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Abstract – We study the ground-state structures of identical classical point charges with Coulomb
interactions, confined between two symmetric parallel charged walls. For the well-understood
homogeneous dielectric case with no electrostatic images, the charges evenly condense on the
opposite walls, thereby forming a bilayer Wigner crystal; five structures compete upon changing the
inter-wall separation. Here, we consider a dielectric jump between the walls and a solvent in which
charges are immersed, implying repulsive images. Using recently developed series representations
of lattice sums for Coulomb law, we derive the complete phase diagram. In contrast to the
homogeneous dielectric case, the particles remain in a hexagonal Wigner monolayer up to a certain
distance between the walls. Beyond this distance, a bifurcation occurs to a sequence of Wigner
bilayers, each layer having a nonzero spacing from the nearest wall. Another new phenomenon is
that the ground-state energy as a function of the wall separation exhibits a global minimum.

Copyright c© EPLA, 2012

Introduction. – Bilayer Wigner crystals of electrons
appear in various experimental settings: GaAs quantum
wells [1,2] or other semiconductors [3], quantum dots [4],
dusty plasmas [5], colloids [6], etc. Theoretically, it is
relevant and nontrivial to understand the ground-state
features of Coulombic bilayers, starting with the classical
limit. This subject in its homogeneous dielectric version
has received significant attention in the last few years,
as such [7–12] or within more general finite temperature
analysis [13–16].
We consider the ground state of an ensemble of (say

elementary) classical point charges e, interacting through
the 1/r usual Coulomb pair potential. The charges are
confined between two symmetric parallel walls at distance
d, carrying a uniform surface charge of density −σe (see
fig. 1). The system as a whole is electroneutral. The
static dielectric constant of the walls ε′ can be, in general,
different from the constant ε of the solvent in which the
charges are immersed. The dielectric jump between the
two moieties is defined as Δ= (ε− ε′)/(ε+ ε′), so that Δ∈
[−1, 1]. The interval Δ∈ [−1, 0) corresponds to attractive
and Δ∈ (0, 1] to repulsive electrostatic image charges. In
realistic systems, in particular those of biological interest,

the wall mimics the interior of a polarizable colloid with
ε′ � 10 while ε≃ 80 for water solvent, so Δ is close to 1.
In the well-understood homogeneous dielectric case

Δ= 0, Earnshaw theorem [17] tells us that in the ground
state, the charges evenly condense on the opposite walls.
The structure of the formed bilayer depends on a single
dimensionless parameter η= d

√
σ. For η= 0, a genuine

hexagonal Wigner crystal (structure I) is stable (provides
the true minimum of the energy); this structure becomes
unstable for an arbitrary small η > 0 [11,18,19]. In the
opposite limit η→∞, the two layers decouple and a hexa-
gonal Wigner crystal is formed on each plate (structure V);
to minimize the inter-layer repulsion, these two crystals
adopt a staggered configuration. For intermediate values
of η, three other structures are met, see fig. 2: a stag-
gered rectangular lattice (structure II), a staggered square
lattice (structure III) and a staggered rhombic lattice
(structure IV) [9]. The transitions between structures
(II and III) and (III and IV) are of second order with
mean-field critical indices [18,19]. The transition between
structures (IV and V) is discontinuous, characterized by
a skip of the angle ϕ to π/3 and by a mutual shift of the
lattices on the opposite surfaces.
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Fig. 1: The geometry of two dielectric walls at distance d,
carrying the surface charge density−σe. The particles of charge
e form a Wigner bilayer which consists of two sub-lattices A
and B at distance d̄; a monolayer corresponds to d̄= 0. The
distance of each sub-lattice to the nearest wall is l= (d− d̄)/2.

ϕ

Structure IV Structure V

Structures I, II and III

Fig. 2: Schematic representation of the different ground states
encountered when the dimensionless distance η increases, in
the homogeneous dielectric case Δ= 0. The open and filled
symbols show the locations of ions on the opposite surfaces.
The arrows are for the lattice vectors a1 and a2, from which
we define the aspect ratio δ= |a2|/|a1|: δ=

√
3 for structure I,

δ= 1 for structure III, while structure II is intermediate, having
1< δ <

√
3. For structure IV, the order parameter is the angle

ϕ between a1 and a2. Structures IV and V have δ= 1.

In this letter, we consider the dielectric jump Δ∈
[0, 1], implying repulsive electrostatic image charges. The
presence of repulsive image and self-image forces has
intuitively two important effects on the ground state:

– the particles no longer collapse on the surface of the
walls, but create a symmetric bilayer structure with
a nonzero spacing from the walls, i.e. d̄ �= d in fig. 1;

– the intervals of η, inside which the structures I-V
are stable, are changed. In particular, a monolayer
with structure I is expected to be stable up to a
critical value ηI→II > 0 beyond which it bifurcates into
a bilayer with structure II.

The nonzero spacing from the walls is confirmed in
the limit η→∞ where the two layers decouple (up to a
staggered shift) and each of them forms a neutral entity
with the corresponding charged wall. For the resulting one-
wall geometry, it was shown in ref. [20] that, as a result
of balance between attractive surface charge and repulsive
image charge forces, the stable hexagonal Wigner crystal
of particles is formed at some distance l from the wall.
This distance is given by l= at/2, where a is the lattice
spacing of the two-dimensional Wigner crystal determined
by the electroneutrality condition as 1 = (

√
3/2)a2σ and

the dimensionless parameter t is the solution of the
transcendental equation

∞
∑

j,k=−∞

1

(t2+ j2+ jk+ k2)3/2
=
4π√
3

1+Δ

Δ

1

t
. (1)

The lattice sum on the lhs can be expressed as

2

π

∫ ∞

0

du
√
ue−ut

2 [

θ3(e
−u)θ3(e

−3u)+ θ2(e
−u)θ2(e

−3u)
]

,

(2)

where θ2(q) =
∑∞
n=−∞ q

(n− 12 )
2

and θ3(q) =
∑∞
n=−∞ q

n2

are the Jacobi theta functions with zero argument.

Method. – Our goal is to calculate the Coulomb inter-
action energy of the electroneutral system pictured in
fig. 1. Each point will be represented by Cartesian coor-
dinates as r= (R, z), where R= (x, y) and the z-axis is
perpendicular to the walls. The system is inhomogeneous
along the z-axis, symmetric with respect to the z = 0
plane. The wall surfaces, charged uniformly by −σe, are
localized at z =±d/2. The two Wigner sublayers, each
formed of N/2 point charges e, are localized at z = d̄/2
(sub-lattice A with sites {RAj }) and at z =−d̄/2 (sub-
lattice B with sites {RBj }). The distance of the Wigner
sub-lattice A (respectively B) to the nearest wall surface
at z =+d/2 (respectively z =−d/2) is l= (d− d̄)/2. We
have l > 0 for the considered case with repulsive images
Δ∈ (0, 1] and l= 0 otherwise (for attractive images Δ∈
[−1, 0), a small hard core around the particles is necessary
to prevent thermodynamic collapse onto their images).
The Coulomb energy consists of three contributions:
i) Particle-particle interactions: The direct Coulomb

potential between two points r= (R, z) and r′ = (R′, z′),
situated in between the walls, is given by

u0(r, r
′) =
1

ε

1
√

|R−R′|2+(z− z′)2
. (3)

Due to the dielectric inhomogeneity, a unit charge at
r= (R, z) has an infinite number of electrostatic images
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with the same vector R [21]. The first sequence of images,
generated by considering first the reflection with respect to
the wall surface at z =+d/2, is localized at (−1)n+1(nd−
z) with associated charges Δn (n= 1, 2 . . .). The second
sequence, generated by considering first the reflection with
respect to the wall surface at z =−d/2, is localized at
(−1)n(nd+ z) with associated charges Δn (n= 1, 2 . . .).
The image Coulomb potential thus reads

uim(r, r
′) =

1

ε

∞
∑

n=1

{

Δ2n
√

|R−R′|2+(2nd+ z− z′)2

+
Δ2n

√

|R−R′|2+(2nd− z+ z′)2

+
Δ2n−1

√

|R−R′|2+ [(2n− 1)d+ z+ z′]2

+
Δ2n−1

√

|R−R′|2+ [(2n− 1)d− z− z′]2

}

.

(4)

The notation uim(r, r
′)≡ uim(|R−R′|; z, z′) will be often

used in what follows. The total energy of particles and
their images is given by

Epp =
e2

2

⎡

⎣

∑

j �=k

u0(rj , rk)+
∑

j,k

uim(rj , rk)

⎤

⎦ . (5)

The term j = k in the second sum corresponds to the
interaction of particle j with its own image. Let us choose
as a reference particle the one at site 1 of lattice A localized
on the plane z = d̄/2. The energy per particle is expressible
as

Epp
N
=
e2

2ε

⎡

⎣

∑

j �=1

1

RAA1j
+
∑

j

1
√

(RAB1j )
2+ d̄2

⎤

⎦

+
e2

2

⎡

⎣uim

(

0;
d̄

2
,
d̄

2

)

+
∑

j �=1

uim

(

RAA1j ;
d̄

2
,
d̄

2

)

+
∑

j

uim

(

RAB1j ;
d̄

2
,− d̄
2

)

⎤

⎦ . (6)

Here, RAA1j ≡ |RA1 −RAj | and similarly RAB1j ≡ |RA1 −RBj |.
Owing to the symmetry of the problem, the same formula
holds if the reference particle sits on lattice B.
The lattice sums in the above expression have to

be “regularized” by background terms in the following
sense. Let us consider two plates at distance z, each of
a large surface S. They carry the fixed surface charge
density −σe. At each plate, there are point charges e
of surface density σ. The total number of particles N =
2σS, so that the system as a whole is electroneutral.
The dielectric constant is homogeneous, equal to ε. The

energy per unit surface due to the background-background
interaction of the two (−σe) plates at distance z is given by
Ebb/S =−2π(σe)2z/ε. Equivalently, Ebb/N =−πσe2z/ε.
The interaction energy of charge e with (−σe) plate at
distance z is 2πσe2z/ε. The total “background energy”
per particle thus reads ǫ(z) = πσe2z/ε. Such term has
to be added to and subtracted from each of the lattice
sums in (6). The first term is unchanged, the second term
becomes

e2

2ε

⎡

⎣

∑

j

1
√

(RAB1j )
2+ d̄2

+2πσd̄

⎤

⎦− πσe
2

ε
d̄, etc.

The regularized sums (like the one in the square bracket)
vanish in the large-distance limit. Interestingly, they are
amenable to a special representation by quickly converging
series expansions, with the aid of the recent method
developed in [18,19]. Note that the regularization of image
interactions uim requires addition and subtraction of an
infinite number of background energies. After performing
the regularization of all lattice sums in (6), we end up with

Epp
N
=
E∗pp
N
− πσe

2

ε
d̄− 4πσe

2

ε

Δ

(1−Δ)2 d, (7)

where the star means “regularized”.
ii) Particle-surface charge interaction: We now study

the direct and image interactions of charged particles with
the fixed surface charge densities on the walls. The surface
charge −σe at z =−d/2 has one image Δ(−σe) at the
same z =−d/2 and a series of images (1+Δ)Δn−1(−σe)
at z = (−1)n(2n− 1)d/2 (n= 2, 3, . . .). The surface charge
−σe at z =+d/2 has one image Δ(−σe) at the same
z =+d/2 and a series of images (1+Δ)Δn−1(−σe) at z =
(−1)n−1(2n− 1)d/2 (n= 2, 3, . . .). After simple algebra,
the interaction energy of one particle of charge e with both
surface charges (−σe) and their images takes the form

Eps
N
=
2πσe2

ε

(1+Δ)2

(1−Δ)2 d. (8)

The same result is obtained, as it should be, when one
computes the interaction energy of both surface charges
(−σe) with one charge e and all its images.
iii) Surface charge-surface charge interaction: The

energy per particle due to the direct and image interaction
between surface charges turns out to be

Ess
N
=−πσe

2

ε

(1+Δ)2

(1−Δ)2 d. (9)

Note that this value equals to −1/2 of Eps/N defined
by (8), in close analogy with the homogeneous Δ= 0 case.
For the total energy E =Epp+Eps+Ess, we get

E

N
=
E∗pp
N
+
πσe2

ε
(d− d̄). (10)
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The infinite lattice sums in E∗pp/N , which is the regular-
ized version of (6), can be expressed as quickly converging
series of the special functions [18,19]

zν(x, y) =

∫ 1/π

0

dt

tν
e−xte−y/t, y > 0, (11)

which represent a generalization to two-layer problems
of the so-called Misra functions [22] used in single-layer
lattice summations [23]. The cutoff of the series at the 5th
term corresponds to the precision of more than 17 decimal
digits; we keep this cutoff in the present work. As concerns
the number of counted images in the image Coulomb
potential (4), we cut the series at n= 5 as well; there
exist various checks indicating that this cutoff preserves
excellent accuracy of our results.
We do not assume that the inclusion of repulsive images

will lead to the appearance of a new structure, different
from those presented in fig. 2. The energy per particle
of a structure has to be minimized with respect to
all structure parameters. In comparison with the Δ= 0
case, the bilayer distance d̄ is an additional variational
parameter. Among the five afore-mentioned structures,
the one which provides the minimum of the energy E is
chosen as stable.
The appearance of three, four or more layered structures

cannot be, in principle, excluded. Other approaches, like
Monte Carlo (MC) simulations, are more suitable for
detecting such complicated structures. We only know that
the case Δ= 0 and the two extreme limits d→ 0 (structure
I) and d→∞ (structure V) for all Δ∈ [0, 1] are treated
correctly within our assumption:

– As soon as Δ> 0, the stability along the z-axis of a
particle inside structure I is influenced “positively”
by image/self-image effects and “negatively” by the
direct Coulomb interaction with all other particles.
The image effects become stronger when the distance
between walls d decreases; there always exists a finite
distance d when the image force overwhelms the direct
repulsion by other particles. This is why structure I is
expected to be stable in a finite interval of d values,
in contrast to the Δ= 0 case.

– In the opposite limit d→∞, our energy per parti-
cle (10) reduces to that of the hexagonal Wigner crys-
tal with images for one-wall geometry. Indeed, in that
limit, the following terms survive from the regularized
version of (6): the sum

∑

j �=1 1/R
AA
1j , Δ/[ε(d− d̄)]

from the n= 1 term of uim(0; d̄/2, d̄/2) and

Δ

ε

⎡

⎣

∑

j �=1

1
√

(RAA1j )
2+(d− d̄)2

+2πσ(d− d̄)

⎤

⎦

from the n= 1 term of
∑

j �=1 uim(R
AA
1j ; d̄/2, d̄/2).

Substituting these terms into eq. (10) and expressing
everything in terms of the distance l of the hexagonal
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Fig. 3: The phase diagram in the (η,Δ)-plane. The dashed
line, lying entirely in the structure-I region, corresponds to the
absolute ground state (minimum of the total energy).

Wigner crystal from the wall, we recover the basic
expression for the energy per particle (9) in [20] for
the charge valence q= 1. The two Wigner crystals
form, together with the corresponding charged wall,
neutral entities shifted as in structure V to ensure the
lowest energy.

We shall work with dimensionless distances

η= d
√
σ, η̄= d̄

√
σ, ξ = l

√
σ, (12)

such that ξ = (η− η̄)/2. In the asymptotic limit η→∞,
the dimensionless distance of the Wigner layer from the
corresponding wall is given by

ξ∗ =
t

31/4
√
2

(η→∞), (13)

where t is the Δ-dependent solution of eqs. (1) and (2).
This formula provides a check of the accuracy of our results
in the region of structure V as well as criterion for reaching
the asymptotic one-wall regime.

Numerical results. – We have performed numerical
calculations using the Mathematica software. The phase
diagram in the (η,Δ)-plane is pictured in fig. 3. Generally
speaking, the transition values of η exhibit a much stronger
dependence on Δ than the ones of η̄ presented in table 1.
The relevant fact is that for every Δ> 0 the particles form
the Wigner monolayer ( η̄= 0) with structure I up to some
positive η I→II > 0, as was anticipated.
Interestingly, for Δ> 0 the ground-state energy is not a

monotonic function of η. It reaches its global minimum at
some ηmin which is smaller than η I→II, i.e. the particles
form the structure-I Wigner monolayer at this point,
see fig. 4. Such a behavior differs substantially from the
homogeneous case Δ= 0, for which the energy grows
monotonically.
At point η I→II, the particle system starts to bifurcate to

a Wigner bilayer ( η̄ > 0) and at the same time structure
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Table 1: The values of the dimensionless layer separation η̄
at phase transitions between structures I→ II→ III→ IV→V,
for a given dielectric jump Δ.

Δ η̄ I→II η̄ II→III η̄ III→IV η̄ IV→V

0.2 0 0.273 0.619 0.732
0.4 0 0.267 0.607 0.723
0.6 0 0.259 0.596 0.712
0.8 0 0.252 0.587 0.703
1.0 0 0.245 0.578 0.693
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Fig. 4: The dimensionless ground-state energy per particle,
Eε/(Ne2

√
2σ), vs. the dimensionless distance between the

walls η, for four values of the dielectric jump Δ= 0, 0.1, 0.4
and 1. The symbols represent the transition points between
structures: open circle for I→ II, open square for II→ III, filled
diamond for III→ IV and filled triangle for IV→V.
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Fig. 5: The aspect ratio δ of structures I-III vs. the dimen-
sionless distance between the walls η. The dielectric jump
Δ ranges between 0 to 1, from left to right with step 0.1.
δ=
√
3 = 1.73205 . . . for structure I, 1< δ <

√
3 within struc-

ture II and δ= 1 for structure III.

I evolves into structure II with the varying aspect ratio
1< δ <

√
3 (see fig. 5). Structure II ends up at the second-

order transition point η II→III, where structure III with
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(ϕ
/2

) Δ = 0 Δ = 1

Fig. 6: Dependence of the angle ϕ for structure IV on the
dimensionless distance between the walls η. The dielectric jump
Δ ranges between 0 to 1, from left to right with step 0.1. Each
line ends at the transition point η IV→V.
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Δ = 0.4

Δ = 1

Δ = 0

Fig. 7: Dimensionless distance of the Wigner sub-layer from
the nearest wall, ξ, vs. the dimensionless distance between the
walls η, for four values of the dielectric jump Δ= 0, 0.1, 0.4
and 1. The dotted line has slope 1/2. For Δ= 0, we have the
trivial result ξ = 0, i.e. particles collapse onto the wall surface,
as required by Earnshaw theorem. The horizontal dashed lines
correspond to the asymptotic η→∞ values for the one-wall
problem ξ∗, given by (13).

the fixed aspect ratio δ= 1 determines the ground-state
energy.
The second-order phase transition from structure III

(ϕ= π/2) to structure IV, with a varying angle ϕ such
that tan(ϕ/2)< 1, takes place at point η III→IV. The plots
of the order parameter tan(ϕ/2) vs. the dimensionless
inter wall distance are pictured for the dielectric jumps
Δ= 0, 0.1, . . . , 1 in fig. 6.
At the first-order transition point η IV→V , the angle ϕ

skips from the value ∼ 1.21 within structure IV, which is
practically independent of Δ, to π/3∼ 1.05 for structure
V. An interesting question is whether also the layer sep-
aration η̄ exhibits a skip at η IV→V. The values of η̄ IV→V
for various Δ’s in the last column of table 1 turn out to be
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the same for both structures IV and V at the transition
point, within our number specification to 3 decimal digits.
In the last fig. 7, we plot the dimensionless distance

of the Wigner sub-layer from the nearest wall, ξ, vs.
η, for four values of the dielectric jump Δ∈ [0, 1]. The
dielectric homogeneous case Δ= 0 with the trivial ξ =
0, i.e. particle collapse onto the wall surface, is shown
for comparison. For the corresponding transition points
between the structures, see fig. 4. If Δ> 0, the Wigner
monolayer with structure I stays at z = 0 up to η I→II and
so ξ = η/2 for 0� η < η I→II. Interestingly, the value of ξ
attained at η I→II is always larger than the asymptotic
η→∞ value ξ∗ for the one-wall problem, given by eq. (13)
and depicted by horizontal dashed lines in fig. 7. This
is why, after bifurcation of the Wigner monolayer to
the series of bilayer structures II-V by increasing η, the
distance ξ goes to ξ∗ from above. For η∼ 1.3, ξ coincides
with the asymptotic value ξ∗ to within 4 decimal digits.

Conclusion. – We have extended the standard study
of the homogeneous dielectric version of the ground-state
problem for particles with Coulomb pair interactions,
constrained between two equivalently charged wall, to
a more realistic inhomogeneous dielectric situation with
repulsive electrostatic image charges. The analysis of the
additional Coulomb lattice sums due to the images of
particles and surface charges was performed. All lattice
sums are treated within the recent method [18,19] which
uses a bilayer generalization of Misra functions (11) to
construct very quickly convergent series expansions for
the ground-state energy. The numerical results obtained
show that inclusion of repulsive images has two funda-
mental effects. Firstly, the particles do not collapse onto
the charged surfaces of the walls, but create a Wigner
monolayer or bilayer symmetrically with a nonzero spacing
from the walls. The Wigner monolayer with the hexagonal
structure I remains stable up to a certain (dimensionless)
distance between the walls η I→II, where it starts to bifur-
cate into the series of bilayer structures II-V. Secondly,
the ground-state energy exhibits as the function of the
distance between the walls a minimum at some ηmin lying
in the region of the structure-I Wigner monolayer.
Although thermal fluctuations are supposed to destroy

a classical Wigner crystal at very low temperatures,
their fingerprints persist within a recent strong-coupling
theory [24] to higher (room) temperatures, in agreement
with MC simulations. Based on the present work, we plan
to extend that strong-coupling study by including wall
images.
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