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Abstract – Many charged polymers, including nucleic acids, are locally stiff. Their bending
rigidity —quantified by the persistence length— depends crucially on Coulombic features, such
as the ionic strength of the solution which offers a convenient experimental route for tuning the
rigidity. While the classic Odijk-Skolnick-Fixman treatment fails for realistic parameter values,
we derive a simple analytical formula for the electrostatic persistence length. It is shown to be
in remarkable agreement with numerically obtained Poisson-Boltzmann theory results, thereby
fully accounting for non-linearities, among which counter-ion condensation effects. Specified to
double-stranded DNA, our work reveals that the widely used bare persistence length of 500 Å is
overestimated by some 20%.

Copyright c© EPLA, 2016

Since the elucidation of DNA structure in the 1950s, it
became increasingly clear that the mechanical behavior of
a wealth of charged polymers (polyelectrolytes) is essential
for their interactions with proteins, the operation of molec-
ular motors and more generally, their biological function
including gene regulation and cytokinesis [1,2]. Fostered in
particular by scattering methods and the more recent ad-
vent of single-molecule techniques, the experimental study
of polyelectrolyte rigidity has consequently been an active
field of research in the last 30 years, see, e.g., [3–24] and
references therein. It is however arguably one of the most
controversial domains of polymer physics [25–33].

Although their mechanical properties may depend on
local structure, polyelectrolytes can satisfactorily be en-
visioned as coarse-grained “worm-like” chains in a vari-
ety of situations, with a continuous rather than discrete
charge distribution [5,8,11,12,17,34]. Their flexibility is
then quantified by a single quantity, the persistence length
Ltot, which measures the distance over which the chain
local orientation decorrelates [35]. For double-stranded
DNA (ds-DNA) in physiological conditions, Ltot ≃ 500 Å,
which significantly exceeds the typical thickness of the cor-
responding worm, having radius a ≃ 10 Å [5,12,36]. Unlike
single-stranded DNA where both lengths are comparable,
ds-DNA is thus a locally rigid object. A key question

then lies in the persistence length dependence on external
control parameters, such as the electrolyte content of the
solution (the so-called ionic strength).

A major breakthrough is due to Odijk [37] and inde-
pendently to Skolnick and Fixman [38], who realized that
for sufficiently rigid polymers, the persistence length Ltot

accounts for the bending rigidity of the polyelectrolyte
through the sum of the intrinsic persistence length L0 of
the uncharged polymer, and the electrostatic persistence
length Lel: Ltot = L0 + Lel. The presence of charges
on the backbone stiffens the chain (Ltot > L0), at least
within the mean-field picture adopted by Odijk, Skolnick
and Fixman (OSF). This translates into the celebrated
relation Lel = LOSF = λ2ℓB κ−2/4 where λ is the line
charge of the chain in units of the electron charge e, κ−1

is the Debye length, and ℓB is the Bjerrum length1. It
is important to stress that in addition to mean-field, the
OSF result was derived under two stringent conditions:
a) low charge limit (low λ or more precisely λ ≪ 1/ℓB,
where a linearized approach, the so-called Debye-Hückel
approximation, holds) and b) line charge limit (viewing
locally the polymer as a cylinder of radius a, this means

1ℓB corresponds to the distance where the electrostatic repulsion
between two electrons equals the thermal energy kT , which yields
7.1 Å in water at room temperature.
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enforcing the limit a → 0 or more precisely, a ≪ 1/κ). It
is a sobering thought that conditions a) and b) are often
both violated in practice, and almost never met simulta-
neously: κa is typically of order 1 for DNA in physio-
logical buffer while λℓB exceeds unity for single-stranded
and a fortiori double-stranded DNA, as well as for a large
gamut of synthetic polymers. It is generally believed
that the non-small λℓB can be remedied accounting for
counter-ion condensation à la Manning-Oosawa [39,40]2,
with the ad hoc replacement λ → 1/(qℓB) [30,41,42] for
sufficiently charged chains; OSF formula, with this pre-
scription, is the mainstay and reference law for an im-
pressively large body of literature. This approach is to a
large extent inadequate, and it is thus surprising that the
limitations a) and b) above have received little attention
since early works in the 1980s [42,43]3: LOSF may under-
estimate the mean-field electrostatic persistence length by
an order of magnitude or more. The consequences of the
interpretation of experimental measures, and on a more
theoretical level, on the scaling behavior of Lel, are far
reaching. Deriving a “dressed” or “renormalized” OSF
formula, i.e., an analytically simple to use and accurate
expression for the electrostatic persistence length of rigid
polyelectrolytes, and discussing its physical consequences,
is therefore particularly desirable. It is the main goal of
the present study.

We shall work at the mean-field level of Poisson-
Boltzmann (PB) theory, that is trustworthy for monova-
lent electrolytes (q = 1), since ionic correlations effects
are then small [44–46]. In doing so, we should recover
the OSF results for small charges and thin chains, but
more importantly, we will obtain a persistence length of
relevance for the situations encountered in practice. At
variance with a number of works that operate at Debye-
Hückel (DH) level [4,22,27–29,47–51], our approach is thus
non-linear. This is an essential prerequisite for describing
most natural or synthetic polyelectrolytes. Indeed, intro-
ducing the dimensionless charge ξ = qλℓB, a linearized
treatment is, as a rule of thumb, justified for ξ ≪ 1 while
ξ > 1 for a wealth of synthetic and natural chains (RNA,
DNA. . . ). Aiming at analytical progress, we coarse-grain
unnecessary atomistic details, to envision our polymer as
a uniformly charged cylinder, a worm-like chain further-
more assumed to be weakly bent (with a large radius of
curvature R). From the expression of F , the bending
free energy per unit length for this single macromolecule
in an electrolyte sea, the persistence length follows from
F = Lel/(2R2). The calculation is performed within the
PB framework where the dimensionless electric potential
Ψ obeys Poisson’s equation ∇2Ψ = κ2 sinh Ψ (we consider
a 1:1 electrolyte, with q = 1-valent co- and counter-ions).

2The idea is that locally cylindrical polyions create a logarithmic
electrostatic potential that may be strong enough to bind oppositely
charged microions (q-valent counterions), so that the rod takes the
effective line charge e/(qℓB) whenever λ > 1/(qℓB).

3These studies involve numerical resolutions and remained rather
difficult to transpose to practical situations.

To this end, we follow ref. [42] and expand Ψ in inverse
powers of the curvature:

Ψ = Ψ(0) +
1

κR
Ψ(1) +

1

(κR)2
Ψ(2). (1)

The zeroth-order potential is the solution for the straight
cylinder problem, an already non-trivial analytical prob-
lem [52–56]:

1

r̃
∂r̃

(
r̃∂r̃Ψ

(0)
)

= sinh Ψ(0), (2)

where r̃ = κr. The next order obeys

1

r̃
∂r̃

(
r̃∂r̃Ψ

(1)
)

− 1

r̃2
Ψ(1) = Ψ(1) coshΨ(0) (3)

and the equation for Ψ(2) requires the knowledge of Ψ(0)

and Ψ(1):

1

r̃
∂r̃

(
r̃∂r̃Ψ

(2)
)

+
1

2

(
∂r̃Ψ

(1) +
Ψ(1)

r̃
− r̃∂r̃Ψ

(0)

)
=

Ψ(2) coshΨ(0) +
(Ψ(1))2

4
sinh Ψ(0). (4)

While all Ψ’s vanish for r → ∞, the bare poly-ion
charge sets the boundary conditions at contact (r̃ = ã ≡
κa) where the derivatives of Ψ(0), Ψ(1) and Ψ(2) take
the respective values −2ξ/ã, 2ξ and −ξ ã. The present
formulation allows for numerical resolution of the coupled
equations (2), (3) and (4), from which a classic charging
process yields the free energy F , and thus the persistence
length:

Lel =
2

ℓB κ2

∫ ξ

0

Ψ(2)(ã)dξ. (5)

The numerical data presented below have been obtained
following these steps, that also prove useful to proceed
analytically, as we now discuss.

Linearizing eqs. (2), (3) and (4) yields a (DH) descrip-
tion that should hold for small ξ (i.e. neglecting counter-
ion condensation), but valid for arbitrary κa. In other
words, deficiency a) above remains while b) is taken care
of. After tedious calculations, the formula for the contact
potential Ψ(2)(ã) can be written explicitly; it turns out
immaterial for our purposes, since a particularly simple
linear approximation yields an accuracy better than 10%
for all κa’s:

Ψ
(2)
DH(ã) ≃ ξ

(
1

4
+ κa

)
, (6)

as shown in the inset of fig. 1. Such a relation is exact for
κa → 0 and κa → ∞. At this linear level of description,
the consequence in terms of stiffness is straightforward:
eq. (5) leads to the Debye-Hückel (DH) expression LDH

el =
ξ2(1 + 4κa)/(4ℓBκ2). For κa ≪ 1, the OSF expression is
recovered but the correcting factor 1 + 4κa is in general
non-negligible: for instance, considering ds-DNA, having
a ≃ 10 Å, κa is close to unity in physiological conditions.
OSF leads here to a fivefold underestimation.
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Fig. 1: Electrostatic persistence length vs. bare charge ξ = λℓB

for κa = 0.4. Comparison of numerical Poisson-Boltzmann re-
sults, solving the non-linear coupled equations (2), (3) and (4),
to the analytical surmise, eq. (7). The OSF law (bottom) is
shown by the dashed line. The inset shows the rescaled con-
tact potential ξ−1 Ψ

(2)
DH

(ã)/(ã + 1/4) at linearized (DH) level,
remaining close to 1 for all κa’s.

The remaining task is to account for non-linearities that
also enhance the Coulombic rigidity compared to OSF
expectations. This requires the analytical resolution of
eqs. (2), (3) and (4), an intractable task. To circumvent
that difficulty, we formulate a surmise that will be gauged
later against numerics:

Lel =
ξ2
eff

4ℓBκ2
(1 + 4κa) , (7)

where ξeff is the effective charge of the rod. The concept
of effective charges is widespread in colloidal science, but
it is sometimes elusive. Here, it has the clear-cut meaning
of describing the far-field of the straight charged cylin-
der [56,57], i.e., Ψ(0) ∼ 2ξeffK0(r̃)/[ãK1(ã)] for r̃ ≫ 1,
where K0 and K1 denote the 0th and 1st order modi-
fied Bessel functions of the second kind. By construction,
ξeff and ξ coincide for weakly charged polymers, while
the fact that ξeff < ξ and possibly ξeff ≪ ξ for large ξ
gives a quantitative meaning to the notion of counter-
ion condensation. Implicit in (7) is the idea that large-
scale features of the electrostatic interactions dominate
for the Coulombic rigidity: when bending a straight chain
so that it finally has curvature R, two charges that lie
a distance s apart along the backbone become closer by
Δs ≃ −s3/(24R2), a rapidly increasing function of s. In
a pairwise (DH) picture for a thin chain, the free-energy
cost F (and thus LDH

el ) is the weighted integral of Δs times
the energy variation ∂s(e

−κs/s). In calculating that inte-
gral, we recover OSF, with the interesting information that
large distances mostly do contribute. This backs up the
substitution ξ → ξeff to account for non-linearities, beyond
DH, a conclusion also reached in [16]. Similar propositions
have been put forward, see, e.g., the variational treatment
of refs. [13,24]. We can finally invoke progress in theo-
retical understanding of effective charges made in the last
15 years, that provide usable expressions. Here, thick and
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Fig. 2: Persistence length as a function of salt content, for
three charges (including ξ = 4.2 for double-stranded DNA).
OSF (dashed line) does not discriminate between ξ = 1 and
ξ > 1. The analytical curve is for eq. (7).

thin polymers have to be distinguished, meaning that for
small and large κa, different expressions should be used.
Specifically, for κa < 1/2 we took [56,57]

ξeff = 2κa K1(κa)
1

π
cosh(πμ) with

μ =
−π/2

log(κa) + γ − log 8 − (ξ − 1)−1
, (8)

valid, for ξ > 1 (see footnote 4) and where γ ≃ 0.5772 is
the Euler constant. For κa > 1/2, use was made of eqs. (4)
and (5) of ref. [58]:

ξeff = 2 κa tλ +
1

2

(
5 − t4λ + 3

t2λ + 1

)
tλ, (9)

where tλ = T (ξ/(κa + 1/2)) and the function T is defined
as T (x) = (

√
1 + x2 − 1)/x.

We are now in a position to test analytical against nu-
merical results. First of all, at a particular salt content,
fig. 1 shows that eq. (7) is remarkably accurate, for all
charges. On the other hand, OSF fails even at small
charges, due to the omission of the steric factor 1 + 4κa,
and with a growing disagreement as the charge increases.
Of course, enforcing both ξ ≪ 1 and κa ≪ 1, OSF is
recovered, as can be seen in fig. 2. This figure also illus-
trates the quality of the analytical prediction for κa < 1,
in particular for moderately to strongly charged polymers
(ξ > 1), for which OSF prediction should not be employed.
For κa > 1 the quality of our prediction deteriorates.

Arguably, the most iconic stiff polyelectrolyte is ds-
DNA, the mechanical properties of which have been the
subject of a flood of publications. To account for exper-
imental measures, its persistence length is almost invari-
ably fitted assuming OSF, i.e., with the formula L0+LOSF

where L0 is unknown. This yields the bare length L0 ≃
500 Å, a value that is widely taken for granted [6,36,59].

4More general expressions can be found in [56,57]; we focus here
on the most relevant ξ > 1 regime, beyond the so-called Manning
threshold.
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Fig. 3: (Colour online) Left: comparison to experimental and numerical data for ds-DNA: total persistence length in Å as a
function of ionic strength I (salt concentration) in mol L−1. The latter is defined by κ2 = 8πℓBI so that (κa)2 ≃ 11I (with
I again in mol L−1 and a = 10 Å). The diamonds are from [60] and the circles show the results from [6] (three for each ionic
strength corresponding to different methods of calculation). The ∗ is for the measure reported in [12] (Ltot = 520 ± 20 Å in
near-physiological conditions). The down triangles show the simulation data of [61]. The bottom part of the graph displays
the sole electrostatic contribution from the present work (continuous line, obtained numerically) and from OSF (dashed line).
The bare contribution L0 is subsequently added, with L0 = 400 Å or L0 = 500 Å as indicated. For comparison, the prediction
of ref. [15] is indicated by the thick dotted line. Right: amplitude of charge renormalization effect vs. salt for ξ = 4.2. The
effective charge extracted from the numerical solution of PB equation (2) is compared to the analytical prediction of eqs. (8)
and (9). The result of the variational treatment following refs. [13] and [24] is also shown (dashed line), together with the fit
reproducing the 2060 bp experimental data of ref. [24] (“BTSRDM” curve).

However, LOSF underestimates the electrostatic length
(see the two bottom curves of fig. 3), a deficiency that
needs to be compensated by an overestimation of L0. The
OSF-based value L0 ≃ 500 Å should thus be reconsidered.
Figure 3 shows that L0 + Lel with L0 = 400 Å provides
an equally good fit, if not better, than LOSF + 500 Å. On
the other hand, Lel + 500 Å yields a poor agreement with
the experimental data. The latter are quite scattered, so
that no attempt was made at providing a more accurate
estimation of L0. We conclude at this point that a consis-
tent treatment of Coulombic effects at Poisson-Boltzmann
level leads to a ds-DNA bare persistence length that is
some 20% smaller than reported in the literature. It is
worth emphasizing here that a distinct in spirit approach
was proposed by Manning in [15], accounting for the in-
ternal tension on DNA caused by phosphate-phosphate
repulsion. As a consequence, the persistence length of the
uncharged backbone enters multiplicatively into the for-
mula for Lel, and not additively as here. These results
also are seen in fig. 3 to be in fair agreement with exper-
imental data. We will see however that the formula of
ref. [15] fails to reproduce the data of fig. 4. Finally, we
show for completeness in fig. 3, right, how our effective
charge compares to the variational treatment of [13,24].

The spread of experimental points in fig. 3 evidences the
fact that inferring persistence length from force-extension
curves or other measures is an indirect and delicate
task [24,62]. For nucleic acids, the bare length L0 is fur-
thermore unknown (charges cannot be “switched off”),
and we have seen that fitting this quantity within an im-
proper framework may conceal theoretical glitch. It is
thus of particular interest to consider systems where the
charge can be tuned, and even made to vanish, a limit
where Ltot and L0 coincide. This is the case of the doped
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Fig. 4: (Colour online) Stiffness of worm-like non-ionic micelles
(surfactant C16E6), doped with ionic surfactant to tune the re-
sulting equilibrium polymer charge density [9,63]. The ionic
strength I is in mol L−1. Here, ξ = 1.2, a = 30 Å. The
bare persistence length L0 can be measured independently:
L0 = 150 Å.

giant micelles studied in [9,63]. The comparison in fig. 4
is thus fitting-parameter free. Unlike OSF, our approach
fares well against the experiments. Using Manning’s for-
mula [15] leads to an overestimation of Ltot − L0 by a
factor close to 5, see the thick dotted curve [64].

Before concluding, we briefly comment on the scaling
properties of Lel, a question that has not been undis-
puted. Weakly charged chains (for which ξeff ≃ ξ is fixed in
eq. (7)) exhibit two regimes, Lel ∝ κ−2 for κa < 1/4 and
Lel ∝ κ−1 for κa > 1/4. However, realistically charged
polymers reveal a much weaker dependence on κ (see
footnote 5), except under weak screening (κa ≪ 1), where

5A similar conclusion was reached in ref. [13].
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the standard κ−2 form is recovered6. Indeed, the effective
charge ξeff is an increasing function of salt density, to such
an extent that the κ-dependence of Lel becomes small for
DNA-like parameters, see the ξ = 4.2 curve in fig. 2. Upon
increasing ξ further, the persistence curves become flatter
and flatter in fig. 2 (not shown). It is worth emphasizing
that the κ-dependence of ξeff is not algebraic, so that non-
linearities wipe out the power-law features present in the
linear (DH) treatment. We also stress that at any rate,
the OSF scaling in κ−2 should never be expected, irre-
spectively of the charge of the polymer, for κa > 0.1 (see
footnote 7).

Conclusion. – Flexibility is a key property of chain
macromolecules. We have accounted for the Coulombic
contribution to the rigidity of stiff polyelectrolytes by a
simple formula, eq. (7). It remedies the shortcomings of
the celebrated Odijk, Skolnick and Fixman law, limited to
weak screening (thin rods) and weak charges. The result-
ing renormalized treatment is thus applicable to situations
of experimental interest, as we have discussed. A byprod-
uct of our analysis is that the bare ds-DNA persistence
length of 500 Å has been systematically overestimated,
and that a consistent value is quite smaller, L0 ≃ 400 Å.
We did not present any comparison with single-stranded
DNA, since this chain is considerably more flexible that its
double-stranded form. Yet, our description might be rele-
vant for single-stranded DNA under sufficient tension [65].
Finally, our simple approach clearly bears its own limita-
tions. While a relevant starting point, the homogeneous
worm-like view, subsuming all elastic features in a single
quantity, is quite crude. It does not account for hetero-
geneities (like sequence dependence for nucleic acids), the
possible existence of non-smooth bending through flexible
joints [66], the importance of end effects [67], the cou-
pling between stretching and bending [47] or the fact that
elasticity may be scale-dependent [4]. In addition, the
Poisson-Boltzmann framework discards from the outset
specificity effects. It also dispenses with ionic correlations,
relevant for multivalent ions, and that may lead to a de-
crease of stiffness [6,49,68–70], somewhat reminiscent of
like-charge colloidal attraction.
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EPL, 83 (2008) 48002.
[20] Saleh O. A., McIntosh D. B., Pincus P. and Ribeck

N., Phys. Rev. Lett., 102 (2009) 068301.
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