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Strong screening in the plum pudding model
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Abstract – We study a generalized Thomson problem that appears in several condensed matter
settings: identical point-charge particles can penetrate inside a homogeneously charged sphere,
with global electro-neutrality. The emphasis is on scaling laws at large Coulombic couplings,
and deviations from mean-field behaviour, by a combination of Monte Carlo simulations and
an analytical treatment within a quasi-localized charge approximation, which provides reliable
predictions. We also uncover a local overcharging phenomenon driven by ionic correlations alone.
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The venerable Thomson problem of finding the ground
state of an ensemble of electrons confined in a homo-
geneously charged neutralizing sphere, is still unsolved
and has a long history, see, e.g., [1–3] and references
therein for the different generalizations that have been
put forward. The model was introduced at the begin-
ning of the 20th century [1], just after the discovery
of the electron, but before that of the proton, as a
classical representation of the atom; hence the “plums”
representing the electrons, and the introduction of a homo-
geneous background (the “pudding”), to fulfill electro-
neutrality. This picture, although obsolete in the atomic
realm, has nevertheless attracted the interest of mathe-
maticians, physicists and biologists alike, due to its rele-
vance in particular for ionic ordering at interfaces [4],
for the behaviour of colloids self-assembled at the edge
of emulsion droplets (colloidosomes, see, e.g., [5]), for the
study of one-component plasmas and their experimental
realizations (electrons on a liquid-helium surface [6]) or for
understanding viral morphology [7]. The Thomson prob-
lem reappeared recently in sheep’s clothing in different
contexts, from the screening effects in hydrophobic poly-
electrolytes [8], to the behaviour of Coulomb balls (iden-
tical particles confined in a harmonic trap [9]), including
hydrogels [10], where the uptake of counterions by a cross-
linked polymer network (the “pudding”) is the key feature
leading to the expansion of the network by osmotic pres-
sure, hence the capability to absorb large quantities of

water. At variance with Thomson’s preoccupation where
ground-state configurations were under scrutiny, those
articles were concerned with the finite-temperature behav-
iour (T �= 0). At high to moderate temperatures, mean-
field theory provides a trustworthy framework, and allows
to obtain some analytical results [8]. The regime of low
temperatures (large couplings, a notion to be specified
below) is more elusive, and it will be our primary objective
in the present contribution. Several analytical predictions
will be derived, including scaling laws for two important
quantities characterizing the screening properties. These
predictions will be tested against numerical simulations,
that also give access to detailed microscopic information
concerning the structure.
We start by defining the model and introducing a rele-

vant coupling parameter. We consider a single permeable
and spherical globule of radius Rg and charge −zqZg
(referred to as the background), surrounded by its Zg
counterions of charge zq, where q is the elementary charge
and z the ionic valency. It should be stressed that the
counterions can penetrate but also leave the homoge-
neously charged globule, which is an important difference
with Thomson’s original formulation. Without loss of
generality, the globule is assumed negatively charged
(positive counterions). In such a salt-free system, a
confining cell is required to avoid evaporation of all
counterions; its radius is denoted Rc. A key quantity is
the “globule total uptake” charge −Zup, which includes
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the background and the counterions present within the
globule1. Hence, Zg −Zup can be viewed as the number
of counterions outside the globule. Following [9,11],
we define the coupling (plasma) parameter Γ as the
ratio between the characteristic electrostatic energy of
a counterion-counterion interaction, z2q2/(4πεδ), and
the thermal energy, kT . Here ε is the solvent dielec-
tric constant, and the distance δ is taken as the ion
sphere radius: Zgδ

3 =R3g. Introducing the Bjerrum

length �B = q
2/(4πεkT ), which is about 7 Å in water at

room temperature, we get

Γ=
z2q2

4πεδ kT
=Z1/3g

z2�B

Rg
. (1)

For Γ< 1, mean-field Poisson-Boltzmann theory [11]
provides an accurate description, while the strong-
coupling regime corresponds to Γ> 1. It has been shown
in [8] that within the non-linear mean-field regime2, coun-
terion penetration into the globule leads to Zup ∝

√
Zg

for large enough bare charge Zg. For the purpose of
comparison with numerical calculations in the strongly
coupled regime, this quantity needs suitable rescaling,
and we define

Π=Zup
z4�2B
R2g
, (2)

which only depends on Γ (see footnote 3). Within mean
field, we then have Π∝ Γ3/2 up to a prefactor of order 1,
and in addition, the relation n∝ exp(−zeφ/kT ) between
counter-ions density n(r) and the local mean electrostatic
potential φ(r) [11], allows us to relate the reduced charge
Π to the characteristic decay length of n(r) at r=Rg. To
this end, we define the positive quantity

S =−z2�B d
dr

∣∣∣∣
r=Rg

log n(r), (3)

that can be viewed as the reduced (inverse) decay length
of the counterion profile in the globule vicinity. Gauss
theorem implies S =Π, again within irrelevant prefactors:
the reduced decay length S−1 is inversely proportional
to the reduced total charge, that is itself an increasing
function of the background charge Zg.
How are the previous results affected in the strong-

coupling regime? To make analytical progress when Γ� 1,
we take advantage of the caging of particles that takes
place under their strong mutual repulsion [12]4. This basic

1We avoid the terminology “effective” for Zup, which has a
different meaning (charge extracted from the far-field behaviour).
2Note that the weak-coupling limit Γ< 1 is compatible with

strong non-linear effects, which occur within mean field whenever
Zg�B/Rg� 1 (which is easily met), provided �B�Rg , see eq. (1).
3At large Γ, the particular choice of Rc does not affect our

predictions —as can be seen in fig. 1— as long as it is finite.
4A similar phenomenon is at the root of the strong-coupling

expansion performed when the macro-ions are impermeable to the
counterions, that then form a strongly modulated two-dimensional
liquid (or even solid at extreme couplings), see, e.g., [11,13–15].
Compared to those works, we are here investigating the permeable
case where counterions can enter the charged colloids, with a corre-
sponding strongly modulated three-dimensional liquid formation.

feature of strongly coupled Coulomb or Yukawa plas-
mas is at the root of the quasi-localized charge approx-
imation, that has proved useful for the determination of
dynamic quantities [16]: the charges inside the globule
are trapped around local potential minima, and there-
fore oscillate at a frequency close to the Einstein value
ω2E = n0z

2q2/(3mε) [17]5, where n0 =Zg/(4πR
3
g/3) is the

background density, and m is the counterion mass. The
potential felt locally by a counterion then reads

U(x) =
1

2

z2q2n0

3ε
x2 =

1

6

kT x2

λ2
(4)

where x stands for the deviation from potential minimum,
and λ= [z2q2n0/(εkT )]

−1/2 can be thought of as a Debye
length. The typical cage size is given by δ, as required from
local electro-neutrality, and likewise, those cages located
near the boundary of the globule (r=Rg) are centered at
r=Rg − δmax. We expect δmax and δ to scale accordingly,
and more precisely, we write δmax = αδ, where α will be an
important quantity for what follows. Due to the repulsion
of neighboring counterions, we anticipate α< 1 (the outer
layer of confined ions is “pushed” towards the boundary
r=Rg, by a mechanism reminiscent of depletion in hard
core systems). This is precisely the scenario at work in the
ground state (i.e. at infinite Γ), where several approximate
expressions have been proposed for α [12]. Consistent with
these approximations and with numerical simulations that
report 0.73<α< 0.77 [12], we will take α= 3/4 for our
large-coupling expansions.
We are now in a position to compute the uptake charge

of the globule, from the number of counterions that are
able to escape their cage. At large Γ, only those cages
located near the globule boundary can loose particles;
there are (Rg/δ)

2 such cages, so that

Zup �
R2g

δ2

∫ ∞
δmax

dx

λ
exp

(
− x

2

6λ2

)
(5)

� R
2
g

δ2
λ

δmax
exp

(
−δ
2
max

6λ2

)
. (6)

Since δ2/λ2 = 3z2�B/δ = 3Γ, and going from Zup to its
rescaled form Π, we obtain

Π∝ Γ3/2 exp(−α2Γ/2). (7)

This shows, under strong coupling and at variance with
mean-field, that the uptake charge actually decreases
upon increasing the globule charge; furthermore, it is
noteworthy that our argument, valid at large Γ, also

5If the charges are crystallised on an ordered lattice, harmonic
motion occurs with frequency ω= ωE . For a disordered lattice, ω

2

is distributed around ω2E with spread that vanishes at large Γ [17].
Long-range order is not required though, as a similar phenomenon
holds for a strongly modulated liquid, the situation we consider here.
We therefore emphasize that our approach does not require stricto
sensu crystallisation, but rather the occurence of a correlation hole
around the counterions present in the globule.
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reproduces the mean-field small Γ behaviour with a power
law of exponent 3/2.
We now seek a more microscopic information and

attempt to predict the radial dependence of the counterion
profile n(r) outside the globule. When a counterion
approaches the globule, it polarizes the trapped ions
in their cages, and in turn feels the potential V (r)
thereby created (the more obvious Zup/r contribu-
tion appears to be sub-dominant, see below). More
specifically, the test particle located at r creates a
field E=−zq(r−x)/(4πε|r−x|3) at point x where a
counterion located inside the globule will be displaced
from its equilibrium position, creating a dipole moment
p= 3z2q2λ2E/kT (see footnote 6). The contribution of
this dipole to the potential V felt by the test charge is
p · (r−x)/(4πε|r−x|3), an expression that we have to
integrate over all cages of counterions (one dipole for
each cage); moreover, for consistency with our previous
argument with outer cages centered at a radial position
Rg − δmax, and gathering expressions, we have

V (r)�−n0 3z
3q3λ2

(4πε)2kT

∫
|x|�Rg−δmax

1

|r−x|4 d
3x. (8)

To obtain the dominant contribution, in the vicinity of Rg,
we neglect the curvature of the globule, which gives

−zqV (r)
kT

∝ �B

r−Rg + δmax with r= |r|. (9)

The corresponding density profile follows from n(r)∝
e−V/kT , which yields the dominant behaviour logn∝
�B/(r−Rg + δmax). This allows not only to compute the
scaling parameter S but also to propose a scaling function
for n(r). Indeed we obtain here S ∝ z2�2B/δ2 from the
definition (3), i.e. S ∝ Γ2, and

1

Γ
log
n(r)

n(Rg)
∝F(ζ) = [(ζ +α)−1−α−1] (10)

with ζ = (r−Rg)/δ. As a consequence, if the scaling
relation (10) holds, an important test for the consistency
of our approach is to recover the same value of α as in
expression (7), close to 3/4. To summarize our analytical
findings, we obtained, in addition to the explicit scaling
form (10), that while Π∝ S ∝ Γ3/2 in the non-linear mean-
field regime (meaning the limit of large bare charges Zg
within Poisson-Boltzmann theory), strong coupling leads
to S ∝ Γ2 and an uptake charge (background plus counter-
ions present within the globule) Π∝ Γ3/2 exp(−α2Γ/2).
The slope (S) increases with Γ steeper than in mean field,
and ionic correlation effects lead at large Γ to a decrease
of the charge Π.
To put these predictions to the test, we have performed

Monte Carlo simulations, where the counterion interact

6A simple argument provides the needed polarizability of a cage:
for an ion displaced by a quantity δr from its equilibrium position
by an external field E, we have the force balance condition mω2Eδr=
zqE, which yields the dipole moment p= zq δr= z2q2λ2E/(kT ).
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Fig. 1: (Colour on-line) Counterion density profile n normalized
by background density n0 as a function of distance from the
globule center (normalized by the globule radius Rg). Here
Γ= 13, Rc/Rg = 2 and Zg = 200. The density peak location
defines the distance δmax, that is shown in the inset at various
couplings, different cell radii (Rc/Rg = 2, 4 and 8) and Zg from
50 to 3000. The dashed line shows the value 3/4, used for α
throughout this work.

through the exact Coulomb law and feel the background
charge of the globule, the whole system being furthermore
enclosed in a larger sphere of radius Rc (see footnote

3).
Following the analytical treatment, we located the posi-
tion of counterionic density peak close to the globule edge,
which defines δmax, see fig. 1. The inset of this figure shows
that the ratio α= δmax/δ does not depend on the coupling
strength, and remains close to its ground-state limit
α� 3/4. Recovering the proper value of α at large Γ can be
viewed as an assessment of the validity of our simulations,
and we can then proceed with the explicit check of the scal-
ing form eq. (10). It can be seen in fig. 2 that the different
curves exhibit good collapse at different Γ, and that the
function F(ζ) captures the density decay in the external
vicinity of the globule (ζ > 0). While our argument above
only provides the relation Γ−1 log[n(r)/n(Rg)]∝F(ζ), a
more refined analysis indicates that the prefactor is close
to 1/2 [18], so that we have plotted F(ζ)/2 in fig. 2. We
have also computed the values of S and Π in the simu-
lations. They are shown in fig. 3, which fully corrobo-
rates the analytical scaling behaviours. First, at small Γ,
we have the mean-field behaviour S ∝Π∝ Γ3/2, while at
larger couplings, S ∝ Γ2 and Π becomes non-monotonous.
The detailed behaviour of Π vs. Γ provides a stringent
test for our arguments: as shown in the inset of fig. 3, the
dependence of log(Π/Γ3/2) on Γ is linear at large Γ, with
a (negative) slope compatible with the predicted value of
α2/2 = 9/32. We see that a unique value of α, inherited
from ground-state properties, accounts for the behaviour
of the density profile together with more global quantities
like the uptake charge.
The previous considerations provide a detailed descrip-

tion for the ionic density profile outside the globule. The
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Fig. 2: (Colour on-line) Plots of rescaled counterion profiles in
the vicinity of the globule, Γ−1 log[n(r)/n(Rg)], as a function
of ζ = (r−Rg)/δ. The different symbols correspond to different
values of Γ, from 8 to 24. The thick dashed curve is for the
function F(ζ)/2, where F is defined in eq. (10), with a value
α= 3/4. Inset: integrated charge Qint vs. radial distance, at
weak and strong couplings. For Γ< 1, Qint is always of the
same sign as the background, while over-charging is observed at
strong couplings. The dashed line shows the mean-field result.
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Fig. 3: (Colour on-line) Rescaled counterion density slope S
defined in eq. (3), and reduced uptake charge Π=Zup z

4�2B/R
2
g,

as a function of coupling parameter Γ. The dashed lines have
slope 3/2 (to evidence the mean-field behaviour) and 2. Here S
has been divided by 2 to have S �Π at low Γ. The inset shows
Π/Γ3/2 as a function of coupling, on a linear-log scale. The line
has slope −α2/2�−0.28.

behaviour for r <Rg is more intricate, and has been
analyzed in Monte Carlo. A quantity of interest is the
total integrated charge Qint(r) inside a sphere of radius r.
By definition, Qint(Rg) =−Zup and Qint(Rc) = 0 due to
electro-neutrality. Within mean field, it is interesting to
note that Qint is always of the same sign as the back-
ground (here, negative). One can also note that the
salt-free nature of our system imposes Qint(Rg)< 0, and
more precisely, that Qint(r)< 0 for all r�Rg. Hence,

a true overcharging cannot be observed in our salt-free
system [11,13]. However, for Γ> 1, the inset of fig. 2 shows
that Qint(r) exhibits a range of distances where it is posi-
tive: we refer to such a possibility as a local over-charging,
and we note that it is somehow reminiscent of its counter-
part occurring for impermeable colloids [11,13]. Indeed,
as for impermeable colloids, it is possible to prove that
local overcharging is precluded within mean-field theo-
ries [18,19], so that when present, it is a manifestation
of ionic correlations, that become prevalent at Γ> 1. The
electrophoretic consequences of this over-charging effect
are unclear, and left for future study. Incidentally, the close
agreement between Monte Carlo and mean-field results at
small Γ (see inset of fig. 2) can be seen as assessing the
validity of the numerical methods employed.
To summarize, we investigated the screening proper-

ties of a uniformly charged spherical globule, neutralized
by point counterions. Invoking a quasi-localized charge
argument at strong Coulombic coupling Γ, we obtained
analytically the counterion density profile n(r) outside
the globule, together with two more global quantities:
one, denoted S, follows from n(r) and is its character-
istic inverse decay length in the globule edge vicinity
(r=Rg); the second quantity, Π, stands for the reduced
total charge inside the globule and quantifies the coun-
terion uptake. At small couplings, S and Π coincide and
scale as Γ3/2. Strong ionic correlations, on the other hand,
were shown to lead to a departure of both quantities: the
slope S becomes steeper (algebraic increase in Γ2) and
the counterion uptake is much more efficient, leading to
a charge Π that decreases upon increasing Γ (which can
be obtained increasing the globule bare charge Zg): the
algebraic mean-field increase turns into an exponential
decrease, see eq. (7). Our scaling predictions are free of
adjustable parameters, and make use of known ground-
state properties [12] (that fix the parameter α= δmax/δ).
These predictions were corroborated by Monte Carlo simu-
lations, that provide the exact static properties of our
system at arbitrary Γ, and that furthermore revealed an
over-charging effect that is absent within the mean-field
scenario. We have treated the phenomenon of caging at
a rather simple level, that turns out to be sufficient to
capture the interesting violations of mean field, driven by
ionic correlations. In addition, while the mean-field theory
applies schematically for Γ< 1 and the strong-coupling
arguments cover the range Γ> 10, a quantitative under-
standing of the crossover region at moderate couplings
presumably requires intermediate approaches in the spirit
of refs. [20].
Our work opens interesting venues for future studies.

First, our predictions can be tested experimentally, in
the spirit of the experiments reported in [21]. For the
corresponding hydrophobic polyelectrolytes, we estimate
that Γ� z2 at room temperature, where z is the valency
of the counterions. Consequently, with trivalent ions,
one has Γ� 9, which is the regime where mean field
no longer applies, and our strong-coupling predictions
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take over, see fig. 3. Second, the phase behaviour of
an ensemble of such globules is unknown, together with
the effects of an added electrolyte. Finally, the response
to external perturbations, both static (sedimentation)
or dynamic (electrophoresis), should provide a relevant
ground to investigate the signature of strong Coulombic
correlations.
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E., in preparation.

[19] Trizac E., Phys. Rev. E, 62 (2000) R1465.
[20] Burak Y., Andelman D. andOrland H., Phys. Rev. E,

70 (2004) 016102; Chen Y. G. and Weeks J. D., Proc.
Natl. Acad. Sci. U.S.A., 103 (2006) 7560; Santangelo
C. D., Phys. Rev. E, 73 (2006) 041512; Buyukdagli S.,
Manghi M. and Palmeri J., Phys. Rev. Lett., 105 (2010)
158103.

[21] Essafi W., Lafuma F., Baigl D. andWilliams C. E.,
Europhys. Lett., 71 (2005) 938.

68010-p5


