterizing structure III is therefore a self-
dual point, and it will now be convenient to parameterize
the aspect ratio as Δ= exp(ǫ). All expressions will then be
even in ǫ. The expansion of E(eǫ, η) in small ǫ-deviations
yields

E(eǫ, η)

q2
√
2σ
=
E(1, η)

q2
√
2σ
+ g2(η) ǫ

2+ g4(η) ǫ
4+O(ǫ6), (9)

where g2 and g4 are explicitly known [31], in a series form
that is very reminiscent of eq. (7). The bilayer energy
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Fig. 3: The difference between the dimensionless energies
[E(Δ, η)−E(

√
3, η)]/(q2

√
2σ) vs. ǫ=

√
3−Δ, for η= 5 · 10−3.

The analytical formula (6) with the Taylor expansions of f1
and f2 given in the text is shown by the continuous line. It
is compared to the numerical evaluation of the series (5) with
a cutoff M = 5 (symbols). The optimal ǫ value following from
the prediction (8) is shown by the dashed vertical line.

appears in a standard Ginzburg-Landau form [35], but
it should be emphasized that at variance with mean-
field arguments usually underlying such approaches, our
expression is exact. The critical point ηII sought for is
the root of g2(η) = 0, which gives ηII = 0.2627602682 . . . . It
appears here that the thresholds reported in earlier works
were accurate: 0.27 [13], 0.262 [15], 0.27 [17] and 0.28 [19].
Proceeding along similar lines as for the I → II crossover,
we Taylor expand g2(η) and g4(η) to leading order around
ηII. The former behaves like (η− ηII) while the latter is
constant, a prototypical scenario for a continuous phase
transition with critical index β = 1/2 [35]. Specifically, we
get

Δ∗− 1≃ ǫ∗ =
(

− g2(η)
2g4(η)

)1/2

≃ 1.48031√ηII− η. (10)

This expression applies for η≤ ηII, in the stability domain
of structure II, and is in excellent agreement with our
numerical calculations from eq. (5), see fig. 4.
The task remaining is to find the series representations

for structures IV and V. We first address structure IV.
Implementation of the procedure that led to the series (5)
becomes possible once the distance between a reference
ion and an arbitrary ion located on the same layer at
r(j, k) = ja1+ ka2 is expressed as

|r(j, k)|2 = a2
(

j2+ k2+2jk cosϕ
)

=

a2
[

(j+ k)2 cos2(ϕ/2)+ (j− k)2 sin2(ϕ/2)
]

. (11)

The latter “diagonalized” form in terms of indices,
provides the starting point to write the intra-layer
Coulomb energy (summing 1/

√

|r(j, k)|2), and suggests
to introduce new indices n and m: if j+ k is even, we
define n= (j+ k)/2 and m= (j− k)/2. If j+ k is odd, we
introduce indices n= (j+ k+1)/2 and n= (j− k+1)/2.

0,0001 0,001 0,01 0,1

η
II
 - η

10
-2

10
-1

10
0

∆
∗
 −

 1

Fig. 4: The transition II → III: Test of the analytical asymp-
totic relation (10) (dashed line) against numerical minimization
of the energy (5) (solid curve), in a log-log scale. The numerical
data of ref. [15] are shown by the circles.

Likewise for the inter-layer interactions, taking due
account of the shift (a1+a2)/2 between opposite layers.
Building on the gamma identity and Poisson summation
formula, the series form for the energy EIV ensues [31].
This energy depends on the angle ϕ and of course on
the distance η. For our purposes, rather than the lengthy
explicit form, it is sufficient to report the Landau-like
expansion of EIV in the vicinity of ϕ= π/2. A convenient
expansion parameter is ǫ such that exp(ǫ) = tan(ϕ/2),
and the invariance ϕ→ π−ϕ makes EIV an even function
of ǫ. In the small ǫ region of interest associated to the
vicinity of π/2 for ϕ, we obtain an expansion up to
order ǫ4 of the same form as (9). This teaches us that
structure III is unstable for η > ηIII = 0.6214809246 . . . ,
to be compared to the thresholds 0.61 [14], 0.622 [15],
0.62 [17], 0.59 [19] while structure IV was not considered
in [13]. We furthermore again obtain a second order
phase transition with critical index 1/2 and explicit order
parameter close to the transition point

ǫ∗ ≃ π
2
−ϕ∗ ≃ 1.24494√η− ηIII, (12)

in excellent agreement with our numerical data.
The transition IV → V is discontinuous, which made

its characterization more elusive in previous publications.
Our method, though, is easily adapted to the geometry of
structure V. The series representation for EV(η) should be
compared to EIV(ϕ

∗, η) evaluated for the optimal distor-
tion angle ϕ∗(η). Requiring that EV(η) =EIV(ϕ

∗, η), we
obtain the last η-threshold that was remaining to be
specified: ηIV = 0.73242 . . . . Previous investigations gave
0.75 [14], 0.732 [15], 0.87 [17] and 0.70 [19]. For η > ηIV,
structure V is energetically favorable. As a by-product of
our analysis, we report the large distance behavior of the
inter-plate pressure P =−2σ ∂EV/∂d:

P = −2π(σq)2 3 exp
(

− 4π√
2 31/4

η

)

, (13)

in agreement with [15] but at variance with [14,22].

36004-p4



Ground state of classical bilayer Wigner crystals

η

η η η η

0.263 0.621 0.732

II III IV VI

0

I II III IV

second order first order

Fig. 5: Sequence of structures encountered as a function of
reduced inter-plate separation η. The values reported for the
different stability thresholds are rounded the third digit.

To summarize, we have derived series representations
for the different Coulomb lattice sums pertaining to the
ground state of classical bilayer systems. The derivation,
worked out explicitly for the five different structures
that were known to compete at vanishing temperature,
results from a series of transformation rooted in the
general theory of Jacobi θ functions [31]. The resulting
series provide the thresholds delimiting the domains of
validity of the different phases, that were prone to some
fluctuations in previous works. Figure 5 provides an
overview of our main findings. We could in particular
show that the simple hexagonal structure I can only exist
in the limiting case of a vanishing inter-plate distance,
and is preempted by a buckled phase for all η �= 0. This
is the scenario first reported in ref. [16], which differs
from several other studies that assigned a finite stability
window to phase I. Whereas the evolution I → II is not
a phase transition, we could show that the continuous
transitions II → III and III → IV have critical index β =
1/2. In addition, our series representation is endowed with
exceptional convergence properties, providing typically
more than 10 digits of accuracy when retaining only the
first 4 or 5 terms involved. Relinquishing the symmetry
between the two plates to address the cases where they
bear different surface charges is an interesting venue
for future work. This brings the difficulty that local
electroneutrality no longer holds at the single-plate level
in the ground state [26], except presumably at large
separations. Our approach can also be extended to bilayers
and multilayers with repulsive Yukawa or inverse-power-
law interactions, that deserve attention.
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